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Abstract
The plateau specialty agricultural products, wild porcini mushrooms, have great value 
both as a superb cuisine and as a potential medication. Due to quality different be-
tween species added with the fraud behavior in sales process, make poor quality or 
poisonous sample inflow into the market, which pose a health risk for consumers, but 
also disrupted the mushroom market. Traditional analysis way is time-consuming and 
laborious. Therefore, the aim of this study is to develop a way using fourier transform 
mid-infrared (FT-MIR) spectrometry and data fusion strategies for the fast and accu-
rate species discrimination and predict amount of total polyphenol in four porcini mush-
rooms. The t-distributed stochastic neighbor embedding based on mid-level data fusion 
showed two species of Boletus edulis and B. umbriniporus have been identified. The order 
of correct rate of PLS-DA models was mid-level data fusionq (100%) > mid-level data 
fusione (97.06%) = mid-level data fusionv (97.06%) = stipes (97.06%) > low-level data fu-
sion (94.12%) > caps (91.18%). The order of correct rate of grid-search support vector 
machine models was low-level data fusion (100%) > caps (94.12%) > stipes (91.18%), and 
the order of particle swarm optimization support vector machine was low-level data fu-
sion (100%) > caps (97.06%) > stipes (88.24%). The mid-level data fusionq and low-level 
data fusion had best discrimination accuracy (100%) allowing each mushroom classed 
into its real species, which could be used for accurate discrimination of samples. B. edu-
lis mushrooms had highest total polyphenol, with 14.76 mg/g dw and 17.33 in caps 
and stipes mg/g dw, respectively. The phenols were easier to accumulate in the caps 
in Leccinum rugosiceps (1.03) and B. tomentipes (1.19), and the opposite phenomenon is 
observed in B. edulis (0.85) and B. umbriniporus (0.95). The correlation coefficient and 
residual predictive deviation of best prediction model were 86.76% and 2.40%, respec-
tively, indicating that that there is good relevance between FT-MIR and total polyphenol 
content, which could be used to predict roughly polyphenols content in mushrooms.
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1  | INTRODUC TION

Mushrooms existed on earth before human appeared (Bilal, Ahmad, 
& Wani, 2010) and have been consumed over a long period of time 
(Manzi, Gambelli, Marconi, Vivanti, & Pizzoferrato, 1999). The edi-
ble porcini mushrooms as a kind of macro-fungus belong to Boletus 
and Leccinum genus is large enough to be picked and ate valued in 
gourmet. These mushrooms are known as reputation of “vegetable 
meat” with characteristics of hypertrophic fruiting body, pleasant 
aroma, and unique taste. Besides, they have other features of high 
in proteins while low in fat and calories (Manzi et al., 1999). The 
porcini mushrooms contain natural chemical compositions such 
as proteins, phenols, flavones carbohydrates, alkaloids, vitamins, 
minerals, which are useful in nutrition and medicine purposes 
like antioxidant, antiviral, anti-tumor, antifungal, and enhance 
immunity (Bilal et al., 2010; Kaewnarin, Suwannarach, Kumla, & 
Lumyong, 2016). They have also many mineral compounds includ-
ing valued selenium with high antioxidant properties, but it can 
be dependent on species and its place of origin (Bekyarov et al., 
2011). Polyphenols are one of the compound which have positive 
function for human health (Wong & Chye, 2009), wildly finding 
in vegetables, fruits, and grain products (Velioglu, Mazza, Gao, & 
Oomah, 1998). Studies have revealed that polyphenols available 
from mushrooms have higher antioxidant activities compared with 
many fruits and vegetables (Ismail, Marjan, & Foong, 22004; Jia, 
Tang, & Wu, 1999; Velioglu et al., 1998).

The total porcini mushrooms in Yunnan Province are approxi-
mately to be 224 species in which 114 species are edible. Porcini 
mushrooms are one of the “four kings of mushroom” and are one 
of the traditional bulks exported agricultural products. According 
to statistical data, export quantity of wild porcini mushrooms from 
Yunnan Province accounts for about 80% of total export quantity 
of China (http://ynsyj.yncoop.com). The average price per kilogram 
of hot-selling porcini mushrooms can reach about 90 CNY accord-
ing to market investigation at August 2019. Due to high economic 
value, mushroom can be used by people of noncompliance with 
the morals to seek profits. Some fraud actions have been reported. 
Several mushrooms without formally scientific names have been 
sold with the mushrooms from species of porcini (Dentinger & 
Suz, 2014). The fraudulent action is also reported by Casale et al. 
(2012), which revealed that commercial dried mushrooms which 
are composed of Boletus edulis and related species have been 
adulterated with B. violaceofuscus. These actions have seriously 
influencing mushrooms quality and interfering quality supervision, 
resource evaluation, food safety, and even man health. In addition, 
there is just one specie namely Phlebopus portentosus can be culti-
vated successfully, and the over-picking by local peoples of lower 
income makes the seasonal wild porcini mushroom increasingly 
rarer. These reasons stated above confirm the urgent necessity re-
garding the species discrimination for porcini mushrooms.

