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Genetic and epigenetic factors determining
NAFLD risk
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ABSTRACT

Background: Hepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the
development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or
NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the
islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition
contribute to the development of NAFLD and the secondary diseases.
Scope of review: We present data from genome-wide association studies (GWAS) and functional studies in rodents which describe poly-
morphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific
miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers.
Major conclusion: With our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability
of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful.

� 2020 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) represents a disease spec-
trum ranging from simple benign steatosis, which can develop further,
to steatohepatitis characterized by inflammation and fibrosis. Disease
progression eventually leads to cirrhosis or liver cell carcinoma.
Epidemiological and clinical studies imply that NAFLD is strongly
associated with other metabolic disorders such as obesity [1], insulin
resistance [2], and type 2 diabetes (T2D) [3]. In fact, NAFLD is diag-
nosed in>70% of T2D patients [4]. Furthermore, NAFLD increases the
risk of cardiovascular disease, including heart failure [5].
Genetic and environmental factors such as nutrition and physical
activity interact and modulate individual risk of NAFLD development
and the severity of progression. Several genetic variants associated
with NAFLD and/or NASH were identified by genome-wide associ-
ation studies (GWAS) and candidate gene approaches. Among these,
a few genetic variants were proposed in a genetic risk score (GRS)
for predicting individual risks [6] and might contribute to the early
diagnosis and development of precision treatments. Genetics also
helps to understand the NAFLD prevalence in different ethnic
groups. For example, as shown by a meta-analysis, the prevalence
in Hispanics is particularly high, whereas that in Blacks is the lowest
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[7]. This can partly be explained by the different occurrence of
single nucleotide polymorphisms (SNPs) in risk variants in these
cohorts.
In addition to genetic predisposition, epigenetic changes that occur in
response to environmental factors such as nutrition contribute to
disease risk. Epigenetic changes include modifications that alter gene
expression and ultimately the phenotype. In various mouse [8e10] and
human studies [11e13], epigenetic modifications have been associ-
ated with pathomechanisms of NAFLD. These include altered DNA
methylation patterns [11], expression of miRNAs [14], and histone
modifications [15]. Epigenetic alterations can be transferred to the next
generation and thus transgenerationally modify disease risk of
offspring [16]. Development of metabolic diseases later in life partly
depends on the metabolic phenotype of the mother and the intrauterine
environment [17e19]. Establishing an epigenetic profile that reflects
disease status could improve individual NAFLD risk assessment. As
epigenetic alterations are not only inheritable but also reversible, this
could offer new approaches for individualized prevention and therapy.
Our review presents major genetic and epigenetic alterations on the
level of DNA methylation and miRNA changes that have been observed
in relation to the risk of NAFLD and provides information on their po-
tential for risk assessment.
n Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal,
764, München-Neuherberg, Germany 3University of Potsdam, Institute of Nutritional
ealth Sciences, Joint Faculty of the Brandenburg University of Technology, Cottbus-
Potsdam, Potsdam, Germany

epartment of Experimental Diabetology, Arthur-Scheunert-Allee 114-116, 14558,
chürmann).

er 3, 2020 � Available online xxx

ss article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:schuermann@dife.de
https://doi.org/10.1016/j.molmet.2020.101111
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Review
2. GENETIC CONTRIBUTION TO NAFLD

2.1. Frequent genetic variants that mediate NAFLD risk
A GWAS by Romeo et al. [20] was the first to identify the most
prominent fatty liver gene patatin-like phospholipase domain-
containing 3 (PNPLA3), also known as adiponutrin. The association
of the SNP rs738409 (C > G) in PNPLA3 with NAFLD was replicated in
several subsequent GWAS [21,22]. PNPLA3, which exhibits a 46%
sequence homology with the lipase PNPLA2, also designated adipose
triglyceride lipase (ATGL), acts as triglyceride lipase, exhibits acylgly-
cerol transacylase activities, and appears to play a role in lipid
remodeling of hepatic triglycerides [23,24]. The SNP rs738409 causes
the missense sequence variation I148M that disrupts the enzyme’s
phospholipase activity, thereby interfering with lipid catabolism
(Figure 1). PNPLA3I148M is associated with increased hepatic fat
content, elevated liver enzymes, hepatic fibrosis, and cirrhosis
[20,25,26]. Lipidomic analyses of five lipid fractions from liver tissue
samples of control and PNPLA3I148M carriers revealed unaltered levels
of palmitic acid, oleic acid, and linoleic acid in the triglyceride fraction.
However, the concentration of trans-palmitoleic acid was increased
and that of stearic, arachidic, and lignoceric acid saturated fatty acid
was decreased in this fraction. The fatty acid composition of the other
lipid fractions (phospholipids, diacylglycerols, and cholesteryl esters)
was not affected [27]. Similar effects were detected in mice over-
expressing the PNPLA3I148M variant in the liver [28]. The effect on
hepatic fat accumulation was strongest in Hispanics, who also
Figure 1: Frequent gene variants associated with NAFL and/or NASH and their m
PI, phosphatidylinositol.
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displayed the highest allele frequency (0.49) compared to that in Eu-
ropean Americans (0.23) and African Americans (0.17) [20]. Therefore,
the SNP rs738409 may partly explain the variable prevalence of he-
patic steatosis among different ethnic groups in the US population [7],
with individuals of Hispanic descent displaying more NAFLD (45%)
than those of European descent (33%), who have a higher prevalence
of NAFLD than those of African descent (24%) [29].
Most interesting, the effect of PNPLA3 was independent of insulin
resistance and lipid concentration, because PNPLA3I148M allele carriers
had significantly higher levels of liver fat but no difference in glucose
tolerance, C-reactive protein, lipids, and liver enzymes compared to
controls [20,30]. The PNPLA3I148M effect is modulated by dietary
conditions in mice [11,31] and humans, as its expression is regulated
by the transcription factors sterol regulatory binding protein 1c
(SREBP1c) [32,33] and carbohydrate response element binding protein
(ChREBP) [34]. High carbohydrate levels cause transcriptional upre-
gulation of Pnpla3 and indirect inhibition of protein degradation [33],
whereas Pnpla3 expression was reduced in mice by fasting [33,35]. In
a human study, Davis et al. showed that in Hispanic children carrying
the risk allele, the effect on hepatic fat storage was amplified by
carbohydrate-rich diets. The authors proposed that specific dietary
interventions based on genetic predisposition may lead to more
effective therapeutic outcomes for fatty liver [36].
Although the importance of PNPLA3 for NAFLD based on GWAS has
been repeatedly confirmed, the underlying pathogenic mechanism is
still not fully understood. As PNPLA3 acts as a lipase intracellularly in
ajor effects. CPT1, carnitine palmitoyl transferase-1; LPI, lysophosphatidylinositol;
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Table 1 e Expression patterns (mRNA and/or protein) and function of genes associated with NAFLD risk. The information is based on the Human Protein Atlas
(http://www.proteinatlas.org [145,146]; shown in italics) or the indicated references.

