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Decentralization is a central characteristic of biological motor control that allows for fast responses
relying on local sensory information. In contrast, the current trend of Deep Reinforcement Learning
(DRL) based approaches to motor control follows a centralized paradigm using a single, holistic
controller that has to untangle the whole input information space. This motivates to ask whether
decentralization as seen in biological control architectures might also be beneficial for embodied
sensori-motor control systems when using DRL. To answer this question, we provide an analysis and
comparison of eight control architectures for adaptive locomotion that were derived for a four-legged
agent, but with their degree of decentralization varying systematically between the extremes of fully
centralized and fully decentralized. Our comparison shows that learning speed is significantly enhanced
in distributed architectures—while still reaching the same high performance level of centralized
architectures—due to smaller search spaces and local costs providing more focused information for
learning. Second, we find an increased robustness of the learning process in the decentralized cases—it is
less demanding to hyperparameter selection and less prone to becoming trapped in poor local minima.
Finally, when examining generalization to uneven terrains—not used during training—we find best
performance for an intermediate architecture that is decentralized, but integrates only local information
from both neighboring legs. Together, these findings demonstrate beneficial effects of distributing
control into decentralized units and relying on local information. This appears as a promising approach
towards more robust DRL and better generalization towards adaptive behavior.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Adaptive behavior in animals is characterized by an extraor-
inary robustness with respect to facing highly varying and un-
redictable environmental conditions (Beer, 1990; Beer, Chiel,
Sterling, 1990). Consider, for example, an insect that is able

o climb through a twig even though there is only very lim-
ted information on possible footholds, and it is impossible to
redict the movements of the substrate. Such traits of adap-
ivity have motivated attempts to equip technical systems with
imilar performance, and several different strategies have been

✩ This research was supported by the research training group ‘‘DataNinja’’
(Trustworthy AI for Seamless Problem Solving: Next Generation Intelligence
Joins Robust Data Analysis) funded by the German federal state of North Rhine-
Westphalia and by the Cluster of Excellence Cognitive Interaction Technology
CITEC (EXC 277) at Bielefeld University, which is funded by the German Research
Foundation (DFG).

∗ Corresponding author.
E-mail address: mschilli@techfak.uni-bielefeld.de (M. Schilling).
ttps://doi.org/10.1016/j.neunet.2021.09.017
893-6080/© 2021 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
followed over the years. For our purpose, we will concentrate
on two: First, biologically-inspired control approaches focus on
biological control principles and transfer these into well designed
settings and experimental setups. This often leads to carefully
hand-crafted control structures that are well explainable and test
specific hypotheses on detailed mechanisms of control (Ijspeert,
2014; Schilling, Hoinville, Schmitz and Cruse, 2013). But this
involves fine tuning of the system and its parameters which limits
generalization to broader contexts and application in natural
environments. Second, in learning-based approaches, the main
focus is typically on finding fitting parameters in an automatic
fashion that optimize a given objective (Billard & Kragic, 2019;
Cully, Clune, Tarapore, & Mouret, 2015). In particular, Deep Re-
inforcement Learning (DRL) has shown to be successful over
the last years (Hwangbo et al., 2019; Kidziński et al., 2018). It
has demonstrated to produce well performing control policies
for application in robots in a range of environments. However,
even the most current learning-based systems still have difficul-

ties when facing noisy environmental settings, and they do not
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Fig. 1. Visualization of our decentralized approach for locomotion of a simulated robot. In (a) the modified quadruped walking robot is shown (derived from an
OpenAI standard DRL task, but using more realistic dynamic parameters and a modified reward function). In (b) a sketch of a (fully) decentralized approach is
shown: On the one hand, control is handled concurrently and there are multiple controller (only two are shown in green in the visualization), one for each leg
which reduces the action space of each individual controller (e.g., aHR,t ; FL — front left leg, HL — hind left leg, HR — hind right leg, FR — front right leg). On the
ther hand, only limited input information is used as a state (gray arrows on the left, SHR,t and SFR,t ), in this case only information from that particular leg which
ramatically reduces the input state space. Control policies are trained using DRL which is driven by a reward signal (Rt , as a simplification this is shown as shared
etween all controller). This overall simplifies learning of robust behavior considerably and leads, as will be shown, to better generalization.
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erform well when facing slight changes in the appearance or
onfiguration of an environment. It appears as a problem that
hese systems aim to solve one—or even multiple—specific tasks
n a static context (for review see Neftci & Averbeck, 2019; or
ee Finn, Abbeel, & Levine, 2017 highlighting problems when
uick adaptations are required), and that these learning-based
ystems still show a tendency of overfitting (Zhang, Vinyals,
unos, & Bengio, 2018). Therefore, there is today a growing

nterest in bringing the two kinds of approaches together: Guide
earning of optimized-oriented control approaches through in-
ights from neurobiology (Hassabis, Kumaran, Summerfield, &
otvinick, 2017) which aims at facilitating learning and improv-
ng robustness of control. Following this rationale, this article
ims at a biologically inspired and learning-based approach that
s applied to control of locomotion of an animal-like simulated
alking robot.
One key insight for the organization of motor control in an-

mals is modularity (Clune, Mouret, & Lipson, 2013; Dickinson
t al., 2000) which can be understood as an organization in which
network consists of ‘‘multiple densely connected clusters, each
ith only a limited connection to other clusters’’ (Ellefsen, Huizinga,
Torresen, 2020, p. 3). We will distinguish two main character-

stics of modularity of motor control as found in animals: On the
ne hand, hierarchical organization—actions can be decomposed
nto sub-actions on different levels of a hierarchy which allows for
lexible recombination and induces temporal abstraction (Binder,
irokawa, & Windhorst, 2009; Haruno, Wolpert, & Kawato, 2003;
engistu, Huizinga, Mouret, & Clune, 2016; Uithol, van Rooij,
ekkering, & Haselager, 2012). On the other hand—and as a key
haracteristic that will set our learning approach apart—, we focus
n the modular and decentralized structure of the motor control
ystem.
A hierarchical structure is decomposing complexity into dif-

erent modules and leading to a form of vertical (as well as
emporal) abstraction in which higher levels activate modules on
he lower level, e.g., in locomotion a higher level routine for walk-
ng at a certain speed would sequentially activate low-level motor
rimitives for swing and stance movements. Such hierarchical
pproaches have been widely applied in motor control (Binder
t al., 2009; Dickinson et al., 2000) and in hierarchical forms of
RL (Merel, Botvinick, & Wayne, 2019). Hierarchical approaches
re beneficial as they can apparently deal with a wider variety of
ontexts. But, mostly this success is a result of transfer learning
nd the ability to switch between different contexts which allows
xploiting a control structure of a similar context. This has shown
o work well in examples where different low-level motor prim-
tives were used, for example, to control walking behaviors that
700
re combined on a higher level for navigation. Such approaches
lso tend to work well when dealing with severe intervention, for
xample, loss of a leg (Schilling, Ritter, & Ohl, 2019). But this still
iffers from the range of exquisite adaptivity found in animals.
n the case of the above mentioned insect, climbing through
twig, behavior is continuously adapted to an unpredictable

nvironment as it is sensed in real-time. This appears to require
ther mechanisms as well that act on a much faster timescale.
Along this line, we argue that decentralization (Clune et al.,