Morphology is a common method based on surface features 
from fruiting body such as color, shape, size, or reticulate pattern 

(Tsujikawa et al., 2003). However, this method did neglect the 
phenotypic variability of mushroom. Besides, fruiting body will 
lose its characteristics when it suffered from drying, dehydra-
tion, salting, and bleaching, and usually processed into slice, can, 
or extractum to adapt long-distance transportation for exporting. 
Molecular tools have been developed to elude these flaws. Internal 
transcribed spacer (ITS) primer of 28 B. edulis samples combining 
phylogenetic tree analysis has provided an effective identification 
and revealed that B. edulis mushrooms are often sold by inter-
mixed with mushrooms species of B. violaceofuscus (Mello et al., 
2006). Another study for species clarification used ITS and fun-
gal immunomodulatory protein (FIP) sequences (Zhou, Liu, Guo, 
Su, & Zhang, 2016), shown that mushrooms from Ganoderma ac-
tually belong to different species. Now, nevertheless, infrared 
spectroscopy is preferred by researchers because this analytical 
technique has advantages of wide range of applications (liquid, 
solid, and gaseous samples), less sample consumption, without de-
stroying samples and rapid, not only for compound identification 
and molecular structure characterization, but also for quantita-
tive analysis (Borràs et al., 2015; Dutta, 2017). Just as there are 
no two identical leaves in the world, there are also differences be-
tween samples, which can be displayed in the infrared spectrum. 
The mushroom specie of Catathelasma ventricosum had higher 
amounts both of total phenols (9.24 ± 0.42 mg/g dw) and total to-
copherols (2.76 ± 0.22μg/g dw) than species of Clitocybe maxima 
(6.96 ± 0.32 mg/g dw and 0.62 ± 0.02 μg/g dw), Stropharia rugoso-an-
nulata (5.52 ± 0.45 mg/g dw and 1.34 ± 0.17 μg/g dw), Craterellus 
cornucopioides (5.39 ± 0.28 mg/g dw and 1.94 ± 0.43 μg/g dw), and 
Laccaria Amethystea (9.08 ± 0.54 mg/g dw and 2.72 ± 0.27 μg/g dw) 
(Liu et al., 2012). Therefore, the C. ventricosum species may have 
higher power to decrease the oxygen radicals (Kim et al., 2008). 
Influenced by latitude, the sea buckthorn berries collected from 
Québec, Canada, may have better pleasant taste than those grown 
at Sammalmäki, Finland, which contributed by higher levels of total 
sugar and sugar/acid ratio and a lower level of total acid (Zheng, 
Yang, Trépanier, & Kallio, 2012). It is this variability between sam-
ples that is key for building spectroscopic fingerprint spectrum and 
make it possible to track the sample source. Fingerprint spectrum 
available from Fourier transform mid-infrared (FT-MIR) spectra has 
been united with chemometrics for food quality like tannin char-
acterization (Tondi & Petutschnigg, 2015), honey adulteration (Das 
et al., 2017), camel milk metamorphism (Nagy et al., 2019), content 
determination of caffeine and trigonelline (Hagos, Redi-Abshiro, & 
Chandravanshi, 2018), variant screen of short-chain fructooligo-
saccharides (scFOS) (Trollope, Nieuwoudt, Görgens, & Volschenk, 
2014), and storage effects on saffron (Ordoudi, de los Mozos 
Pascual, & Tsimidou, 2014). Despite the excellent practicability of 
FT-MIR spectroscopy, potential flaw of the single data matrix is that 
it is not enough to represent the entire sample (Borràs et al., 2015).

Data fusion is a rising technology intersected by multiple disci-
plines for resulting in a satisfactory inference. Thanks to the rapid de-
velopment of computers, improvement of experimental instruments, 

http://ynsyj.yncoop.com
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and gradual maturation of data fusion; data fusion has been broadly 
used in many areas including environment supervision, food quality, 
medical diagnosis, military, mapping, and robot (Hall & Llinas, 2001). 
Low-level data fusion is an effective strategy to distinguish official rhu-
barb (recorded in the Chinese Pharmacopoeia) and unofficial rhubarb 
(Sun, Zhang, Zhang, & Zhu, 2017), and also to trace geographical ori-
gin of herbal medicine of Panax notoginseng (Li, Zhang, & Wang, 2018). 
Another commonly used strategy is mid-level data fusion. Unlike direct 
data splices in low-level data fusion, mid-level data fusion digs effective 
information available from singe data matrices in order to enhance run 
speed of algorithm and output a better outcome. This strategy of mid-
level data fusion has been used to trace specie and geographical origin 
of Porcini mushrooms (Yao, Li, Liu, Li, & Wang, 2018) and also to classify 
organic and nonorganic orange juices (Cuevas, Pereira-Caro, Moreno-
Rojas, Muñoz-Redondo, & Ruiz-Moreno, 2017), and the manufacturer 
of beer with same brand and product could be discriminated (Vera et 
al., 2011). According to literatures, the several common ways of feature 
selection are: as follows (1) latent variables (LVs) which selected accord-
ing to R2Y(cum) and Q2