Gene Tissue expression [145,146] Liver cell type Function

PNPLA3 Liver and kidney Hepatocytes [43] Lipid droplet remodeling [40,42]
Stellate cells [43] Modulation of retinol production and release [43,147]

GCKR Liver, smooth muscle, and stomach Hepatocytes Increasing glycolytic flux [51], regulation of de
novo lipogenesis [48,148]

TM6SF2 RNA enriched in intestine and liver [57] Hepatocytes [60] VLDL secretion [53,57,58]
HSD17B13 Ubiquitous (RNA enriched in liver) and liver [64] Hepatocytes [149] Lipid droplet remodeling [63,64,149], involved in

retinol metabolism [64]
MBOAT7 Ubiquitous and RNA low tissue specificity [69] Hepatocytes, hepatic sinusoidal cells,

and stellate cells [69]
Remodeling of phosphatidylinositol [69,150]

PPP1R3B Ubiquitous and low tissue specificity Hepatocytes [79] Hepatic glycogen storage [77,79]
IRGM Liver [82] Hepatocytes [82] Modulation of lipophagy [39] via interaction with lipase ATGL [82]
LPIN1 Ubiquitous, adipose tissue, and liver [84,151] Hepatocytes [152] Regulation of fatty acid metabolism [153,154]

ATGL, adipose triglyceride lipase; VLDL, very low-density lipoproteins.
hepatocytes and hepatic stellate cells (Table 1) [37], the lack of tri-
glyceride hydrolase activity was postulated to cause hepatic tri-
glyceride accumulation. However, the deletion of Pnpla3 in mice did
not cause hepatic steatosis [38]. Thus, not a loss of function of
PNPLA3 but probably a change in its function could lead to elevated
hepatic fat storage induced by PNLPA3I148M. Two independent
studies demonstrated that overexpression of PNPLA3I148M in the liver
of mice induced hepatic steatosis [31,39], whereas mice over-
expressing the wild-type PNPLA3 had normal hepatic triglyceride
levels [40]. Basuray et al. showed in a series of in vivo experiments
that the degradation of the PNPLA3I148M variant was prevented by
inhibiting autophagy or proteasomal degradation. As a result, the
protein accumulated in the lipid droplets, which limited their mobi-
lization and promoted hepatic steatosis [41]. In another set of in vitro
and in vivo studies, Wang et al. [42] demonstrated that PNPLA3
recruitment to lipid droplets depends on cofactor comparative gene
identification-58 (CGI-58), a cofactor for ATGL. Co-expression of
ATGL and PNPLA3 (either wild-type or I148M) in hepatoma cells
prevented the depletion of lipid droplets, suggesting the inhibition of
ATGL-mediated lipid hydrolysis by PNPLA3 (Table 1). The authors
hypothesized that PNPLA3I148M sequestrates CGI-58 to the surface of
lipid droplets, which limits its availability for activation of ATGL [42].
In addition, PNPLA3I148M appears to interfere with retinol production
and release of hepatic stellate cells by affecting retinyl-palmitate
lipase activity (Figure 1 and Table 1), thereby promoting fibrosis
development [43]. The lack of enzymatic activity leads to a reduced
secretion of matrix-modulating enzymes, resulting in the deposition
of extracellular matrix [44]. This potential mechanism is supported by
data on NAFLD patients, who have reduced circulating retinol con-
centrations and concurrent intrahepatic retinol increases [43].
In contrast to Pnpla3 knockout mice, which did not store ectopic fat in
the liver, a shRNA-mediated reduction in Pnpla3 expression in mice
after development of high-fructose diet-induced steatosis resulted in
decreased hepatic triglyceride levels, supporting the assumption that
PNPLA3 accumulation per se causes steatosis [41]. Overall, different
mouse studies showed that PNPLA3-associated hepatic steatosis re-
quires the presence of the catalytically inactive protein and not simply
the absence PNPLA3 activity [31,41]. The action of PNPLA3 is not
restricted to the liver. It was recently shown that PNPLA3 is also
expressed in adipose tissue where the protein itself is more abundant
than in the liver. PNPLA3I148M carriers exhibited increased levels of
PUFA triglycerides than controls. However, adipocyte lipolysis was not
altered [45].
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A second robust NAFLD gene is glucokinase regulatory protein (GCKR),
which is involved in the control of glucose metabolism by regulating
hepatic glucose uptake and hepatic glucokinase activity. The intronic
SNP rs780094 (G > A), which is associated with hepatic lipid content,
has been identified in various GWAS [22,46]. A meta-analysis by Zain
et al. confirmed the association of rs780094 with increased NAFLD risk
and demonstrated different allele frequencies for Africans (0.13), Eu-
ropeans (0.41), and East Asians (0.48) [47]. In addition, association of
rs780094 with other metabolic traits such as decreased fasting blood
glucose [48] and decreased risk of T2D [49,50] were reported. The
variant rs780094 is in strong linkage disequilibrium with the non-
synonymous SNP rs1260326 (C > T; P446L). GCKRP446L is sup-
posed to exhibit a reduced ability to inhibit GCK (glucokinase) and
thereby increasing glycolytic flux and glucose uptake by the liver
(Figure 1 and Table 1). GCK serves as a metabolic switch that controls
glucose metabolism. In the postprandial state when more glucose is
taken up by the liver, GCK phosphorylates glucose to glucose-6-
phosphate, which is converted into glycogen for storage. However,
excess dietary glucose that cannot be stored as glycogen is converted
into fat by de novo lipogenesis using acetyl-CoA that is generated from
glycolysis-driven pyruvate and NADPH [51]. Fructose-6-phosphate
(F6P) enhances the GCKR-mediated inhibition and this effect was
shown to be significantly attenuated in the GCKRP446L variant, which
indirectly enhances GCK activity and glycolysis. Consequently, the
production of metabolites such as malonyl-CoA increases and elevates
triglyceride storage in the liver theoretically via two mechanisms [48].
On the one hand, malonyl-CoA serves as a substrate for de novo
lipogenesis; on the other hand, it inhibits the import of fatty acids into
the mitochondria by blocking carnitine palmitoyl transferase-1 (CPT1),
thus disrupting fatty acid oxidation (Figure 1).
Santoro et al. explored the combined effect of the two genetic risk
variants PNPLA3I148M and GCKRP446L. In a study cohort of 455 obese
children and adolescents, an additive effect of both variants on liver fat
content was reported. Furthermore, this additive effect explained
approximately 32% of the liver fat variance in Caucasians, 39% in
African Americans, and 15% in Hispanics [52].
In a human exome-wide association study [53], the rs58542926 (G> A;
E167K) variant transmembrane 6 superfamily member 2 (TM6SF2) was
associated with increased hepatic triglyceride content and higher risk of
advanced fibrosis in NAFLD patients [53e55], but paradoxically asso-
ciated with a lower concentration of hepatic-derived triglyceride-rich
lipoproteins [54,56]. Therefore, despite the increased risk of NAFLD,
carriers of TM6SF2E167K have a lower risk of cardiovascular disease
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[54]. TM6SF2E167K is the causal gene variant that explains the asso-
ciation of the NCAN locus with hepatic triglyceride content and lipid
levels already described in a GWAS by Speliotes et al. [22]. TM6SF2 is a
transmembrane protein located in the endoplasmic reticulum (ER) and
the ER-Golgi intermediate compartment. In vitro silencing of TM6FS2 in
hepatocytes reduced the secretion of VLDL and thus promoted the
retention of triglycerides [57] (Figure 1 and Table 1). In vivo knockdown
of Tm6sf2 or transient overexpression of human TM6SF2 in mice
altered serum lipids and hepatic fat content [56], which again illustrates
that TM6SF2 is relevant for aberrant hepatic lipid storage. To ascertain
the effect of TM6SF2 on hepatic lipids and subsequent NAFLD risk,
Luukkonen et al. analyzed hepatic lipid profiles between carriers and
non-carriers of the TM6SF2E167K gene variant [58]. TM6SF2E167K car-
riers were characterized by impaired incorporation of polyunsaturated
fatty acids into hepatic triglycerides, phospholipids, and cholesterol
esters. The deficiency of polyunsaturated phosphatidylcholines that are
required for VLDL assembly was described to cause increased degra-
dation of intrahepatic VLDL, thereby reducing their secretion [59].
The previously described observations were verified using an in vitro
approach. Prill et al. generated and characterized a 3D spheroid model
from primary human hepatocytes obtained from individual donors,
either wild-type or heterozygous for the TM6SF2E167K allele, and
demonstrated that the genetic variant induced elevated fat storage in