013; Ellefsen et al., 2020) is a further important characteristic
f motor control found in biology. Decentralization describes
he general idea of a factorization of a system into concurrent
ocal modules—distributed over the whole nervous system—that
ct concurrently on local information and that allow for fast,
ocal computations realizing, e.g., reflex-pathways (Clune et al.,
013) as found in animals and humans (Alon, 2006; Mountcastle,
997). This local information is directly factorized based on the
vailability of only nearby sensory inputs. Such decentralized
ontrol modules are partially autonomous as they are driven by
ocal signals, but could be modulated by higher levels. Overall,
daptive behavior emerges from the interaction of the decentral-
zed control mechanisms. Decentralization can be understood as
omplementing modularity along a hierarchy which is focussing
n abstraction along a vertical axis. It describes the general idea
f concurrent, autonomous modules—potentially on the same
evel of the hierarchy—that allow for fast, local computations.
uch a decentralized control structure appears to be crucial and
eneficial for adaptivity of walking, and it is well described in
nsects (Bidaye, Bockemühl, & Büschges, 2018; Dürr, Schmitz,
Cruse, 2004) which we will take as direct inspiration and
hich is missing from current—Deep Reinforcement and other—
ptimization-oriented approaches. In biology, it is often reasoned
hat decentralization is a necessity because of slow transmission
f information in sensory pathways that requires computation
loser to the sensors. As we do not consider delays along informa-
ion pathways, we take a different perspective in which we aim
o understand, if decentralization as such provides advantages
uring learning and for robust control.
We propose a decentralized architecture for motor control in

hich control is not handled by one single, holistic control unit.
nstead, control is distributed onto multiple local control modules
hich run concurrently (for a simple sketch illustrating the idea,
ee Fig. 1). Such decentralized control structures can be much
impler as they only rely on local sensory information of a lower
imensionality which should benefit learning. We demonstrate
ow a decentralized control structure can learn to walk for a
our-legged simulated robot using DRL. Our goal is to analyze



M. Schilling, A. Melnik, F.W. Ohl et al. Neural Networks 144 (2021) 699–725

c
c
d
o
i
c
o
s
c
m

a
c
o
t
c
a
d
a
a
d
m
o
t
c
s
b
a
l
o
T
i
K
f
o
b
u
t
w
m
i
T
o
c
o
b
i
c
e
d
I
t

Fig. 2. Hierarchical organization in motor control: Panel (a) shows a schematic of hierarchical organization of motor control. Importantly—providing more detail
ompared to typical textbook illustrations (Magill & Anderson, 2017)—the different levels are interconnected through highly parallel connections. This highlights the
oncurrent and decentralized structure of the system. Colors represent different levels of the motor hierarchy: A higher level is shown in blue, an intermediate (and
ecentralized) control level is shown in green. Interactions with the environment (including preflexes and properties of muscles) are shown in orange (color coding
f different control levels applies to Figs. 1, 2, 3, and 4). Such an organization is found in both, humans and animals (Dickinson et al., 2000). Panels (b) and (c)
llustrate this for the example of humans: (b) gives an overview of embodied control in humans. Panel (c) shows a schematic for hierarchical motor control and
ircuits for body movements in humans (adapted from Arber & Costa, 2018): Movements require coordinated activation of neuronal populations across different parts
f the nervous system. On a high level (blue), an action is selected. High level centers project onto sensorimotor cortex that further broadcasts to basal nuclei, brain
tem, and spinal cord. These circuits transmit information concurrently to brainstem command lines (Graziano, 2006). Descending command lines activate executive
ircuits in the central nervous system (shown in green). On the lowest level (shown in orange in (a) and (b)), executive circuits control actuators that govern body
ovements. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
nd demonstrate the benefits of this decentralized and modular
ontrol structure in changing and challenging environments. As
ur previous work has already shown—in a proof of concept—
hat local information can be sufficient to learn usable walking
ontrollers, this raises the questions of (1) what kind of structure
nd information is required for control of locomotion, (2) how
oes this affect learning, and, in particular, (3) how does this
ffect generalization performance in unseen environments. In this
rticle, we will, first, address the influence of, on the one hand,
iffering structures of control, and, on the other hand, local and
ore distal information. Towards this goal, we will use variations
f control structures for the four-legged simulated robot. Even
hough our approach is inspired by work on insects, we are
hoosing a four-legged robot as this allows to vary the inputs
ystematically from a purely fully decentralized control approach
ased solely on local information—in which case the control of
leg is only based on sensory information from that particular

eg—up to the current standard paradigm in DRL in which there is
ne central controller that has access to all sensory information.
his will, on the one hand, confirm earlier results demonstrat-
ng that local structures are sufficient (Schilling, Konen, Ohl, &
orthals, 2020). But furthermore, the four-legged robot allows
or a detailed analysis in varying environments which will point
ut that some form of coordination and information exchange
etween legs is advantageous when facing more challenging,
neven terrain. Local controllers that integrate some informa-
ion of neighboring legs will demonstrate more robust behavior
ith respect to change of environment and, surprisingly, much
ore robust towards selection of hyperparameters for learn-

ng which overcomes one of the typical shortcomings of DRL.
he article is structured as follows: In the second section, an
verview on insights from biology on the structure of motor
ontrol systems will be given. Section three will present a broad
verview of related work, focussing, on the one hand, on more
iologically-inspired approaches and, on the other hand, on learn-
ng based-approaches. Section four will introduce the different
ontrol architectures we use in our Deep Reinforcement Learning
xperiments and will explain how these differ with respect to
ecentralization, locality of information, and structure of reward.
n the result section, five larger experiments are presented, and
he article concludes in a discussion and summary.
701
2. Insights from biological control of locomotion: Hierarchical
organization and decentralization

Adaptive behavior allows animals to produce stable behav-
ior across a variety of different contexts. They flexibly adapt to
changing specific environmental conditions and can deal with
variations under these conditions even when facing uncertainty.
This robustness to uncertainty still sets animal behavior apart
from current engineering and learning solutions. The following
section will summarize general insights on the organization of
motor control as found in animals. In particular, our focus will
be on hierarchical organization and decentralization.

2.1. Hierarchical organization in biological motor control

The difficult task of controlling a complex system is addressed
in many animals (including insects) through hierarchical organi-
zation and modularization of the control system in which the
complexity is distributed onto different levels of a motor hi-
erarchy (Botvinick, 2008; d’Avella, Giese, Ivanenko, Schack, &
Flash, 2015) and split into functional modules (Alon, 2006) (see
Fig. 2). A highest level deals with selecting goal-directed be-
haviors. On an intermediate level, actions are selected (Arber &
Costa, 2018) depending on context (Fig. 2(c)). This leads to an
internal competition between different actions that is context
dependent. A lower level realizes motor control primitives (or
synergies) (Giszter, Mussa-Ivaldi, & Bizzi, 1993; Hart & Giszter,
2010) that are modulated by the higher levels through descend-
ing commands (Fig. 2(c), lower level shown in green with the
higher levels’ projections shown as descending commands).

At the lower level, motor primitives allow for fast, sensory-
guided adaptation towards disturbances. These describe how dif-
ferent muscles are working in concert for performing a specific
action. Importantly, as a result of this distribution of complexity,
the lower level is focused on small groups of muscles which leads
to a decentralized organization and concurrent operation of mul-
tiple such lower level motor primitives. Such a modularization
can be found in vertebrates and invertebrates (Flash & Hochner,
2005; Pearson, 1995). In vertebrates and higher animals the re-
search focus is usually on the higher levels (Fig. 2(c) provides
a good summary of such a state-of-the-art view Arber & Costa,
2018, and similar ones can be found, e.g., in textbooks as Magill
& Anderson, 2017; higher levels shown in blue). Such a high level
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Fig. 3. Contributions to hierarchical motor control: A hierarchical organization of motor control is known as a general control strategy for vertebrate locomotion (Grill-
ner, 2003) and the overall structure is assumed for other animals as well (Dickinson et al., 2000). This is visualized in (a) in a schematic of differential roles of four
components that underly locomotion across animals (following and adapted from Ijspeert, 2018; this is not meant as a quantitative characterization, but should point
out shared characteristics between animal species in which complexity is only meant as a rough ordering of animal species). Research on vertebrates and humans
(see Fig. 2(b) and (c)) puts a focus on higher level processing in the brain and descending commands which is nicely complemented by research on embodiment
and the contribution of mechanical properties in insects shown in (b) and (c) (adapted from Dickinson et al., 2000). Panel (b) shows a fast running cockroach
highlighting sensors and actuators that are in interaction with the environment (in orange). In (c) a general low level scheme is given (complementing our general
scheme given in Fig. 2(a)), highlighting that neural and mechanical feedback play important roles in control of locomotion: On an intermediate level (green), the
central nervous system produces motor commands that activate the musculo-skeletal system of the animal which leads to movement. Sensory input from multiple
modalities is routed back to the central nervous system and modulates motor commands. In parallel, mechanical preflexes directly act to resist perturbations. While
this is visualized for insects here, it represents a general model for locomotor control, and such structures are shared with other invertebrates and mammals (for
more details see Dickinson et al., 2000). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
view is nicely complemented by work in invertebrates (Fig. 3)
that demonstrates, on a detailed level, the importance of the
lower-level motor primitives as these are modulated by sensory
inputs and descending commands from higher levels (shown
in green in Figs. 2 and 3). It further stresses the contribution
of mechanical properties and embodiment (Chiel & Beer, 1997;
Chiel, Ting, Ekeberg, & Hartmann, 2009; Nishikawa et al., 2007) in
a control task as locomotion (shown in orange in Figs. 2(a) and 3).