(cum) based on partial least squares-discriminant 
analysis (PLS-DA) model (Yao et al., 2018), (2) principal components 
(PCs) obtained from principal component analysis (PCA) (Vera et al., 
2011), (3) variable importance in the projections (VIPs) picked by the 
values of VIP >1 (Qi, Liu, Li, Li, & &. Wang, 22018). R2Y(cum) and Q2

(cum) 
were used to assess the ability of the model to fit data of training set 
and to predict new sample (test set). The R2Y(cum) represents the degree 
of fitting the data; a large value (close to 1) is usually a necessary condi-
tion for a good model. However, the Q2

(cum) represents the predictivity 
of model, a large value (>0.5) indicates good potential to predict sample 
origin. VIP values larger than 1 indicate “important” X-variables, while 
the values lower than 0.5 indicate “unimportant” X-variables.

Although there are many studies on the species discrimination 
using data fusion strategy, there is no enough information regarding 
the data fusion using different morphological parts of porcini mush-
rooms of Yunnan province. The current study aims to find a fast and 
simple way to discriminate species and predict content of polyphe-
nol using Fourier transform mid-infrared (FT-MIR) spectra available 
from different morphological parts of mushroom.

2  | METHODS

2.1 | Sampling and sample preparation

A total of 100 fruiting bodies of the four different species (Boletus 
edulis Bull. Fr, Leccinum rugosicepes (Peck) Sing, B. tomentipes Earle 
and B. umbriniporus Hongo) were collected from Yuxi, Yunnan prov-
ince, China, during 2011–2012. The detailed information both of 
samples and collected place is shown in Table 1. Picking behaviors 
were carried out in the forests. In other words, the collection lo-
cations were in mountain area, which is far away from villages and 
human activities. Therefore, these mushrooms could be considered 
as clean and undamaged. Fruiting bodies of similar-sized and robust 
were selected for analysis.

The fresh fruiting bodies were treated using soft brush to cast 
off soils and other litters (leaves or branches) and then washed with 
running tap water until no impurity is visible by naked eyes. These 
watery mushrooms were dried in laboratory oven at 50°C for con-
stant mass and crushed immediately. It is underlined that each dried 
fruiting body was crushed after dividing into two morphological 
parts, namely cap and stipe. Finally, the crushed sample was passed 
through an 80-mesh sieve and then stored in zip lock bag wait for 
next analysis.

2.2 | Determining FT-MIR information

Spectra information was determined using common method of 
KBr tableting. The 1.0 ± 0.2 mg sample was homogenized using 
100 ± 0.2 mg KBr powder in an agate mortar in first step. Because 
KBr is easy to absorb moisture, this step was completed under in-
frared light. After thoroughly homogenization, mixed sample was 
adjusted to a thin slice under pressure available from tablet press. 
In last step, the FT-MIR spectra were immediately determined with 
a Fourier transform infrared spectroscopy spectrometer equipped 
with a DTGS detector. The determination conditions of wavenumber 
range, the number of successive scans, and resolution were set as 
4,000 to 400 cm−1, 64 and 4 cm−1, respectively.

2.3 | Determining amount of total polyphenol

The unerring 0.2500 g sample was extracted by an ultrasonic clean-
ing machine with 5 ml (solid-liquid ratio of 1:20) of 40% ethanol at 
room temperature for 30 min. Then, the extracted liquid was filtered 

TA B L E  1   The information of mushrooms samples

Code Species Location Quantity

1 Boletus edulis Bull. Fr Pubei, Yimen, Yuxi 11

2 B. edulis Bull. Fr Pubei, Yimen, Yuxi 7

3 B. edulis Bull. Fr Pubei, Yimen, Yuxi 10

4 B. edulis Bull. Fr Pubei, Yimen, Yuxi 10

5 Leccinum rugosicepes 
(Peck) Sing

Pubei, Yimen, Yuxi 9

6 L. rugosicepes (Peck) 
Sing

Pubei, Yimen, Yuxi 7

7 B. tomentipes Earle Fuliangpeng, 
Eshan, Yuxi

6

8 B. tomentipes Earle Xiaojie, Eshan, 
Yuxi

9

9 B. tomentipes Earle Tongchang, 
Yimen, Yuxi

10

10 B. tomentipes Earle Chah, Eshan, Yuxi 7

11 B. umbriniporus Hongo Huangcaoba, Yuxi 8

12 B. umbriniporus Hongo Tongchang, 
Yimen, Yuxi

6
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through qualitative filter paper, and the filtrate was adjusted to 
25 ml with deionized water.