hepatocytes by reducing secretion of APOB particles. In addition,
mRNA expression of genes related to cholesterol biosynthesis (FDPS,
HMGCS1, FDFT1, DHCR7, and SC5D), de novo lipogenesis (FASN and
ACSS2), phospholipid dephosphorylation (PLPP3), and gluconeogen-
esis (FBP1) was higher in hepatic TM6SF2E167K spheroids than in those
of wild-type donors [60].
A further gene variant that describes a link between hepatic phos-
pholipids and the risk of advanced NAFLD is the splicing variant
rs72613567 (T > TA) with an adenine insertion in HSD17B13 that
encodes for the hepatic lipid droplet protein hydroxysteroid 17-beta
dehydrogenase 13. The HSD17B13 rs72613567 variant leads to the
synthesis of a truncated loss-of-function enzyme [61] that protects
against advanced NAFLD, NASH, ballooning degeneration, lobular
inflammation, and fibrosis [62] (Figure 1). Surprisingly, the gene
variant does not influence the development of steatosis, as several
studies showed no difference in the degree of steatosis between
rs72613567 carriers and noncarriers; however, it decreases the risk of
chronic liver damage in NAFLD patients [61e63]. Interestingly, the
loss-of-function HSD17B13 rs72613567 allele is sufficient to mitigate
the risk of liver injury in PNPLA3I148M allele carriers who are genetically
predisposed to NAFLD. This effect was associated with a decrease in
PNPLA3 mRNA in an allele dose-dependent manner [61]. Ma et al.
investigated two other SNPs of HSD17B13, rs683413 (T> G/C), which
links with the splice variant rs72613567, and rs62305723 (G > A;
P260S), which encodes an HSD17B13P260S variant. Both were asso-
ciated with increased steatosis but decreased ballooning and inflam-
mation [64]. Discrepant results exist regarding the protein levels of
HSD17B13 in liver samples from NAFLD and controls. Ma et al.
detected a higher expression of HSD17B13 in NASH compared to
controls, but with no differences between wild-type, rs683413, or
rs72613567 allele carriers [64]. In contrast, Pirola et al. reported lower
or absent HSD17B13 levels in NAFLD patients hetero- or homozygous
for rs72613567 in an allele-dependent manner [62]. Overexpression or
deletion of HSD17B13 in HepG2 cells did not affect lipid content,
demonstrating an indirect function [64]. Luukkonen et al. suggested
that the splicing variant rs72613567 might protect from progressive
liver disease by increasing the synthesis and/or decreasing the
degradation of phospholipids. Lipidomics revealed a general increase
4 MOLECULAR METABOLISM xxx (xxxx) xxx � 2020 The Authors. Published by Elsevier GmbH. T
in hepatic phospholipids in rs72613567 carriers, and transcriptomics
showed a downregulation of inflammation-related genes. These ef-
fects were accompanied by lower plasma concentrations of the
proinflammatory cytokine interleukin-6 [63].
The family of 17b-hydroxysteroid dehydrogenases (HSD17Bs) con-
sists of 15 members that are mainly involved in sex hormone
metabolism. Some members also play key roles in cholesterol and
fatty acid metabolism. The substrate and enzymatic function of
HSD17B13 is not entirely known [65]. However, there is indication
that similar to PNPLA3, it also acts as a retinyl-palmitate lipase, and
the loss-of-function variant HSD17B13 rs72613567 affects retinol
metabolism (Figure 1). Ma et al. discovered a retinol-dehydrogenase
enzymatic activity of HSD17B13 that requires its binding to lipid
droplets (Table 1). The enzymatic activity to catalyze the oxidation of
retinol is reduced or absent in gene variants mediating anti-fibrotic/
anti-inflammatory effects [64]. Based on several studies, a number of
proteins involved in retinol metabolism, including retinol-binding
protein 4 (RBP4) and aldehyde dehydrogenase 1A1 (ALDH1A1),
have also been implicated in metabolic diseases including NAFLD
and NASH [66].
A recent study combining animal models and human data challenged
the dogma that lobular inflammation precedes hepatic fibrosis by
mechanistically linking membrane-bound O-acyltransferase domain-
containing 7 (MBOAT7) to lipid-driven inflammation-independent
development of fibrosis [67]. A genetic variant rs641738 (C > T)
located near two genes encoding MBOAT7 and the transmembrane
channel-like 4 (TMC4) was first reported to increase the risk of
alcoholic cirrhosis [68], but a subsequent candidate gene study also
linked rs641738 to NAFLD and disease progression [69]. In particular,
eQTL analysis and the characterization of Mboat7 and Tmc4 knockout
mice demonstrated that Mboat7 loss of function mediates the pro-
gression of NAFLD [70]. Interestingly, MBOAT7 expression is reduced
in livers of obese mice and humans, independent of the rs641738
risk allele [70]. In the Liver Biopsy Cross-Sectional Cohort of In-
dividuals of European descent, the MBOAT7 rs641738 SNP was
associated with the spectrum of liver damage related to NAFLD
(Figure 1), including a higher degree of steatosis, more severe
necroinflammation, and more advanced fibrosis. MBOAT7 belongs to
the family of lysophospholipid acyltransferases with a specificity for
arachidonoyl-CoA (Table1) [71]. Multiple phosphatidylinositol species
showed differences in the plasma of MBOAT7 rs641738 allele car-
riers who also have lower hepatic MBOAT7 protein levels. Other lipid
classes such as triglycerides, ceramides, or phospholipids were not
affected by the genotype [69]. This again highlights the role of
phospholipid remodeling in NAFLD pathogenesis. Mice with an
hepatocyte-specific knockout of Mboat7 had increased hepatic
fibrosis on a NASH-inducing diet without induction of inflammation as
shown by a decrease in monocytes and unchanged levels of in-
flammatory mediators [67]. Thus, fibrosis development might occur
independent of the inflammatory state. Similarly, in those with a BMI
�35 in a cross-sectional NAFLD liver biopsy cohort, the MBOAT7
rs641738 allele was significantly associated with the presence of
fibrosis in the absence of lobular inflammation. Helsley et al. also
detected a general decrease in M2 macrophages in Mboat7 knockout
mice. However, the increase in M1 macrophages and higher hepatic
expression of the pro-inflammatory markers Tnfa and Il1b are an
indication of inflammation in this model of Mboat7 deletion mediated
by antisense nucleotides that was not restricted to the liver but also
affected the fat tissue [70]. In accordance with Mancina et al. [69],
remodeling of the lipidomic pattern was detected that was similar
between humans carrying the rs641738 risk genotype and mice with
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hepatocyte-specific deletion of Mboat7 [67]. In particular, phospha-
tidylinositol (PI) species with arachidonoyl side chains were reduced
and PI species with monounsaturated fatty acids were increased.
Lysophosphatidylinositol (LPI) species serving as MBOAT7 substrates
were also elevated (Figure 1), which may cause the development of
fibrosis, as plasma LPI levels are elevated in fibrosis patients.
Furthermore, treating Mboat7 loss-of-function mice with LPI resulted
in the induction of pro-fibrotic genes. Based on these findings, the
authors concluded that healthy subjects are protected from obesity-
linked progression of NAFLD by the MBOAT7-mediated acylation of
LPI lipids [70]. Thus, the risk genotype MBOAT7 rs641738 appears to
mediate its pro-fibrotic effect in patients via LPI remodeling without
significant induction of liver inflammation.
Polymorphisms of two fatty liver genes (TM6SF2 and PNPLA3) have
been shown to associate with one specific diabetes cluster. Based on
several pathophysiological parameters, patients with adult-onset dia-
betes are allocated to five clusters [72,73]. Patients in the severe
autoimmune diabetes (SAID) cluster exhibit a T1D/LADA-like pheno-
type, severe insulin-deficient diabetes (SIDD) and severe insulin-
resistant (SIRD) patients display the most severe T2D forms with a
high risk of developing secondary complications [73], whereas mild
age-related diabetes (MARD) and mild obese diabetes (MOD) patients
exhibited only minor metabolic abnormalities. Among these groups,
SIRD patients exhibit the highest hepatic fat content and the lowest
whole-body insulin sensitivity and this cluster showed a significant
association with the rs10401969 (T > C) variant of TM6SF2 [73].
Furthermore, patients in the SIRD cluster were shown to more
frequently carry the risk variants rs738409 (CG and GG) of PNPLA3 and
exhibit higher circulating free fatty acid concentrations and a more
pronounced adipose tissue insulin resistance than non-carriers [74].