One well-studied example is legged locomotion in insects
hich spans a behavioral continuum from slow walking to fast
unning. During fast running, the effectiveness of sensory feed-
ack would be constrained by sensorimotor delays (More &
onelan, 2018) as, for example, at top running speed, a cockroach
ifts each of its six legs 20 times per second, corresponding to a
tep period of only 50ms (Full & Tu, 1991). This might not leave
nough time for sensory feedback to adjust leg movements on
step-by-step basis (Jindrich & Full, 2002; Zill & Moran, 1981).
herefore, it is assumed that fast running in insects is driven
redominantly by central oscillating units (Fig. 3(c) shown in
reen) in a feed-forward fashion (Bidaye et al., 2018). A shift to-
ards more feedforward control in (fast) locomotion is assumed

n other animals as well (Clancy, Orsolic, & Mrsic-Flogel, 2019).
mportantly, insects can still recover from perturbations, such
s uneven terrain, during fast running (Jindrich & Full, 2002;
ponberg & Full, 2008). This is enabled by passive forces from
he musculo-skeletal system (Ache & Matheson, 2013; Dudek
Full, 2006), which act more quickly than sensory reflexes as
echanical ‘‘preflexes’’ (Brown & Loeb, 2000) (shown in orange

n Fig. 3(b) and (c)). Dickinson et al. (2000) pointed out that
uch properties of embodiment are an important part of adaptive
ehavior and interacting with an environment for all animals
Fig. 3(c) shows a sketch of his conceptualization and (a) adds an
verview by Ijspeert (2018) on contributions of different factors
cross a spectrum of animals). Exploiting mechanical properties
f the body (e.g., muscles) and mechanical preflexes can facilitate
ast running and can compensate for small disturbances (for
nother example see McGeer, 1993, passive walkers).

.2. Decentralization in biological motor control

Top-down driven and feedforward processing is assumed to
rive control of fast walking and running. But, on the other side
f a spectrum of different walking velocities, during slow walking
nsects place their legs accurately in space, driven by detailed
ensory information about the body and the environment (Niven,

tt, & Rogers, 2012; Theunissen, Vikram, & Dürr, 2014). This

702
Fig. 4. Decentralized motor control structure: On top, schematic of a stick insect
is shown. Bottom, schematic of decentralized organization of the stick insect
control system which has been used as a model for six-legged robots (FL —
front left leg, ML — middle left leg, HL — hind left leg, FR — front right leg, MR
— middle right leg, HR — hind right leg). Colors correspond to the different levels
of the motor hierarchy: Higher level is, again, shown in blue (e.g., information on
walking direction). Local leg control level is shown in green (Front, Middle, Hind
leg on Left and Right side) with coordination influences between neighboring
legs shown as arrows. Interaction with the environment (including preflexes
and properties of muscles) are shown in orange. Behavior emerges as a result
of decentralized and locally interacting concurrent control structures (Schilling,
Hoinville et al., 2013). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

is critical when, for example, traversing cluttered environments
such as canopies, in which secure footholds are sparse. Behavioral
results from insect walking studies show here a wide diversity
of walking behavior and not just a small number of fixed gait
patterns (Bidaye et al., 2018; DeAngelis, Zavatone-Veth, & Clark,
2019). Temporal coordination of locomotion appears better char-
acterized as free gaits in which temporal relations emerge from
the interaction with the environment. This allows to constantly
adapt locomotion to unpredictable environments and to adjust
the temporal coordination as required. It further has shown to be
energy efficient (Nishii, 2006). A decentralized control structure
appears to be crucial and beneficial for adaptivity of walking.
Such an organizational structure of motor control in insects is
well described (Bidaye et al., 2018; Dürr et al., 2004). On the one
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and, this agrees with a hierarchical organization, as there is a
igher level producing decisions which behaviors to perform. On
he other hand, these findings further point out that biological
ontrol acts in a concurrent and modular fashion. Motor con-
rol for walking in insects is assumed to be constituted of local
ontrol modules. There exists one individual controller for each
eg that switches local behaviors depending on current sensory
ignals (Schilling & Cruse, 2020; Schilling et al., 2013). These
ontrollers coordinate their behavior through, on the one hand,
ocal coordination rules that influence the switching behavior (see
ig. 4). On the other hand, the different controllers are coupled
hrough the body and the interactions with the environment.
ctions of one leg affect other legs and can be sensed by those
ithout requiring explicit information exchange (at least to a
ertain degree) (Dallmann, Hoinville, Dürr, & Schmitz, 2017). In
his way, the system exploits the loop through the environ-
ent (Brooks, 1991). Decentralization of motor control is further
upported by neurophysiological insights on the construction of
he nervous systems, for example, in starfish (Heydari, Johnson,
llers, McHenry, & Kanso, 2020).

. Related work: Robot control approaches

Control of walking robots is a widely covered topic, and there
re different general approaches. In this section, we will review
elated work with a focus on two common perspectives: First,
biologically-inspired perspective that aims for understanding
ow animals are able to produce robust adaptive behavior. Fol-
owing the tradition of cybernetics, this is often considered a
onstructivist approach in which derived principles are tested
n fully functional systems and are evaluated as well as com-
ared with a focus on the resulting emergent behavior. Secondly,
ptimization-based approaches do not start or aim for a particular
ehavior, but instead explicitly aim for a well-defined objective
e.g. velocity). In particular, with the recent advances of machine
earning and deep reinforcement learning approaches, such have
ecome very popular.

.1. Biological-inspired approaches to control of robot locomotion

A hierarchical organization of motor control (as introduced
bove) has been transferred onto many robot control architec-
ures. In general, this is realized as a distinction between selection
f actions and execution of actions on two—or more—different
evels of a control hierarchy. But it is as well complemented by
he development of more versatile legged robots that for example
nclude elastic properties in the joint drives (Kim & Wensing,
017; Schmitz, Schneider, Schilling, & Cruse, 2008; Semini et al.,
011).
Impressive work on applying a hierarchical structure to walk-

ng on rough terrain comes from the area of quadruped robots
Carlo, Wensing, Katz, Bledt, & Kim, 2018). There, the prob-
em is divided and distributed onto different control levels of
hierarchy. While on a lower level the detailed movements of

oints and motors have to be controlled, a higher level coor-
inates movements between different legs and mainly selects
ower level control primitives. In many cases of locomotion con-
rol, on a higher level fixed gait patterns are assumed. Such
eedforward control employing fixed gaits has been applied to
ultiple legged robots (Ijspeert, 2008). As one example for em-
loying such a constant coordination in a hierarchical robotic
ontrol architecture, Kalakrishnan, Buchli, Pastor, Mistry, and
chaal (2010) used the LittleDog robot by Boston Dynamics to
eal with challenging terrain. Spatial coordination is realized as
search for footholds: First, possible footholds are identified,
nd a rough path is planned using a pre-trained ranking function

703
and a scanned three dimensional terrain map. During locomotion,
the detailed path is executed depending on the current posture
as well as the preplanned schedule. This approach produced
quite stable walking over rough terrain. A similar approach has
been applied recently by Bellicoso, Jenelten, Gehring, and Hutter
(2018) on the robot ANYmal. But, importantly, these authors
argue that different environmental situations also affect temporal
coordination of legs on a higher control level. Therefore, they
introduce a gait switching module that plans how to switch
phases between fixed gaits. Such fixed gait patterns correspond
well to fast walking and running in animals in which control is
driven in a top-down fashion.