The determination method of vis absorbance was similar to the 
procedures reported by Kaewnarin et al. (2016). The 0.1 ml filtrate 
was transferred in a test tube using transfer liquid gun and then 
added into 7.9 ml distilled water to dilute 80 folds. After that, the 
sample was added with 0.5 ml of 1 mol/L Foline–Ciocalteu reagent. 
Eight minutes later, 1.5 ml of 20% saturated sodium carbonate solu-
tion was added to the diluted sample. After seal by preservative film, 
the sample was incubated for 1 hr at room temperature and then 
determined using visible spectrophotometer at 760 nm. Calibration 
curve for quantification was constructed by gallic acid. All the re-
agents belong to analytical reagent (AR) grade.

2.4 | Statistical analyses

Spectra information was converted to data matrix using software 
Omnic 8.0 (Thermo Fisher Scientific Inc.). In order to fuse low-level 
data, data matrices from the two parts were directly spliced. Three 
types of feature variables were used, which correspond to PCs, LVs, 
and VIPs. And the selection standards were eigenvalue >1, maximum 
Q2

(cum), and VIP >1, respectively. These feature matrices were spliced 
according to same extraction way to get three new data matrices 
for mid-level data fusion. The t-distributed stochastic neighbor em-
bedding (t-SNE) was applied to preliminarily visualize discrimina-
tion of mushrooms. For building discrimination model, fix data 
matrices (two single, one low-level data fusion and three mid-level 
data fusion) were divided into training set and test set according to 
Kennard–Stone (KS) algorithm. Training set with 2/3 data was used 
to build model, while the rest of data namely test set were used to 
test discriminatory capacity of the model. Supervised classification 
methods of PLS-DA, grid-search support vector machine (GS-SVM) 
and particle swarm optimization support vector machine (PSO-SVM) 
were developed with help of software of SIMCA-P+ 13.0 (Umetrics 
AB) and MATLAB R2014a (Math works).

In essay of total polyphenol prediction, the amount and ex-
traction rate of total polyphenol of per sample were calculated based 
on vis absorbance. Then, the data of amount and FT-MIR both from 
same morphological part were spliced to develop two new data ma-
trices for total polyphenol prediction. Data treatments of first-order 
derivative (FD), second-order derivative (SD), multiplicative scatter-
ing correction (MSC), standard normal variate (SNV), Savitzky–Golay 
(SG) smoothing, and combination of these treatments were per-
formed to optimize spectral data. The derivative order, points in 
each, and distance between each were set as 1, 15, and 1 and 2, 15, 
and 1 in FD and FD, respectively. The order derivative was power-
ful to enhance resolution, whereas it also enhanced the noise (Roy, 
2015). SG smoothing may be a helpful method to solve this problem 
(Xu et al., 2008). The MSC and SNV were usually applied to reduce 
the light scatter effect caused by sizes and shapes of granular sam-
ple (Helland, Naes, & Isaksson, 1995). Before KS, data matrices were 
normalized to a range of 1–2 to avoid reduced accuracy brought by 

different dimensions. The method of KS was as described above. The 
prediction of total polyphenol was performed using supervised re-
gression methods of GS-SVM. Root mean square error of cross vali-
dation (RMSECV) and root mean square error of prediction (RMSEP) 
were applied to estimate total error for samples and estimate of total 
prediction error, respectively. The calculation approaches were as 
follows:

where the nc represents the quantity of samples of training set while 
np represents the quantity of samples of test set, and the ŷi and yi 
represent the predicted and measured value, respectively.

Coefficient of determination (R2) was used to reflect the correla-
tion relationship between predicted and measured value. Another 
useful assessment parameter of residual predictive deviation (RPD) 
was calculated via standard deviation (SD) divide by RMSEP. The cal-
culation methods were as follows:

The RPD value between 1.5 and 2 indicated that the model can 
discriminate low values from high values of the contents. For pre-
dicting roughly, the RPD between 2 and 2.5 is a necessary condition, 
while the RPD greater than 2.5 or 3 corresponds excellent power for 
content prediction (Nicolaï et al., 2007). It should be noted that the 
data of amounts and spectra were one-to-one correspondence in 
total polyphenol prediction. For better understanding this study, the 
workflow is shown in Figure 1.