2.2. Rare genetic determinants of NAFLD and NASH
In addition to the most reliable fatty liver genes PNPLA3, TM6SF2,
HSD17B13, and MBOAT7, several other genetic determinants of
NAFLD and NASH have been identified that appear to be specific for
only one ethnic population or have been confirmed by few studies,
presumably due to their small effect size. In this section, we will
introduce some of these candidates.
The contribution of protein phosphatase 1 regulatory subunit 3B
(PPP1R3B) to the genetic risk of NAFLD is rather controversial. The
noncoding SNP rs4240624 (G > A/C) near PPP1R3B that was asso-
ciated with hepatic steatosis diagnosed by computed tomography but
not histologically defined NAFLD was identified in the same GWAS that
linked PNPLA3 and TM6SF2 (the NCAN locus) to NAFLD [22]. Inter-
estingly, the risk allele was also associated with altered serum lipids,
increased HDL and LDL cholesterol, and decreased fasting glucose.
Histological assessment of hepatic steatosis in bariatric patients could
not confirm the initial association of PPP1R3B rs4240624 with stea-
tosis [75]. Speliotes et al. already questioned this association, which
could instead be linked to hepatic glycogen storage (Table 1) than
increased hepatic fat content [22]. Accordingly, PPP1R3B promotes
hepatic glycogen storage by dephosphorylation and activation of
glycogen synthase and decreases glycogen breakdown by inactivation
of glycogen phosphorylase, which is the rate-limiting enzyme in
glycogenolysis [76]. Thus, Stender et al. [77] and Seidelin et al. [78]
attempted to clarify if the higher computed tomography attenuation
associated with PPP1R3B rs4240624 is caused by differences in he-
patic glycogen or hepatic triglyceride content. The minor allele was
shown to promote hepatic glycogen synthesis in the postprandial state
[78] and was linked to a mild form of liver glycogenosis leading to
hepatic injury [77]. The SNP rs4841132 (A > G) is in complete linkage
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disequilibrium with rs4240624 and is associated with increased he-
patic X-ray attenuation and serum liver enzyme alanine amino-
transaminase (ALT) but not with hepatic triglycerides [22].
Interestingly, rs4841132 was associated with an increased hepatic
expression of PPP1R3B [77]. Experiments in mice confirmed this
relationship, as Ppp1r3b knockout mice displayed lower hepatic
glycogen [77,79] and liver-specific overexpression of PPP1R3B and
increased glycogen content [77]; however, hepatic triglycerides were
not altered in either model.
In a genome-wide approach conducted in obese children and ado-
lescents from a predominantly Han Chinese population, Lin et al.
detected a variant in the immunity-related GTPase M (IRGM) gene
(rs10065172, C > T) in addition to PNPLA3, GCKR, and TM6SF2
polymorphisms associated with NAFLD detected by ultrasonography
[39]. Similar results were reported in an Italian study showing that the
risk allele of IRGM rs10065172 was significantly associated with
elevated plasma aminotransferase levels and mild to severe steatosis
in children. However, in adults, no link with the IRGM risk allele was
observed in liver disease progression diagnosed by histological eval-
uation of ballooning, inflammation, and fibrosis [80]. The role of IRGM
in the development of hepatosteatosis became questionable when
another variant of IRGM rs13361189 (C > T), which is in linkage
disequilibrium with the SNP rs1006517, was analyzed in Framingham
Heart Study participants who underwent computed tomography scans.
No association of rs13361189 with NAFLD was established [81].
Nevertheless, there were indications that IRGM plays a role in the
regulation of autophagy [39] and hepatic lipid storage. We have
discovered that the mouse orthologues of IRGM are the immunity-
related GTPases 2 and 4 (Ifgga2 and Ifgga4), which are located in
close proximity on mouse chromosome 18. Their expression was
markedly reduced in mice with NAFLD, and accordingly, suppression
of their expression in hepatocytes or mouse liver increased fat accu-
mulation, whereas the overexpression of Ifgga2 in hepatocytes
decreased fat storage. IFGGA2 appears to induce lipophagy via inter-
acting with the lipase ATGL and increasing the association of the
autophagy protein LC3B with lipid droplets. Interestingly, we also
showed that the human IRGM protein interacts with ATGL (Table 1) and
that the expression of IRGM was significantly reduced in livers of
NAFLD patients [82].
Similar to Ifgga2 and Ifgga4, Lpin1 (Lipin 1) mRNA levels are reduced
in a rat model of NAFLD [83]. As LPIN1 expression in the liver and
adipose tissue is inversely correlated with adiposity and positively
associated with insulin resistance, Valenti et al. evaluated the asso-
ciation of an LPIN1 SNP (rs13412852, C > T) with the susceptibility to
and progression of NAFLD [84]. The authors conducted a study of
Italian children and adults and tested the rs13412852 SNP that was
earlier linked to lower body weight [85]. Only in children but not in
adults was the homozygous rs13412852-T allele associated with
protection from NAFLD. However, pediatric and adult patients homo-
zygous for the minor allele of LPIN1 exhibited a significantly reduced
risk of histological fibrosis and less severe liver damage [84]. Lipin 1
plays a major role in adipose tissue and influences its development and
function. Deletion of Lpin1 in mice results in a marked reduction in
adipose tissue depots (lipodystrophic phenotype) and insulin resis-
tance, whereas the adipocyte-specific overexpression of Lpin1 causes
diet-induced obesity [86].