But, in normal walking situations control of locomotion in
animals appears more sensory-driven. For example (as discussed
above) experimental findings in insects show a wide diversity of
walking behaviors that are better characterized as free emerging
gaits and cannot be reduced to a set of fixed gait patterns (Bidaye
et al., 2018; DeAngelis et al., 2019). Decentralization is assumed a
key constituting principle of the underlying control system from
which temporal coordination adaptively emerges in interaction
with an unpredictable environment. It has been realized as a
control principle in different legged robots. Such a notion of par-
tially autonomous and concurrent control in distributed cluster
can already be found in Brooks subsumption architecture (Brooks,
1986). Walknet is another recent example for such a control
structure that follows a hierarchical and decentralized organiza-
tion (Schilling & Cruse, 2020; Schilling, Hoinville et al., 2013).
It has been realized recently on the hexapod robotHector (Dürr
et al., 2019; Paskarbeit, Schilling, Schmitz, & Schneider, 2015;
Schilling, Paskarbeit, Ritter, Schneider, & Cruse, 2021). Control is
distributed hierarchically onto different levels. Each leg has its
own decentralized controller that locally decides which action to
perform depending on the sensed context. For locomotion, it is
distinguished between two basic actions on the lower leg level
(stance and swing movement). In forward walking, switching
from a swing movement towards a stance action is initiated after
the leg touches the ground and starts carrying weight. During
stance mode, the leg contributes to carrying the body and propels
the body forward until the position of the leg moves behind a pos-
terior extreme position (PEP). Therefore, action selection is, on the
one hand, sensory-driven and depends on the current local state
of the controller. On the other hand, the six leg controllers coordi-
nate their action, but again relying only through interchanging lo-
cal information with the neighboring controllers. While Walknet
is structurally quite a simple system, it is adaptive, showing free
emergent gaits, and it can deal with severe disturbances (Dürr
et al., 2019; Schilling & Cruse, 2017) as for instance loss of a
leg (Schilling, Cruse, & Arena, 2007). Other approaches focus more
on local intrinsic oscillations in distributed network structures
of coupled oscillators. These have been applied successfully in
robots (Steingrube, Timme, Wörgötter, & Manoonpong, 2010) of-
ten employing CPG-like structures (Ijspeert, 2008), e.g., in Inagaki,
Yuasa, and Arai (2003) neural interactions of neighboring legs are
driven depending on explicit gait patterns.

A central question in decentralized approaches deals with
coordination of individual legs. Behavioral studies in stick insects
provide a quite clear picture on the behavioral level to what
extent neighboring legs influence each others’ behaviors (Cruse,
1990). Forms of inter-limb coordination can be found through-
out the animal kingdom (Dickinson et al., 2000) and have been
applied, e.g., on a brittle star like robot (Kano, Kanauchi, Ono,
Aonuma, & Ishiguro, 2019). Owaki and Ishiguro (Owaki & Ishig-
uro, 2017) realized an even further decentralized structure on a
quadruped robot. In their case, coordination between individual
leg controllers could be mediated without explicit coordination

influences realized as neural connections. Instead, as legs are
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onnected through the body, they can directly experience and feel
he contributions of the other legs for supporting the weight. This
as shown to be sufficient for simple straight walking. While this
urther stresses the importance of taking embodied mechanisms
nto account, this particular form of coordination appears limited.
ore complex behaviors, as negotiating a curve, require in ad-
ition a form of spatial coordination of legs (Schilling & Cruse,
007; Schilling, Paskarbeit, Schmitz, Schneider, & Cruse, 2012). In
nsects, a load-based mechanism appears mostly to support local
ontrol and reflexes (Akay, Ludwar, Göritz, Schmitz, & Büschges,
007; Zill, Schmitz, & Büschges, 2004).
Forms of decentralization are further relevant for modular

obotic approaches. In the case of legged, modular robots such
ystems are constituted of interchangeable leg modules which
llows to reconfigure the anatomy and appearance of the robot,
.g., deciding on the number of legs or the arrangement of leg
odules. As a consequence, the embodiment of the robot can
e adjusted to a given task. Kim, Alspach, and Yamane (2017)
roposed such a modular system that can consist of up to six
eg modules, but applied precomputed gait patterns for the dif-
erent configurations that were driven by a central control sys-
em (Whitman, Su, Coros, Ansari, & Choset, 2017). Ha, Kim, and
amane (2018) used reinforcement learning in such a system
o learn walking behavior for individual modules which is com-
arable to our approach, but is not focussing on exchange of
nformation for coordination. A drawback of approaches employ-
ng fixed gait patterns is that there is an increasing number
f potential leg configurations which requires extensive compu-
ation in advance. Furthermore, with an increasing number of
egs, the control effort for a central unit grows dramatically and,
verall, while the body structure becomes more easily adapt-
ble, it is difficult to envision how to adapt control and body
ogether. Therefore, Hayakawa, Kamimura, Kaji, and Matsuno
2020) recently proposed the KARAKASA system which is com-
osed of single-legged modules that can form legged robot struc-
ures. Control is decentralized as each module is equipped with
controller. Joined modules form a distributed control system

n which information between neighboring modules is explicitly
xchanged (about the assumed geometric configuration). This
llowed to achieve static walking on a flat plane with different
eg configurations.

.2. Optimization-oriented and learning-based approaches to loco-
otion in robotics

Learning-based approaches usually aim for optimizing a given
bjective and offer as an advantage that they do not require
anual setup of control structures or modules. Therefore, such
pproaches have been applied for quite some time in the area of
ontrol of locomotion. One nice example is the work by Cully et al.
2015) that also employed a hierarchical representation as part of
n evolutionary algorithm aiming for robust locomotion of a six-
egged robot, but which aims more at switching of behaviors and
resupposes precomputed fixed gaiting patterns. In the following,
ur focus will be on Deep Reinforcement Learning (DRL) which
as been established as a promising approach in the last couple
f years (Arulkumaran, Deisenroth, Brundage, & Bharath, 2017;
eftci & Averbeck, 2019). Initial success of DRL was found in the
rea of computer game playing (Mnih et al., 2015). DRL has now
een as well used in continuous control tasks and on robots as
ell (Levine, Finn, Darrell, & Abbeel, 2016). But still, the field

s widely dominated by approaches that deal with simulation
nvironments as it appears that the nature of such robotic real
orld tasks is quite different from those of playing computer
ames (Hwangbo et al., 2019). Real world application have to
eal with much more—and more unpredictable—noise compared
704
to simulations. This poses a problem in itself for any control ap-
proach, but in the case of DRL it further questions the underlying
assumption of a stationary Markov Decision Process (Kurach et al.,
2019). Secondly, DRL aims for very specific and narrow solutions
trying to exploit a defined reward structure as good as possible.
This can lead to a form of overfitting (Lanctot et al., 2017; Zhang
et al., 2018) and unwanted optimization in order to only gain a
minimal higher reward at the cost of robust and broad application
of a behavior as required for adaptive behavior (Schilling et al.,
2019).

There is extensive work on DRL of locomotion that has been
realized in simulation as this allows to gather many samples in
quite a short time. This is largely due to the wide availability of
standard environments for DRL as can be found in the OpenAI
gym which includes one four legged robot called the ‘Ant’ (eight
degrees of freedom). DRL has lead to well performing solutions in
such well controlled environments, but generalization has shown
to be problematic for such DRL-based approaches as learned
control policies tend to overfit towards a given reward function
or the specific task at hand (Zhang et al., 2018). One counter
measure is to train agents in a broader variety of different envi-
ronments and to increase difficulty of tasks over training time. In
curriculum learning, the simulated robot is facing more diverse
and changing environments over time (Heess et al., 2017). This
has lead to more robust controllers that walk well in a range
of seen environments, but it required intensive interaction time
with the environment.