3  | RESULTS

3.1 | FT-MIR absorption peaks interpretation

The raw average spectra of caps and stipes from four species of 
porcini mushrooms are shown in Figure 2. The major absorption 
peaks of gaps and stipes have been interpreted. It can be seen 
from Figure 2 that the absorption bands of 2,928, 1,313, 1,082, 
and 1,025 cm−1 were shared in caps and stipes. The single perk at 
2,928 cm−1 could be assigned to methylene C-H asymmetric stretch-
ing; the weak peak around 1,313 cm−1 was the vinylidene C-H in-
plane bend (Coates, 2000). The peaks around 1025–1082 cm−1 
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ŷi−yi
�2

∑n

i=1

�
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corresponded to -C-O stretching (Yang & Irudayaraj, 2000). Two 
broad peaks of 3409–3287 and 3396–3281 cm−1 were assigned to 
the N-H stretching vibration (Kasprzyk, Depciuch, Grabek-Lejko, & 
Parlinska-Wojtan, 2018). The around peaks at 1,640, 1,634, 1,543, 
and 1,550 cm−1 belonged to the C=O stretching, C-N stretching, and 
N-H bending vibration in amide-I and in amide-II bands (Choong et 
al., 2011), which mean these mushrooms contain protein. The peaks 
of 1,402 and 1,377 cm−1 were O-C-H bending and C-H bending, 
respectively (Chen, Guo, Yan, Sun, & Zhou, 2017). Although values 
of absorption peaks were varied in caps and stipes, the shapes and 
positions of the absorption peaks were similar among all samples, 
which revealed that the substance components are similar within 
mushrooms of four species.

3.2 | Visualizing discrimination by t-SNE

PCA and t-SNE are the most common approaches to provide more 
vivid and easy-to-understand classification result. However, both 
methods can be used to draw two- or three-dimensional graphics 
to visualize sample classification. The difference is that the t-SNE 
can capture more information to draw the graphics using random 
walks on neighborhood graphs. Studies have reported that t-SNE 

overmatches existing most advanced techniques such as sammon 
mapping, lsomap, or locally linear embedding (Maaten & Hinton, 
2008).

Here, specie discrimination by t-SNE is shown in Figure 3 where 
dotted circle represents 95% confidence level of per species. 
Mushroom classifications were disordered using single data matri-
ces in which any one species could not be separated (Figure 3a,b). 
Low-level data fusion was superior to single data matrix (Figure 3c). 
Samples show clustering tendency, and the samples that belong to 
species of B. edulis show an obvious clustering, although one sam-
ple is beyond confidence interval and far away from other samples 
within the species. Mid-level data fusione shows a better result, 
with all samples that belong to B. edulis clustered together and 
landed within confidence interval but still be mixed with samples 
belonging to other species (Figure 3d1). Compared with mid-level 
data fusione, mid-level data fusionv displayed a better discrimi-
nation in which one species namely B. edulis was separated com-
pletely (Figure 3d2). The mid-level data fusionq had best cluster 
classification among all scatterplots, which allowed two species of 
B. edulis and B. umbriniporus be discriminated (Figure 3d3). Besides, 
clustering results reveal that the within a species is smaller than 
that between species since the clustering effect was better in 
same species than in different species. For higher discrimination 

F I G U R E  1   Workflow of species discrimination and total polyphenol prediction
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result which per sample was classified into actual species, super-
vised model combination with data fusion was performed.

3.3 | Discriminating samples by PLS-DA model

The PLS-DA is confirmed as a universal strategy for reducing varia-
bles, regression prediction, source discrimination, etc. (Loong, Liong, 
& Jemain, 2018). Table 2 shows the results both the parameters of 
models and discrimination accuracy of test set. The parameters of 
RMSEE and RMSECV were used to assess the reliability of training 
set and test set, respectively; a small value is usually necessary for 
model quality. Compared with caps, the stipes model has better per-
formance, with the values of parameters of R2Y(cum), Q

2
(cum), RMSEE, 

and RMSECV as 0.9, 0.7, 0.15, and 0.26, respectively, and the total 
correctness rate of test set, with a rate of 97.06%, was higher than 
that of caps, with a rate of 91.18%. In data fusion strategies, the 
same total accuracy of 97.06% has been noticed in mid-levele and 
mid-levelv data fusion. Two samples from species of L. rugosiceps 
were misclassed into B. tomentipes, both in mid-levele and mid-levelv 

data fusion. The lower accuracy (94.12%) at low-level data fusion 
may due to redundant information brought by data direct splicing 
(Borràs et al., 2015). Importantly, model of mid-level data fusionq 
has highest value of R2Y(cum) (0.91), Q2

(cum) (0.86) and lowest value 
of RMSEE (0.13), RMSECV (0.19), which meant that the model 
could fit the new data very well and had a good potential to predict 
sample origin, and the fact is that this model did allow per sample 
classed into real species corresponding to total accuracy of 100%. 
The order of accuracies in all classification models is as follows: 
mid-level data fusionq > mid-levele data fusion = mid-levelv data fu-
sion = stipes > low-level data fusion > caps, which indicated that 
mid-level data fusionq combined with PLS-DA model can be seen as 
a reliable way to discriminate mushroom species.