2.3. Genetic risk scores for predicting steatohepatitis
As approximately 10e30% of patients with a simple hepatosteatosis
develop NASH [87,88] that is associated with liver-related morbidity
and mortality, a specific focus has been placed on developing a genetic
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risk score that allows the prediction or early diagnosis when fibrosis is
still at an early stage.
Nobili et al. developed a genetic risk score that in combination with
clinical risk markers such as aminotransferases significantly predicts
NASH in obese children and adolescents [89]. In 152 study partici-
pants with biopsy-proven NAFLD and increased liver enzyme, poly-
morphisms of PNPLA3 rs738409 (C > G), SOD2 rs4880 (C > T),
KLF6 rs3750861 (G > A), and LPIN1 rs13412852 (C > T) were
tested. Polymorphisms of SOD2 and KLF6 were included in the
analysis because they were associated with progressed liver disease
in pediatric and adult NAFLD patients, whereby SOD2 is supposed to
be involved in the induction of oxidative stress and KLF6 in deter-
mining fibrogenesis [90,91]. The prediction of fibrosis based on the
four genetic determinants was less accurate (ROC-AUC of 0.60) than
by combining this information with three clinical risk factors (age,
diastolic blood pressure, and AST [aspartate aminotransferase]; ROC-
AUC of 0.80) [89]. Similarly, a NASH risk score was established in a
Korean cohort. The scoring system (NASH PNPLA3-TM6SF2 score,
NASH-PT) was based on risk alleles of PNPLA3 rs738409 (C > G)
and TM6SF2 rs58542926 (G > A), diabetes status, insulin resistance,
and levels of AST and C-reactive protein. NASH-PT scores identified
patients with NASH with a ROC-AUC between 0.787 and 0.859 [92].
In a cohort of 514 obese children and adolescents in which almost
70% of the participants were diagnosed with NAFLD by ultrasonog-
raphy, Zusi et al. tested 11 genes and detected highly significant
associations with risk alleles of PNPLA3 rs738409 (C > G), TM6SF2
rs58542926 (G > A), and GCKR rs1260326 (C > T) and a weaker
association with a polymorphism of ELOVL2 rs2236212 (G > C) with a
higher risk of NAFLD [93].
Di Costanzo et al. conducted exon sequencing of fatty liver genes
discovered by GWAS and determined a polygenic risk score for NAFLD
by applying logistic regression analysis. The authors confirmed
PNPLA3 rs738409 (C > G), GCKR rs1260326 (C > T), TM6SF2
rs58542926 (G > A), and MBOAT7 rs641738 (C > T) as genetic
contributors of hepatosteatosis, whereby the PNPLA3 SNP exhibited
the strongest association, followed by GCKR, TM6SF2, and MBOAT7.
The probability of NAFLD was highest (5-fold), when a risk score of all
four SNPs was used [6]. EASL-EASD-EASO Clinical Practice Guidelines
[94] already suggest genotyping for PNPLA3 rs738409 and TM6SF2
rs58542926 to identify individuals with a higher risk of hepatic
steatosis.
In summary, a genetic risk score should include SNPs with three to
four genes that showed the strongest and most robust association with
hepatosteatosis and hepatosteatitis. These are PNPLA3, TM6SF2,
GCKR plus MBOAT7, SOD2, and KLF6. Risk scores that combine the
detection of these genes’ genotypes with clinical parameters might
help clinicians to more effectively identify NAFLD patients at risk of
NASH without taking liver biopsies.