While such end-to-end learning approaches can produce ro-
bust locomotion controllers for environments that were seen
during training, the results still show a tendency to overfit as
pointed out recently by Tsounis, Alge, Lee, Farshidian, and Hutter
(2020). Application on tasks that are out of the training distribu-
tion are still problematic, and the resulting approaches generalize
badly towards novel environments as well as training appears
quite inefficient. Among others, Merel et al. (2019) proposed
several bio-inspired principles that could be employed in DRL
and lead to more adaptive and faster learning control struc-
tures. In particular, they emphasize the hierarchical structure of
motor control. Hierarchical DRL approaches help to deal with
particular tasks that span longer timescales or in which reward
is sparse (Kulkarni, Narasimhan, Saeedi, & Tenenbaum, 2016).
In simulation, different approaches to locomotion already ap-
plied hierarchical structure (Frans, Ho, Chen, Abbeel, & Schulman,
2018; Heess et al., 2016; Peng, Berseth, Yin, & Van De Panne,
2017). In such cases, two levels of control were distinguished
and operated on different, fixed time scales. This realizes a form
of temporal abstraction. Such hierarchical approaches allowed to
flexibly switch between distinct subtasks which enables deal-
ing with a variety of distinct contexts (Frans et al., 2018; Peng
et al., 2017). As one example, hierarchical DRL showed well
suited for switching between obstacle avoidance, following a
wall, or straight walking (Heess et al., 2016). Overall, hierarchical
organization—as advocated by us as well (Schilling & Melnik,
2018)—showed in particular effective for learning building blocks
that can be combined in longer sequences of actions. This is
required in more complex tasks, as for example navigation, in
which control should be learned from basic movement primitives.
Transfer is, in such cases, realized as a reuse of basic motor
primitives, and the hierarchical organization is understood in the
sense of switching between different motor primitives. But it does
not address dealing with variability through robust behavior as
such and adaptation on a short time scale, as targeted by our
approach, e.g., as in the case of an insect climbing through a
twig which only provides sparse footholds and that can move
unpredictably (Schilling, Hoinville et al., 2013).

Tsounis et al. (2020) proposed a particular hierarchical ap-
proach called DeepGait. DeepGait is constituted of model-based
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lanning on a higher level that is preplanning exact placement of
equences of footholds in a detailed acquired three-dimensional
ap of the surrounding area (we will not deal with other model-
ased approaches here that aim on planning or combining plan-
ing with control, see Lipson (2019) and Neftci and Averbeck
2019)). On a lower level, gaits are controlled as realizing se-
uences of footholds in order to keep the robot stable. In a
ense, the architecture is following a similar idea as found in
he area of more classical hierarchical control approaches. In
ontrast to the approach advocated by us, a higher level explicitly
lans footholds and determines gaits and stepping patterns. From
ur point of view, this is in conflict with insights from biology
hich show—especially for slow walking—that gaits emerge in

nteraction with an unpredictable environment. In DeepGait, the
ifferent levels are trained using DRL as policies are represented
s neural networks. This leads to a variety of locomotion ca-
abilities, e.g. climbing stairs which nicely demonstrates how
RL-based approaches are able to leverage a hierarchical orga-
ization principle towards more difficult terrains. As one further
ifference, DeepGait relies on a detailed three dimensional map
f the surroundings. In contrast, adaptivity in animals on a short
ime scale appears to be mostly driven by proprioceptive signals
hat allow for fast reaction times. Relying only on proprioceptive
nformation, in Azayev and Zimmerman (2020) a hierarchical
RL approach is used. Specific lower level control modules were
rained in different environmental settings, e.g., passing different
ypes of terrain. On a higher level, these control primitives were
witched by a recurrent policy level. Azayev and Zimmerman
2020) differentiate specific types of adaptation: On the one hand,
icro-adaptation on the lower-level should guarantee robust-
ess of behaviors. On the other hand, macro-adaptation deals
ith selection of appropriate behaviors or sequencing of these.
his distinction coincides largely with our notion of adaptation
cross temporal scales. There is one key difference as, in their
iew, macro-adaptation is tasked with defining and learning gait
atterns for different specific situations.
Concerning local and modular controllers, there has been some

ecent work. First, there is the very nice example by Huang,
ordatch, and Pathak (2020) in which one single policy is learned

or the control of every individual joint. This policy is trained
sing a form of a weight sharing approach as a general policy
ver all joints which—in their case—is not only trained on one
ingle robotic structure, but on quite different types of robotic
reatures. Therefore, the learned policy encapsulates quite di-
erse joint movements including simple targeted movements as
ell as cyclic motion. Crucially, the input to the joint controller

s local sensory information and information passed from other
oints. While the content of the messages passed between joints is
earned as well, the structure is given by the kinematic structure
f the robot. As information is accumulated in two passes—one
ollecting information at a root node of the kinematic structure
nd, in a following step, sending this information back to all
onnected joints—this message can be tuned to contain global as
ell as local information. While this leads to impressive results
f generalization of motion between different robot morpholo-
ies, learning took quite a long time which might be due to
he central collection of all information in the root. In a similar
irection, Wang, Liao, Ba, and Fidler (2018) exploit the structure
f the body which they interpret as a graph. Using an explicitly
efined graph structure, they explicitly learn which information
hould be shared across the graph. As a second group of meth-
ds, decomposition of the Reinforcement Learning problem has
ocussed on decomposition of the state (Laversanne-Finot, Péré, &
udeyer, 2018) or the reward function. In reward decomposition,
he total reward is composed of sub-rewards which are known to

acilitate faster learning (Schneider, Wong, Moore, & Riedmiller,
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1999). Early work focussed mainly on how to leverage such sub-
rewards into finding better policies (Sprague & Ballard, 2003).
Recent work focussed on finding a decomposition of rewards (Sei-
jen et al., 2017) or more recently, for example (Lin et al., 2019),
aiming at a decomposition that does not require prior knowledge.
In a subsequent publication (Lin et al., 2020), they further aimed
at disentangling the state space while uncovering a reward de-
composition. But these methods have mainly been applied to the
ATARI-type game-like or tabular scenarios. Third, there is work
which does not rely on gradient-based learning, but employs
local Hebbian learning rules. Najarro and Risi (2020) recently
presented their work on evolving learning parameters in OpenAI’s
quadruped walking task. They were able to efficiently evolve
a huge number of these learning parameters that parametrize
local learning of the typical control policy and that allow for fast
adaptation of the control policy. This allows for online adaptation
on the agent. As an important difference, they evolve parameters
for local Hebbian learning that show successful online adaptation
afterwards, but the scope of the control policies remains global.

For application on real robots, most DRL approaches use sim-
ulation environments for pre-training controllers which are af-
terwards transferred to the robot (e.g., Hwangbo et al., 2019).
This usually involves techniques for training on a wide range of
environments (for example, using domain randomization (Moz-
ifian, Higuera, Meger, & Dudek, 2019) or curriculum learning),
or using variation of parameters describing the dynamics of the
robot and its’ interaction with the environment (e.g., dynamics
randomization Tan et al., 2018 or, recently Peng et al., 2020
learned a low dimensional latent space of dynamic parameters
during training in simulation that allowed fast transfer to the real
robot which is called domain adaptation). There is only little work
on directly learning a policy on a walking robot. In one recent
example, Ha, Xu, Tan, Levine, and Tan (2020) introduced a safety
constraint into DRL that reduced falling over and which did not
require manual intervention for resetting of episodes, but instead
relied on switching between different available tasks. Overall,
application on robots is still quite challenging as DRL is usually
quite data hungry, and acquiring data on real robots is difficult
or potentially harmful for the robot (Chatzilygeroudis, Vassiliades,
Stulp, Calinon, & Mouret, 2020).