3.4 | Discriminating samples by SVM model

Supervised models of GS-SVM and PSO-SVM were developed to 
compare with the models of PLS-DA for fast and simple way for 
discriminating mushroom species. Table 3 summarizes the results of 

F I G U R E  2   Average FT-MIR spectra 
of the caps and stipes. 1, B. edulis; 2, 
L. rugosiceps; 3, B.  omentipes; 4, B. 
umbriniporus
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F I G U R E  3   Mushroom discrimination by t-SNE. , B. edulis; , L. rugosiceps; , B. tomentipes; , B. umbriniporus; e, eigenvalue selection by 
eigenvalue >1; v, variable selection by VIP >1; q, variable selection by maximum Q2
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TA B L E  2   Mushroom discrimination by PLS-DA

Caps

  R2Y(cum) Q2
(cum) RMSEE (avg) RMSECV (avg) LVS

  0.84 0.63 0.18 0.26 12

  1a 2 3 4 Accuracy (%)

 1b 14 0 0 0 100

 2 0 3 2 1 50

 3 0 0 10 0 100

 4 0 0 0 4 100

Total 34 14 3 12 5 91.18

Stipes

  R2Y(cum) Q2
(cum) RMSEE (avg) RMSECV (avg) LVS

  0.90 0.70 0.15 0.26 14

  1a 2 3 4 Accuracy (%)

 1b 14 0 0 0 100

 2 0 5 1 0 83.33

 3 0 0 10 0 100

 4 0 0 0 4 100

Total 34 14 5 11 4 97.06

Low-level data fusion

  R2Y(cum) Q2
(cum) RMSEE (avg) RMSECV (avg) LVS

  0.87 0.69 0.15 0.24 8

  1a 2 3 4 Accuracy (%)

 1b 14 0 0 0 100

 2 0 4 1 1 66.67

 3 0 0 10 0 100

 4 0 0 0 4 100

Total 34 14 4 11 5 94.12

Mid-level data fusione

  R2Y(cum) Q2
(cum) RMSEE (avg) RMSECV (avg) LVS

  0.87 0.79 0.15 0.21 4

  1a 2 3 4 Accuracy (%)

 1b 14 0 0 0 100

 2 0 5 1 0 83.33

 3 0 0 10 0 100

 4 0 0 0 4 100

Total 34 14 5 11 4 97.06

Mid-level data fusionv

  R2Y(cum) Q2
(cum) RMSEE (avg) RMSECV (avg) LVS

  0.84 0.56 0.17 0.28 7

  1a 2 3 4 Accuracy (%)

 1b 14 0 0 0 100

 2 0 5 0 1 100

 3 0 0 10 0 100

 4 0 0 0 4 83.33

Total 34 14 6 10 5 97.06

(Continues)
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both the parameters of model and total correctness rate. As shown 
in Table 3, the model PSO-SVM had higher accuracy of test set than 
GS-SVM based on caps data, with 97.06% higher than 94.12%, and 
the best parameters of penalty parameter (c) and kernel parameter 
(g) were 30.44 and 20.93, respectively. Correspondingly, the mis-
classified samples of PSO-SVM were lower than GS-SVM, with one 
lower than two. In the models of stipes, however, discrimination 
accuracy was lower in PSO-SVM model (88.24%) compared with 
GS-SVM model (91.18%). The highest accuracy was noticed using 
low-level data fusion strategy, which means the 100% correctness 
rate and without misclassified sample in both GS-SVM and PSO-
SVM. Regarding the best discrimination model, low-level data fusion 
combined with model of GS-SVM or PSO-SVM could be used as a 
fast and simple approach to discriminate mushroom species.

3.5 | Total polyphenol content

In this study, 40% ethanol was used for total polyphenol extraction 
from mushroom. The arithmetic means, standard deviation, median 
value, content range, extraction percentage, and bioconcentration 
factor of phenolic compounds in two morphological parts of mush-
rooms are presented in Table 4.

The median values of total phenolic content for four species ana-
lyzed varied between 10.13 and 14.76 mg/g dw in caps, and between 
10.70 and 17.33 mg/g dw in stipes. Compared with B. tomentipes, 

L. rugosiceps have greater total polyphenol content, with the median 
values of the caps and stipes as 14.6 mg/g dw and 13.68 mg/g dw, 
respectively, then 12.03 mg/g dw and 10.09 mg/g dw, respectively. 
The smallest contents were found in species of B. umbriniporus, with 
the median values of 10.13 mg/g dw in caps and 10.70 mg/g dw in 
stipes. Among these results, mushrooms belong to B. edulis showed 
greatest total phenolic content both among the caps (14.76 mg/g 
dw) and stipes (17.33 mg/g dw). The content range of caps was from 
12.28 to 17.55 mg/g dw, while the range of stipes was from 8.16 to 
19.71 mg/g dw. Higher total phenolic amount may be the major con-
tributes to the better flavor of mushrooms of B. edulis which show 
higher popularity in customers.