3. ALTERED DNA METHYLATION AND MIRNA EXPRESSION IN
NAFLD

In general, there is increasing interest in elucidating disease-relevant
epigenetic alterations, as they also have potential for therapeutic ap-
proaches. Lifestyle changes such as calorie restriction [95] and ex-
ercise [96] as well as more invasive interventions such as bariatric
surgery [97,98] have already proven to cause changes in DNA
methylation that positively affect the metabolic status of obese and
diabetic patients or mice. Whether this also applies to NAFLD is subject
of current and future research. Much less is known about specific
histone modifications that lead to NAFLD and liver fibrosis. A review by
6 MOLECULAR METABOLISM xxx (xxxx) xxx � 2020 The Authors. Published by Elsevier GmbH. T
Moran-Savador and Mann [15] provided information on the modifi-
cations of the histone code in liver disease.

3.1. Alterations of DNA methylation linked to NAFLD
The causal relationship between differential DNA methylation and
disease has been extensively studied for various types of cancer [99].
The amount of data on the effects of aberrant DNA methylation on the
development of metabolic diseases such as NAFLD has also increased
enormously over the past decade. The relationship of methylome-
transcriptome was analyzed in a histologically characterized NAFLD
cohort to investigate whether differences between mild and advanced
NAFLD are detectable [100]. Overall, hypomethylation occurred in
NAFLD compared to controls regardless of disease severity. Further-
more, the genes whose transcription correlated with DNA methylation
status were different in mild and advanced NAFLD. In advanced
NAFLD, genes involved in wound-healing responses such as fibro-
genesis were hypomethylated and their expression was upregulated,
which distinguished them from the mild form. Murphy et al. suggested
that the data might help to establish non-invasive markers to identify
NAFLD patients at a high risk of liver disease progression [100]. Other
genes with an altered DNA methylation pattern were identified in liver
biopsies from mild and severe NAFLD cohorts using a candidate gene
approach analyzing pro- and anti-fibrogenic genes. Zeybel et al.
detected a higher methylation of specific CpGs within TGFb1 and
PDGFa, whereas specific CpGs exhibited a lower degree of methylation
in the anti-fibrogenic PPARa and PPARd genes in patients with mild
fibrosis [101]. The same group later detected hypermethylation at the
PPARg promoter by analyzing plasma cell-free circulating DNA
methylation [102].
In 2010, Sookoian et al. showed in a case-control study that epigenetic
changes occur in hepatic insulin resistance in NAFLD patients [103].
Specifically, the decreased expression of PGC-1a, a key regulator of
mitochondrial biogenesis and fatty acid oxidation in NAFLD, compared
to controls was inversely correlated with its promotor methylation.
Moreover, PGC1-a methylation positively correlated with peripheral
insulin resistance and negatively correlated with mitochondrial
biogenesis, two features that contribute to the pathogenesis of fatty
liver. Further data describing a positive correlation between maternal
BMI on methylation of the PGC1-a promoter in neonatal cord blood
support the concept of intrauterine overnutrition and fetal epigenetic
programming [104].
To investigate whether methylation changes can be detected even
before disease onset, Kammel et al. conducted an experiment with the
inbred mouse strain C57BL/6J, whereby a genetic effect on the
phenotype could be precluded [9]. The experimental design allowed
the identification of obesity-prone animals at a very young age when
they were still in a metabolically stable state and did not show ectopic
fat accumulation in the liver. As impaired hepatic insulin sensitivity
contributes to the development of metabolic diseases, insulin growth
factor 2 (IGF-2) and thus the IGF axis are crucial for regulating body
weight. Disorders such as reduced plasma levels of IGF-1-binding
protein 2 (IGFBP-2), which controls the bioavailability of IGF-1 and
contributes to the development of obesity, have been observed in
obese adults [105,106]. In young obesity-prone mice, Igfbp2 was
hypermethylated at specific CpG sites and transcriptionally repressed
even before the development of fatty liver and impaired glucose ho-
meostasis in adolescence [9]. The results were not restricted to the
mouse model. Interestingly, hypermethylation occurred at CpG sites
that are homologous to humans with NAFLD [11], and IGFBP2 pro-
moter hypermethylation correlates with type-2 diabetes risk [107].
IGFBP-2 levels are sensitive to weight changes as weight loss induced
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by bariatric surgery normalized IGFBP-2 levels and reduced liver fat
content [108]. Whether this could partly be attributed to changes in
methylation was not reported.
Hyperglycemia precedes ectopic fat accumulation in the liver, thus
laying the grounds for further progression of fatty liver disease.
Dipeptidyl peptidase 4 (DPP4), an exopeptidase that cleaves and
inactivates numerous peptides including the incretin hormones
glucagon-like peptide 1 (GLP-1) and gastric inhibitory peptide (GIP)
[109], has been studied as a novel adipokine elevated in obesity
[110]. Because of these facts, DPP4 inhibitors are widely used in
clinical practice to improve glycemic control. DPP4 expression was
elevated in NAFLD livers compared to healthy controls. In addition,
expression levels negatively correlated with HOMA-IR, suggesting an
association with DPP4 and insulin resistance and further supporting
the relationship for disease progression and poor glycemic control
[111]. Our own studies support the role of DPP4 in hepatosteatosis as
well as broaden the information on this enzyme. In vitro studies have
shown that DPP4 circulating in the blood is secreted primarily from
the liver, so DPP4 can be referred to as a hepatokine [8]. Further-
more, the expression of Dpp4 in mice and humans negatively
correlated with the methylation status, and similar to Igfbp2, these
changes preceded the manifestation of the phenotype in mice [8]. A
detailed analysis of human DPP4 expression in the ABOS cohort in
combination with histology showed the inverse correlation of DPP4
expression and degree of steatosis, which was also valid for a second
cohort (KOBS) comparing NASH patients and controls [8]. To deter-
mine whether the hepatic expression and methylation of Dpp4 could
be influenced by diet, we used the New Zealand obese (NZO) mouse
model, which is known for its early onset of hyperglycemia and T2D
that can be postponed by low-protein diets [112]. Indeed, methylation
of the Dpp4 gene was higher in mice fed a low-protein diet, which
was associated with lower expression and reduced circulating DPP4
concentration. Furthermore, we reported a positive correlation of liver
triglyceride content and DPP4 activity in the previously described
setting [113].
Taking liver biopsies to reliably confirm NASH and measuring gene
expression and the corresponding DNA methylation is highly invasive
and poses risks to patients. Therefore, several groups are attempting
to use less invasive procedures to screen for changes in DNA
methylation in peripheral blood cells in epigenome-wide association
studies (EWAS) to test whether specific changes allow a stratification
of NAFLD patients with a higher risk of liver fibrosis. This approach
with a total of more than 4,500 participants from four population-based
cohort studies including European, Hispanic, and African participants
was used to link elevated liver fat content measured by computed
tomography or ultrasound imaging to altered DNA methylation levels.
In the European participants, 22 CpGs were identified as associated
with hepatic fat; of these, 19 CpGs were annotated to 18 unique genes
such as DHCR24, SLC43A1, CPT1A, SREBF1, SC4MOL, and
SLC9A3R1, which are involved in liver function. Epigenetic changes in
ABCG1 and SREBF1 were linked to cholesterol biosynthesis. Thus,
most affected CpGs were located in genes regulating key biological
processes relevant to developing steatosis and explained approxi-
mately 10% of interindividual variations [114]. A smaller study
including 18 histologically confirmed NAFLD and 17 NASH patients
from a Han Chinese population identified 6 CpG sites located in the
ACSL4, CRLS1, CTP1A, SIGIRR, SSBP1, and ZNF622 genes, which are
differentially methylated in peripheral blood leukocytes of patients with
NASH compared with those exhibiting simple steatosis. However, only
differences in DNA methylation of ACSL4 were confirmed by pyrose-
quencing [115]. Thus, in particular for an early distinction between
MOLECULAR METABOLISM xxx (xxxx) xxx � 2020 The Authors. Published by Elsevier GmbH. This is an open acce
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people at risk of simple hepatosteatosis and NASH will require further
and larger studies to identify and verify robust epigenetic biomarkers.