Summary

There is interest in locomotion as an example for motor con-
trol in order to understand mechanisms of adaptive behavior
in biology, and, from a machine learning perspective, in order
to analyze how learning transfers to challenging, unpredictable
real world tasks. Peng et al. (2020) contrast the different kind
of approaches pointing out that, on the one hand, handcrafted
controllers are difficult to scale. Learning can provide an al-
ready proven solution to extend skills towards much more agile
tasks. On the other hand, Peng et al. (2020) argue that learn-
ing of control requires guidance, a form of inductive biases or
priors (Chatzilygeroudis et al., 2020; Lake, Ullman, Tenenbaum,
& Gershman, 2017) in order to lead to robust behavior. While
hierarchical organization is already successful applied in learning-
based approaches, we aim to leverage decentralization—as a well-
established principle in control of locomotion—in a learning-
based approach towards more agile locomotion and adaptive
behavior. Learning of decentralized control structures promises to
allow for much faster learning due to smaller search spaces over
local information. Furthermore, in decentralized control behavior
emerges out of interaction of different control (sub-)units which
has shown advantageous when dealing with unpredictable tasks
or for transfer between tasks. We are therefore interested in the
question of how decentralization affects the learning process,
which level of decentralization provides the best synergy of ro-
bustness and flexibility, and, last, in how far decentralized DRL

enables a rapid adaptation to new terrain.
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. Methods

In this study, we wish to analyze how decentralization of
he control architecture affects reinforcement learning for the
mportant case of locomotion behavior. We consider the case
f a four-legged simulated robot. We will compare different ar-
hitectures that systematically vary the number of concurrent
ontrollers, decompose the reward structure differently, and vary
he scope of input information, analyzing how these factors af-
ect the learning process, the achieved final performance, and
he robustness of behavior in altered task settings. After a brief
verview of reinforcement learning and how it is applied to
ifferent decentralized control architectures, we describe the spe-
ific four-legged robot environment and explain the details of the
nderlying simulation and learning frameworks that are used in
ll of our experiments.

.1. Deep reinforcement learning control architectures

einforcement learning overview
Reinforcement Learning is characterized by an agent inter-

cting with an environment and directly learning from such in-
eractions. As the agent is producing actions, it is getting in
esponse, first, an updated state S of the environment as input
o the controller and, second, a reward signal that is used for
earning. The goal for the agent is to learn over time a policy
(S) for sequential decision making that maximizes the long-
erm return. Sequential decision making can be formalized as a
arkov Decision Process defined as a tuple of:

• observable states S – which are proprioceptive sensory in-
formation as well as some information on body orientation
and height and information on last actions (for details on
scope of sensory information, see below);

• possible actions A – which are movements of the joints for
our case;

• a reward signal R providing reward after choosing an ac-
tion from the current state and integrating costs (e.g. for
producing movements)—we will reward fast and efficient
locomotion;

• transition probabilities P that describe the probability dis-
tribution over states after following an action from the
current specific state, and

• a discount factor γ that describes how to decrease the
weights of future rewards.

During learning the agent has to explore the state space in
rder to uncover rewarding states and rewarding actions de-
ending on its current state. The agent therefore has to balance
xploiting already known information in order to reach known
ewarding states and explore unknown parts of the state space
nd consequences of decision that might provide additional or
igher rewards (for an introduction to Reinforcement Learning
ee Arulkumaran et al., 2017; Sutton & Barto, 2018).
In the case of large or continuous state spaces, the overall

tate space cannot be searched exhaustively, in particular when
ealing with high dimensional input and action spaces. Therefore,
unction approximation is used to learn approximative policies
ver the state space. In DRL, deep neural networks are used as
function approximator that maps a currently observed state to
ctions or action probabilities (Arulkumaran et al., 2017).

ecentralized control architectures
What is the impact of decentralization on learning of robust

ocomotion behavior? To study this question, we investigate a
pectrum of architectures, ranging from completely central to
ully decentralized architectures. Our strategy of investigation
706
Fig. 5. Overview control architectures used for the four-legged simulated robot.
As a first differentiation, we distinguish concurrency for which the spectrum
of different architectures is shown in (a). In the centralized case (left), a single
controller relying on all available information learns how to control all eight
joints. Training is driven by one combined reward (shown is in all cases a
simplified reward, not included are the external forces). Control can be split into
multiple concurrent instances, e.g. one for each side (shown in the middle) or
one for each leg (shown on the right, fully decentralized case). As a consequence,
reward information can be more granular, e.g., only using costs associated with
the joint movements of that particular leg. For a decentralized architecture, we
can further distinguish the scope of information used as input to the controller
(shown in b). In the fully decentralized case, the single leg controller only uses
information from that particular leg and some global information (left). This
scope can be broadened to include information from another leg as well (middle,
there are further variations for which additional leg is providing information, not
shown) or from both neighboring legs (right, called local information). Colors
correspond to colors used in result sections for different types of architectures.

will be to compare different types of controllers that vary along
three major feature characteristics (Fig. 5, and Table 1): First, with
respect to concurrency of control—splitting the action space (A)
of the whole agent into separate subspaces with their dedicated
controllers, e.g., one controller for each leg. Second, and closely
linked with the first dimension of decentralization, is the struc-
ture of the reward signal (R) used for training and how this might
be decomposed. In particular with respect to costs: Movement
costs are directly related to decentralized control units and can
be locally differentiated as well, taking into account costs only for
the joints controlled by that particular decentralized control unit.
As a second characteristic, we analyze the effect of decomposition
of the reward structure according to the decentralization and
structure of the controller. Third, we vary and consider the scope
of input information for each controller—splitting the state space
(S), e.g., using only local information for a decentralized con-
troller from the controlled leg. Importantly, this is only sensible
in the case of decentralized controller as we are considering
information across a spectrum from, as a minimal input scope,
only the controlled parts of the body up to including information
from other parts of the body, e.g., a neighboring leg. For details
on all eight different architectures, see Table 1.

On one end of this control architecture spectrum—serving as a
baseline—is the standard approach as found in DRL which we will
call a centralized, global architecture. For a centralized, global
rchitecture, there is a single controller that has access to all the
vailable information and for which training is driven by a global
eward signal.

On the other end of the spectrum is a fully decentralized
ontrol architecture, with one independent controller for each
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able 1
escription of the different control architectures: Overview of differentiation of action space, observational state space, and the reward function for the different
rchitectures (as used in the first experiments; for the last experiment, target velocity was added as an additional input state; for reward in the last experiment
ee Table 2 that compares different reward functions and parameters). The given decomposed reward function is related to the decentralization (only taking local
osts of the controlled part into account). For the decentralized case, the overall reward is the sum of the individual rewards of all controllers (therefore, we have
o scale the positive velocity dependent part to the number of controller, the local costs only appear once). In experiment 1.3, we compare using a decomposed
eward for decentralized approaches compared to relying on the global reward for all decentralized controller (as given in the row of the centralized control unit).
he different parts of the state space are detailed in the supplement, Table S2. Legs are abbreviated as: FL — front left leg, HL — hind left leg, HR — hind right leg,
R — front right leg. f⃗ext are the external impacting forces.
Controller Arch. Name Number Contr. Policy π (Action space) State space obsx State dim. Decomposed reward fct.

Centralized 1 a⃗ = π (obsall), 8-dim. global/all inf. 43 R = xvel − 0.5
a⃗2

− 0.05
f⃗ext2

Each side (A: FL,HL,
B: FR,HR)

2 a⃗ = conc
(πA(obsA), πB(obsB))
each π (obsx), 4-dim.

inf. from both
controlled legs

27 RA = 0.5xvel − 0.5 ∥πA(obsA)∥2

−0.05
f⃗ext_A2

Diagonal legs (A:
FL,HR, B: FR,HL)

2 27

Decentr., local inf.
incl. neighb.

4 a⃗ = conc (πFR(obsFR), πFL(obsFL),
πHL(obsHL), πHR(obsHR))

each πx(obsx), 2-dim.,
representing a single ctrl.

ctrl. leg + both n. 35 RFL = 0.25xvel

−0.5 ∥πFL(obsFL)∥2

−0.05
f⃗ext_FL2

Decentr., + single
neighboring leg

4 ctrl. leg + neighb. (ccw.) 27

Decentr., + single
diagonal leg

4 ctrl. leg + diag. 27

Decentr., single
towards front

4 Towards front, at back 27

Fully Decentralized 4 Only controlled leg 19
leg. In this case, each controller has access only to local infor-
mation, for example, from its particular leg and some specific
global information (height of the body, orientation, and velocities
of the body; for details on the state space for each controller,
see supplement, Table S2). The fully decentralized architecture
or the quadruped robot, therefore, consists of four concurrent
ontrollers each only relying on information of the controlled leg.
or this case, learning can be driven by a decomposed reward that
onsists of the overall positive reward from locomotion, but only
he local costs of the controlled leg.