Table 4 also shows the value of bioconcentration factor (BCF) in 
order to assess enrichment ability of total polyphenol by different 
morphological parts of mushroom for the first time. The BCF was 
calculated by the median value of cap divided by the median value 
of stipe. The enrichment ability of total polyphenol varied from 0.85 
to 1.19, with the values of 0.85 for B. edulis, 0.95 for B. umbrinipo-
rus, 1.03 for L. rugosiceps, and 1.19 for B. tomentipes. Apparently, 
caps were considered as a morphological part to better accumulate 
total polyphenol compared with stipes in species of L. rugosiceps and 
B. tomentipes, while contrary results were noticed in B. edulis and 
B. umbriniporus. In a previous study, the mushroom caps of species of 
Agrocybe aegerita and Lentinula edodes have higher content of gluta-
thione, ergothioneine than in stipes (Kalaras, Richie, Calcagnotto, & 
Beelman, 2017). One possible explanation is that the mushroom cap 

TA B L E  3   Mushroom discrimination by GS-SVM and PSO-SVM

Origin of data Strategy Best c Best g
Accuracy of training 
set (%)

Accuracy of 
test set (%)

Caps GS-SVM 1.05e + 06 1.91e−06 87.88 94.12 (32/34)

PSO-SVM 30.44 20.93 89.39 97.06 (33/34)

Stipes GS-SVM 2,896.31 6.91e−04 93.94 91.18 (31/34)

PSO-SVM 2.38 54.73 92.42 88.24 (30/34)

Low-level data fusion GS-SVM 5.66 45.25 92.42 100 (34/34)

PSO-SVM 7.9 27.85 92.42 100 (34/34)

Mid-level data fusionq

  R2Y(cum) Q2
(cum) RMSEE (avg) RMSECV (avg) LVS

  0.91 0.86 0.13 0.192761 3

  1a 2 3 4 Accuracy (%)

 1b 14 0 0 0 100

 2 0 6 0 0 100

 3 0 0 10 0 100

 4 0 0 0 4 100

Total 34 14 6 10 4 100

Note: 1, B. edulis; 2, L. rugosiceps; 3, B. tomentipes; 4, B. umbriniporus; FD, first-order derivative, LVs: the number of potential variables.
aPredicted category. 
bGenuine category. 

TA B L E  2   (Continued)



     |  763LI et aL.

TA B L E  4   The arithmetic means, standard deviation, median value, amount range, extraction percentage, and bioconcentration factor of 
total phenolic content in two morphological parts of mushrooms

Morphological part

Species

B. edulis
n = 39C
n = 38s

L. rugosiceps
n = 17
n = 16

B. tomentipes
n = 43
n = 42

B. umbriniporus
n = 35
n = 37

Caps 15.10 ± 1.37 14.33 ± 2.02 12.27 ± 1.85 10.22 ± 1.97

14.76 14.06 12.03 10.13

12.28–17.55 9.49–17.04 8.98–16.34 7.59–16.91

1.51 1.4 1.23 1.02

Stipes 15.81 ± 3.48 14.00 ± 2.10 11.30 ± 3.83 10.74 ± 1.40

17.33 13.68 10.09 10.70

8.16–19.71 10.63–19.13 6.32–18.50 7.59–13.42

1.58 1.4 1.13 1.07

BCFc-s 0.85 1.03 1.19 0.95

Abbreviations: dw, dry weight; C, the number of caps; s, the number of stipes; BCFc-s, quotient calculated by the median value of cap divided by the 
median value of stipe.