3.2. Role of miRNAs in the development of NAFLD
Micro-RNAs (miRNAs) have been implicated in a number of diseases
including metabolic diseases such as T2D and obesity [116]. Each
miRNA acts post-transcriptionally to control the expression of multiple
genes by translational repression or interference with RNA stability
[117,118]. Thus, miRNAs are involved in regulating liver development,
metabolic functions, and regeneration. Some alterations in intrahepatic
miRNA networks have been associated with hepatosteatosis and NASH
[119]. In addition, as miRNAs are also released into the circulation,
specific miRNA signatures in blood can serve as noninvasive bio-
markers for disease state and progression [14] and might perform
similar or slightly superior compared to established biomarkers such
as cytokeratin 18 (CK-18) or ALT and aspartate aminotransferase
(AST). A review by Torres et al. provided a list of most miRNAs and their
main targets identified in animal models, hepatocytes, human liver
biopsies, and plasma [120]. We will focus on those candidates (miR-
122, miR-33a/b, miR-34a, and miR-192) that are important for the
pathogenesis of NAFLD.
MiR-122 stands out as it accounts for approximately 70% of all
miRNAs expressed in the liver [121]. By targeting important tran-
scription factors (for example, HNF6), miR-122 is implicated in liver
development and physiology [122] and plays a fundamental role in
lipid metabolism by targeting ACC2 [123] and SREBP [124]. In liver
biopsies of obese patients with or without NAFLD, a reduced miR-122
expression was shown to be associated with fatty liver due to
decreased fatty acid metabolism and altered expression of the
transcription factors ChREBP, PPARg, PPARa, and LXRa [124].
Whereas in serum of NAFLD patients, miR-122 levels were higher
than in healthy controls and further increased in the state of NASH
[125]. In contrast to humans, who exhibit a reduced hepatic miR-122
expression under circumstances of liver disease, high-fat diet-fed
mice in which miR-122 was transiently inhibited by an antisense
approach were protected from hepatosteatosis. They displayed
reduced plasma cholesterol levels, increased hepatic fatty acid
oxidation, and decreased rates of fatty acids and cholesterol syn-
thesis in the liver [123]. Conversely, whole-body and liver-specific
miR-122 knockout mice showed the expected phenotype; they
developed steatohepatitis, fibrosis, and hepatocellular carcinoma
[10,126]. Interestingly, fibrosis appeared to be mediated via targeting
Klf6 [10], a known liver disease gene (see [89]).
MiR-192 is mainly expressed in the liver, especially in hepatocytes;
lower amounts are detected in most other tissues [127]. Several
members of the hepatocyte nuclear factor family play important roles in
liver metabolism. One, HNF4a, regulatesmiR-122 and the expression of
miR-192 (Figure 2). The deletion of this transcription factor in mice
resulted in amarked reduction inmiR-192 expression and a subsequent
upregulation of miR-192 targets (activated leukocyte cell adhesion
molecule [Alcam], epiregulin [Ereg], and moesin [Msn]) [128]. In
contrast, TGF-b1 downregulates the expression of miR-192 by
decreasing the binding of HNF family members to the promoter [129].
MiR-192 is specifically downregulated in hepatocytes upon liver injury in
response to the induction of ischemic liver damage. As miR-192
knockdown experiments in Hepa1-6 cells resulted in an increased
cell survival, it was speculated that the downregulation of miR-192
caused by liver damage might represent a protective mechanism
against hepatocyte cell death. This effect appears to bemediated via the
miR-192 target zinc finger E-box binding homeobox 2 (Zeb2), as the
effect ofmiR-192 inhibitionwas reverted by co-transfecting Zeb2-siRNA
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Figure 2: Summary of the most relevant miRNAs and their targets in the liver and
those detected in the plasma of NAFL and NASH patients.
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[127]. Zeb2 is best known for its impact on epithelial to mesenchymal
transitions [130] and its role as an anti-apoptotic protein that wasmainly
investigated in cancer. Through its interaction with SMAD, it mediates
survival of tumor cells, particularly by enhancing cell proliferation and
promoting cell migration and invasion [131].
In isolated exosomes of diet-induced obese (DIO) mice, Castano et al.
detected elevated levels of miR-122 and miR-192 compared to those
of lean mice. In livers of DIO mice, the amount of both miRNAs was
also increased, whereas opposite effects were observed in white ad-
ipose tissue, and miR-122 and miR-192 were decreased compared to
lean mice [132]. Similar to mice, miR-122 and miR-192 were upre-
gulated 2-fold in serum of people with simple steatosis compared to
controls. The difference was higher (7.2- and 4.4-fold, respectively)
between control and NASH [14].
MiR-33a and miR-33b are two additional important miRNAs involved in
fatty liver disease, lipid metabolism, and energy homeostasis of mice
and humans. They differ only in two nucleotides in their mature form
but are identical in their seed sequence. Both miRNAs are located in
introns of SREBP-2 and SREBP-1, respectively, and are co-transcribed
with these genes [133]. SEREBP-1 regulates genes required for fatty
acid biosynthesis and SREBP-2 is involved in cholesterol metabolism
[134]. Silencing miR-33a in mice increased the hepatic expression of
the cholesterol transporter ABCA1 and increased HDL synthesis and
circulating HDL levels [135]. Interesting results were obtained by
inhibiting both miR-33 forms in non-human primates (African green
monkeys). Again, ABCA1 was the most affected target and showed an
elevated expression after miR-33 inhibition. Other upregulated genes
were carnitine O-octanoyltransferase (CROT) and hydroxyacyl-
coenzyme A-dehydrogenase (HADHB) encoding two enzymes
involved in fatty acid oxidation, and insulin receptor substrate 2 (IRS2),
which plays a key role in insulin signaling. When monkeys were fed a
carbohydrate-enriched, moderate cholesterol diet, the authors detec-
ted an increased expression of carnitine palmitoyltransferase 1A
(CPT1A), which is involved in fatty acid oxidation (Figure 2). Presum-
ably via upregulating genes active in fatty acid synthesis (SREBF1,
FASN, ACLY, and ACACA), miR-33 inhibition reduced the monkeys’
plasma VLDL triglyceride levels. Therefore, it was speculated that
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therapeutic inhibition of miR-33 could be a sufficient strategy for
treating dyslipidemias [133]. Koyama et al. discovered that, at least in
mice, miR-33b exhibits a higher atherogenic potential than miR-33a.
Characterizing specific mouse lines that either carry a knockout of
miR-33a or miR-33b on the genetic background of ApoE-deficient
mice, an appropriate model for atherosclerosis progression, revealed
that those mice that lacked miR-33a but expressed miR-33b devel-
oped increased atherosclerotic plaques. These results correlated with
the expression levels of both miR-33 in wild-type mice, wherein miR-
33b was much higher in the liver than miR-33a [136]. Martino et al.
detected elevated circulating miR-33a and miR-33b levels in familial
hypercholesterolemic children compared to aged-matched controls.
For both miRNAs, the authors observed a positive correlation with total
cholesterol, LDL cholesterol, the LDL cholesterol/HDL cholesterol ratio,
APOB, C-reactive protein, and glycemia [137].
MiR-34 plays a fundamental role in the dysregulation of lipid meta-
bolism associated with NAFLD [120]. The expression of miR-34 was
induced by liver X receptor-a (LXRa), which itself was 4 and 7 times
higher in NAFLD and NASH than in controls, respectively [138]. A
recent study provided evidence that miR-34 plays a role in regulating
autophagy/lipophagy by targeting ATG4B and Rab-8B, which are
responsible for autophagosome and autolysosome formation [139].
Thus, after activation of LXRa, lipids accumulate in the liver due to the
induction of miR-34, which suppresses autophagy (Figure 2). Another
important target of miR-34 is sirtuin 1 (SIRT1), which is downregulated
in the liver of NAFLD patients. SIRT1 is a regulator of energy ho-
meostasis, which itself activates PPARa and LXR and inhibits PGC1-a
expression [140]. Accordingly, Ding et al. observed a suppression of
PPARa and SIRT1 in hepatocytes and livers in response to an upre-
gulation of miR-34a, whereas silencing of miR-34 lead to an elevated
expression of both regulatory proteins [141].
The impact of HNF4a on the liver function was mentioned previously; it
exhibits a 2-fold higher expression in livers of NASH patients. Mice
lacking this central transcription factor develop fatty liver. In humans it
was shown that the expression of HNF4a is markedly reduced in NAFLD
and NASH. This appears to bemediated bymiR-34 binding to the 30-UTR
of HNF4a. The adenovirus-mediated application of miR-34a in mice
reduced HNF4a expression by 40%, increased ectopic fat storage in the
liver, and reduced plasma triglyceride concentrations. Opposite effects
were observed in miR-34�/� mice, which showed a more than 3-fold
increased HNF4a protein level [142].