We further systematically distinguish in-between cases
Fig. 5(a)): First, along the dimension of concurrency, there are
wo control architectures that consist of two concurrent con-
rollers, each controlling a different leg pair. In the first archi-
ecture, there is a controller for each side—one for the two left
legs (‘‘left’’ with respect to initial body orientation that is facing
in the rewarded x-direction) and one for the two legs on the right
side. In the other control architecture, each controller controls a
diagonal leg pair (action and state spaces are detailed in Table
S2). Again, for both these cases, reward can be decomposed into
a global velocity component (in x-direction, as in all other cases),
and the local costs of the controlled leg pair.

For the decentralized case, we distinguish overall five different
arrangements (Fig. 5(b) shows three of these, all are depicted in
Table 4, left column): All have in common that they consist of
four concurrently running controllers—one for each leg—and that
during training each controller is driven by a local reward signal
(Fig. 5(a), bottom row shows reward signals). The architectures
differ with respect to the scope of the state/input space. In the
fully decentralized case, as mentioned, only information from
the controlled leg is available. For the next three architectures,
information from one further leg is integrated and made avail-
able to the decentralized controller. First, each controller has
in addition access to information (joint angles, joint velocities,
torques, previous control signals) from one single neighboring
eg (considered counterclockwise when seen from above). Sec-
nd, each leg has access to information from the single diagonal
eg. The third variation is inspired from considerations from bi-
logy (Cruse, 1990): The front legs use as input information from
he respective hind legs, and the hind legs interchange informa-
ion (single to-front). Next, the last architecture integrates local
nformation from both neighboring legs (for definition of control
olicies see Table 1, for specification of action and state spaces
ee Table S2 and Fig. 5).
707
Deep reinforcement learning algorithm: Proximal policy optimization
The different control architectures are trained using Proximal

Policy Optimization. While early success of DRL relied on training
an action-value-function using Q-Learning (Mnih et al., 2015), for
continuous tasks often policy gradients methods are applied in
which the policy as such is described as a function of the state.
In policy gradient methods, an expectation of the gradient of
expected return with respect to the policy parameters is derived
from trajectory samples that were obtained while following the
current policy in the given environment. The policy can be im-
proved through gradient ascent by updating the policy towards
higher returns. Importantly, the predictiveness of the estimate
can only be guaranteed while staying close to the policy that
was followed during sampling interactions. Therefore, one wants
to enforce staying close to the current policy during the update
step (Schulman, Levine, Moritz, Jordan, & Abbeel, 2015). One
widely used policy gradient method is Proximal Policy Optimiza-
tion (PPO) (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017)
which ensures—during the update step—staying close to the pre-
vious policy by maximizing instead of the original a suitable
‘‘surrogate objective’’ that is derived from the policy function and
the reward. PPO is an efficient estimation of policy gradients on
collected batches of interactions and therefore widely used. As
many policy gradient methods, it is implementing an Actor–Critic
method which, on the one hand, directly represents the policy
as a neural network that stochastically selects actions depending
on the current state. On the other hand, a value function realizes
a critic providing a value estimate for states and helps reduce
gradient variance.

In this paper, PPO is used to train each control unit (for
hyperparameters see Table S3). For the centralized approach this
follows the standard approach of learning a single controller over
the whole state space. In contrast, in the decentralized case the
individual controller are learned independently and with respect
to the scope of the input space. This means, for example, that
for the fully decentralized control architecture of the four-legged
walker, there are four independent controllers that are indepen-
dently trained using four PPO instances and each relying only
on the local information from the controlled leg. Nonetheless,
experience from the simulation environment is jointly collected
for all learning processes and the decentralized controller act as
independent agents in the environment each controlling a part of
the simulated robot.
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omponents of the reward for different experiments and in comparison to more structured rewards as often used. f⃗ext are the external impacting forces, u⃗ the control
orques applied in the joints.

Ant-v3 Heess et al. (2017) Experiment 1–3 Experiment 4

Forward reward xvelocity xvelocity xvelocity
velt+1

velt ∥xvel−velt ∥+velt
−

1
velt

Control cost −0.5
u⃗2

−0.01
u⃗2

−0.5
u⃗2

−0.25
u⃗2

Healthy reward 1.0 0.05nz / /

Contact cost −5 ∗ 10−4
f⃗ext2

/ −5 ∗ 10−2
f⃗ext2

−25 ∗ 10−3
f⃗ext2
4.2. Experimental simulation environment: Four-legged walker

To analyze a broad variety of possible coordination schemes of
ecentralized controllers, we focussed on a four-legged simulated
alker that is derived from the popular OpenAI standard ‘Ant’
nvironment (simulated in Mujoco). The simulated robot has four
egs, each consisting of two revolute joints, overall leading to
ight controllable degrees of freedom. Joint ranges are limited
o ranges as required for locomotion. In general, the learning
haracteristics are well known, and it is considered today an
asy task as it deals with stable, static walking. This allows for
any training repetitions as needed for systematic comparisons
f differently structured controllers.
This task is widely used as a benchmark task. But, often the

ocus is only on the corresponding reward function as defined as
art of the environment which aims for fast locomotion. When
nspecting typical high performing controllers trained on flat
errain, these do not produce coordinated walking comparable
o the one found in animals (Liang et al., 2018). Instead, often
nly two opposite legs are used for a more jumping like form of
ocomotion while the other two legs are not moved and oriented
rthogonal to the direction of the locomotion in order to provide
tability from falling to either side. Such gaits are not comparable
ith coordination as found in animals. This discrepancy reveals
hat the simple standard Ant-v3 model fails to capture important
onstraints under which biological walking has to occur. One such
nrealistic feature is the extremely light weight of the simulated
obot as compared to the weight of a properly scaled real robot.
e therefore adapted the environment as we are interested in

he resulting behavior as such and its biological properties.
Simulated robot: The weight of the simulated robot is set to

8.787kg. This is one magnitude larger compared to the weight of
the original ‘Ant’ environment, but brings the mass into a realistic
range for a legged robot of that size. An increased weight has been
applied as well in a similarly derived setting called ‘roboschool’
which lead to more coordinated gaits (Klimov & Schulman, 2017),
in the sense that neighboring legs showed somewhat alternating
phases. Increasing the weight has shown to make this a much
more difficult learning task. Another approach that has shown
to lead to more coordinated walking has been to use curricu-
lum learning that groups a set of diverse tasks into ‘‘lessons’’ of
increasing difficulty. We will use this strategy as well in later
experiments.

State space: We restrict sensory inputs to ones that would
be accessible on a real robot (for a detailed list see S1). The
state space, therefore, includes information on joint positions,
joint velocities, and torque measurements for each individual
joint. As torque measurements, we access the ‘passive force’ for
each joint which basically integrates external forces acting on
the joint. This information represents a projection on the single
dimension of the revolute joint which should be correlated with
the external applied force. But while such egocentric informa-
tion should encapsulate similar information, it is assumed to be
harder to learn as it was found that Cartesian, three dimen-
sional global representation can be easier to learn (Reda, Tao,
& van de Panne, 2020). We further add two additional kinds
708
of information. First, the current clearing (distance body to the
ground), body orientation and velocities (in three dimensions
plus three rotational ones) which is required for calculation of
the reward function. Second, we in addition provide the applied
control signals from the preceding time step as this is assumed
central in theories of pattern oscillations, realized as forms of mu-
tual inhibition (Ijspeert, 2008). In contrast, the ant environment
usually is employing a much larger state space of 111 dimensions
(which includes height, orientation, and velocities of body, joint
angles and velocities, external forces acting on all parts) and
uses external force calculations as provided by the simulation
engine.

Reward structure: In locomotion tasks, one component of the
reward is given by displacement in a defined direction. Typi-
cally, it is simply aiming for higher velocities. Usually, further
cost terms are introduced. Our reward function consists of three
components (see Table 2): First, a velocity dependent reward
which rewards movement in one direction in global coordinates
(x-direction; legs are named with respect to this defined direc-
tion, i.e., front legs are initially pointing into that direction). In the
initial experiments, this positive reward is simply given as the ve-
locity in x-direction. For the last experiment, the reward structure
was adapted and locomotion aimed for a specific target velocity.
Simply training for maximum velocity has lead to not-so-well
coordinated walking behavior that, for example, includes more
jump like motions and is often not stable (Azayev & Zimmerman,
2020). Therefore, we as well rewarded reaching a specific target
velocity that corresponds to walking at different velocities (target
velocity was used as an additional input to the controller). Reach-
ing the target velocity was rewarded with a maximum reward of
1.0 per control step and linearly decreased for slower velocities (a
not moving robot would gain zero reward). As the overall possible
reward is much smaller compared to the other experiments, we
had to adjust the coefficients of the control and contact penalty
accordingly. They were set proportional to the change of the
overall return and afterwards account for a similar portion of the
return.