TA B L E  5   Prediction results of total polyphenol by GS-SVM regression model

Substrate Treatent Best c Best g

Cross validation External prediction

R2 RMSECV R2 RMSEP RPD

Caps No 724.08 3.45e−04 0.92 0.73 0.77 2.24 1.20

SNV 5.66 5.52e−03 1 0.12 0.53 1.10 1.13

MSC 370,728 9.54e−07 0.96 0.55 0.67 2.34 0.92

FD 16 1.95e−03 0.97 0.41 0.68 1.31 1.52

SD 4 2.76e−03 0.97 0.43 0.87 0.82 2.40

SG (7) 512 4.88e−04 0.92 0.69 0.77 2.15 1.24

SG (15) 724.08 3.45e−04 0.91 0.75 0.77 2.29 1.19

SNV + SD 0.35 5.52e−03 0.49 1.91 0.11 1.84 0.78

FD + SG (7) 16 1.95e−03 0.97 0.41 0.67 1.32 1.51

FD + SG (9) 16 1.95e−03 0.97 0.41 0.67 1.33 1.50

SNV + FD+SG (9) 64 2.44e−04 0.95 0.80 0.58 1.11 1.86

Stipes No 92,681.9 1.35e−06 0.88 1.27 0.80 3.28 1.04

SNV 524,288 1.35e−06 0.97 0.66 0.80 3.80 0.95

MSC 8,192 2.70e−06 0.89 1.16 0.85 2.02 1.28

FD 32,768 1.08e−05 1 0.13 0.85 4.80 0.93

SD 32,768 9.54 0.98 0.57 0.79 2.09 1.33

SG (7) 2,896.31 4.32e−05 0.9 1.17 0.81 3.70 0.95

SNV + FD 1,024 1.53e−05 0.94 0.82 0.85 2.65 1.20

MSC + FD 11,585.2 1.90e−06 0.95 0.75 0.83 2.27 1.38

FD + SG (9) 16,384 2.15e−05 1 0.13 0.86 4.61 0.96

FD + SG (11) 1,448.15 2.16e−05 0.92 0.96 0.88 4.09 0.91

FD + SG (13) 4,096 1.53e−05 0.96 0.72 0.89 4.25 0.94

MSC + FD + SG (9) 5,792.62 3.81e−06 0.94 0.78 0.83 2.32 1.78

Abbreviations: FD, first-order derivative; SD, second-order derivative; MSC, multiplicative scattering correction; SNV, standard normal vari-
ate; SG, Savitzky––Golay smoothing; SG (7), Savitzky–Golay smoothing with seven points; SG (9), Savitzky–Golay smoothing with nine points; 
SG (11), SavitzkyGolay smoothing with eleven points; SG (13), Savitzky–Golay smoothing with thirteen points; SG (15), SavitzkyGolay smooth-
ing with thirteen points.
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consisted of pileipellis, flesh, and hymenium, which are important 
for its metabolism and reproduction (Casale et al., 2012). Therefore, 
cap of mushroom may be a major part to enrich active constituents 
and can be the primary choice to meet purpose of diet nutrition and 
natural antioxidants.

3.6 | Predicting content of total polyphenol

The regression model of GS-SVM was developed using raw spectral 
information from two morphological parts of mushrooms combined 
with various data treatments to predict amount of total polyphenol 
in four porcini mushrooms. Table 5 shows the results, and the best 
prediction results by the two parts are shown in Figure 4. The RPD 
value of models based on four data treatments of FD, FD + SG (7), 
FD + SG (9), and SNV + FD+SG (9), respectively, was 1.52, 1.51, 1.50, 
and 1.86 when using caps data, which indicated these models could 
be used to distinguish sample with high concentration of polyphenol. 
The best prediction model was achieved by SD-treated, the RMSEP, 
RPD and R2 were 0.82, 2.4 and 86.76%, which indicated the good 
relationship between polyphenol content and FT-MIR data, and this 
model could be applied to predict total polyphenol content roughly. 
In models by stipes data, the best R2 (84.66%) was obtained by FD-
treated, which indicated the good relationship between polyphenol 
content and FT-MIR data. However, the best prediction was achieved 

by model with data treatment of MSC + FD+SG (9), with the values of 
0.83, 2.32, and 1.78 corresponded to R2, RMSEP, and RPD, respec-
tively, which indicated that the model could discriminate high values 
from low values among these amounts. In summary, the prediction 
result by caps data was superior to result by stipes data. Although 
numerous data treatments have been used to improve data quality, 
this study did not obtain an excellent model for accurately predicting 
the content of total polyphenol. This result may be caused by insuf-
ficient sample size, and better model may be obtained by increasing 
sample size and applying data fusion strategies in the future.

4  | CONCLUSION

The test results showed that this study did provide a fast and ac-
curate method for species discrimination. In addition to the use 
of low-level data fusion, three types of feature variables were se-
lected simultaneously to complete mid-level data fusion, which in-
dicated that the PLS-DA model based on feature variable selected 
by maximum Q2

(cum), GS-SVM, and PSO-SVM models based on low-
level data fusion had 100% discrimination accuracy allowing each 
mushroom classed into its real species. Moreover, this study also 
measured alcohol-soluble polyphenols content in four porcini mush-
rooms, offered accumulation tendency of polyphenols in different 
parts of mushroom for the first time and predicted the polyphenol 
content for four porcini mushrooms. The result suggested that the 
way of caps data combination with second-order derivative can be 
used to predict roughly polyphenols content in four porcini mush-
rooms. These outcomes from this work can provide academic refer-
ences for origin traceability, market supervision, quality evaluation, 
and edible security.
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