3.3. MiRNAs detected in serum as diagnostic biomarkers
Several miRNAs are released by the cells packed in exosomes or
circulating in a complex with argonaute2, which protects miRNAs from
degradation via plasma RNases [116]. A review by Newman et al.
summarized the miRNAs that were shown to exhibit significant alter-
ations in liver disease and indicated the potential of their individual or
combined levels as noninvasive diagnostic biomarkers [143]. Lopez-
Rira et al. re-evaluated all 18 previously described serum miRNAs
detected in clinical studies. Among these miR-122, -192, -34a, -16,
and -21 were recognized in more than one study and Lopez-Rira et al.
confirmed that they were affected in NAFLD. In addition, miR-27b, miR-
22, miR-197, and miR-30c were significantly altered in more severe
NAFLD patients. It was also confirmed that serum levels of miR-192,
miR-34a, and miR-22 increased and miR-197 decreased in NASH
patients (Figure 2). The authors also tested the diagnostic potential of
miRNAs and observed similar classification performances of miRNAs vs
conventional serum markers such as transaminases. However, when
different ratios between induced and repressed miRNAs were consid-
ered (for miR-34a, miR-122, miR-192, miR-375, and miR-21), NASH
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prediction was better than using serum markers with ROC area under
the curve values between 0.68 and 0.81 [144]. Pirola et al. previously
reported that the detection of miR-122, miR-192, and miR-375 in
serum has the potential to distinguish NASH from simple steatosis [14].

4. CONCLUSION

Predicting the individual risk of NAFLD and determining the probability of
disease progression is the basis for further developing prevention and
treatment strategies. Among other parameters, this requires knowledge
of the genetic and epigenetic modifiers of NAFLD for genotype-guided
risk stratification. In the near future, the current gold standard of liver
biopsy could be circumvented by using the specified non-invasive risk
scores that include plasma parameters, relevant clinical variables and a
list of genetic and epigenetic changes. In the next step, risk scores need
to be translated into clinical settings to benefit patients.
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