As a second component of the reward, a cost term penalizes
effort of the actuators as a control cost in order to favor more
energy efficient walking behavior. Third, another additional cost
term penalizes contact forces as well.

In general, the reward structure follows the one given in the
original ‘Ant’ environment. But, as one change, the ‘Ant’ environ-
ment contains an additional reward which is given for keeping
the current simulation run alive (healthy reward). This has shown
to be important in other environments, e.g., in a bipedal walker
task, in which stability is much more of a challenge often ending
simulation rollouts early on Heess et al. (2017). It is conditioned
on the main body being kept in a certain height range (be-
tween 0.2 and 1.0 units). But has shown to be inconsequential
for the four-legged robot case and was therefore left out. As a
second change, we used a higher influence of the contact costs
as otherwise—when using the original parameter—this would be
negligible.



M. Schilling, A. Melnik, F.W. Ohl et al. Neural Networks 144 (2021) 699–725

4

t
t
c

S

e
1

c
h
t
t
a

u
t
e
f
i
i
i
t
i

.3. Implementation details

Code used for training the four-legged robot and running
he simulation is provided together with exemplary trained con-
rollers, videos, and results in the open repository https://github.
om/malteschilling/ddrl.

imulation environment
Experiments were run in simulation using the Mujoco physics

ngine (Todorov, Erez, & Tassa, 2012). We used Mujoco in version
.50.1.68.1 The simulation engine was run at a step size of 10 ms

and the controller at a frequency of 20Hz (this equals a frame
skip of 5 which means that the controller send only every fifth
dynamic simulation step new control signals, in-between the old
signal is still active).

Ray and RLlib
As a framework for DRL we used Ray (Moritz et al., 2018)

and RLlib (Liang et al., 2018). Ray is a framework that allows
to efficiently distribute python tasks on clusters implementing
an actor model for concurrent processing. It offers an easy and
unified interface for running parallel tasks which are internally
modeled as a graph of dependent tasks that can be executed. RLlib
as part of Ray provides a scalable and efficient DRL framework
which as well is centered around these actor-based computations
that simplify setting up parallel computation and encapsulation of
information. For our case this is crucial, as we consider concur-
rent and parallel control. This can be easily realized in RLlib as
multiple (independent) actors—each representing one controller
or sub-controller—that can be trained in a single environment
and efficiently in parallel on a compute cluster. We use the
provided PPO implementation as a DRL algorithm which follows
code-level recommendations for PPO (Engstrom et al., 2020). For
hyperparameters see Table S3 in the supporting informations
which largely follows the recommendations from Andrychowicz
et al. (2020) and Reda et al. (2020)

Deep neural networks
As explained above, neural networks are used in DRL for func-

tion approximation. In PPO, there are two different networks as
part of the Actor–Critic approach (Fig. 6). Both networks receive
the same inputs. On the one hand, there is a value function
network that is used as a critic that provides a single value for
the current state. On the other hand, the policy network directly
parametrizes stochastic action selection through providing as an
output, for each dimension of the action space, the two param-
eters of a normal distribution (mean and standard deviation).
These two outputs are used to sample the next action for all
dimensions:

Approximate π through a neural network fθ :

fθ (obs) = µi, σi∀ controlled joints i
a⃗ ∼ π (obs) → ai ∼ N (µi, σi)

For both networks—policy and value function network—we
use the same structure for every controller. We use a simple
structure of two hidden layers of each 64 units with tanh activa-
tion functions. As in the decentralized case multiple controllers
are used, this might offer an advantage: When there are multiple
networks of the same structure, these contain overall more units

1 The current Mujoco version 2.0 introduced some changes that cause issues
oncerning the calculation of measured external forces in the robot limbs (see
ttps://github.com/openai/gym/issues/1541). While we provide a fix enforcing
he correct calculation of the external forces in version 2.0, we did not use
hese sensor readings in the end and introduced further changes that make this
more realistic and biological setting.
 i
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Fig. 6. A single controller (for control of a single leg) in the fully decentralized
architecture, realized using PPO: It consists of two networks, one policy network
(upper part) and a value function network (lower part). Both networks are
realized as neural networks consisting of two hidden layers (each 64 neurons).
Network setup differs for the different architectures (see Table S2). Shown is
one controller for the fully decentralized case in which input consists of global
information (body height, orientation, velocities) and local information only
from that particular leg (joint positions, velocities, and passive torques as well
as last control signal), overall this results in 19 input dimensions. While the
value function network always only produces a single value estimate, outputs
differ for the different architectures in the policy network. For the decentralized
case, there are multiple such controllers that only control corresponding joints,
e.g. four decentralized controller that each control a single leg consisting only of
two joints. In contrast, a centralized approach with a global input scope would
use information from all legs and one controller would be used to control all legs
and all eight joints (for differentiation of control architectures see Section 4.1).

and weights which increases the possible capacity of the net-
works used in the decentralized cases. Therefore, we investigated
in one experiment (see Section 5.3) the influence of the network
size. We found, first, that the chosen size is appropriate for
all different architectures, and, secondly, that the decentralized
approaches—in contrast to the centralized approach—are robust
to the specific setup of the neural network hyperparameters.

Inside RLlib, we used Tensorflow 2 for representation and
training of the neural networks. The networks were initialized us-
ing Xavier (Glorot uniform) initialization (Glorot & Bengio, 2010)
which we added to RLlib. Initialization aimed for action values
with zero mean and a low standard deviation which has shown
to improve learning speed (Andrychowicz et al., 2020; Rao, Al-
jalbout, Sauer, & Haddadin, 2020) in particular when using very
small values for the standard deviation in the output layer.2 Input
dimensions differed for the different types of architectures and
are described in Table S1.

5. Results

Our main goal is to understand how performance, learning,
and generalization depend on the specific control architecture,

2 In contrast to Andrychowicz et al. (2020), we found it quite advantageous to
se Xavier initialization instead of a simpler random scheme—as used in RLlib—
hat only takes into account the shape of the outgoing layer (they follow Rao
t al., 2020 who propose to simply use orthogonal initialization). One reason
or this different finding is that in Andrychowicz et al. (2020) dimensionality of
nput spaces were not varied. As a result, the simpler initialization and Xavier
nitialization operate basically in the same way. In contrast, in our experiments
nput space dimensionality varies considerably and Xavier initialization is taking
his into account which appeared as crucial in our test experiments. Xavier
nitialization was leading faster to stable learning results independently of the
nput space dimensionality.

https://github.com/malteschilling/ddrl
https://github.com/malteschilling/ddrl
https://github.com/malteschilling/ddrl
https://github.com/openai/gym/issues/1541
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verview of experiments and the research questions (experiment number equals
ubsection number inside this result section).
Exp. Research question

1.1 Can decentralized controller perform on the same high level
compared to standard centralized approaches?

1.2 How is learning speed affected by decentralization and locality of
information?

1.3 How is learning speed affected by factorization of the reward
signal?

2.1 How does the different controller generalize to novel, more
difficult and uneven terrain?

2.2 How do the different controller compare with respect to
efficiency?

3 How robust is training with respect to neural network
hyperparameter variation?

4.1 How do the different controller learn and perform when aiming
for coordinated walking?

4.2 How does the different controller generalize to variation of
terrain?

4.3 How does the different controller generalize to variation of target
velocity?

5 Which input information is used by a well-performing standard
centralized controller?

the available input dimensions, and the structure of the reward.
Therefore, we present multiple experiments and evaluations on
learning of locomotion using the different architectures and test-
ing these in different and increasingly more difficult contexts.
In the first experiment, we analyze how decentralization of the
control architecture, input scope of controller, and decomposition
of reward affect the reinforcement learning process as such on
flat terrain. Second, we evaluate performance and efficiency of
learned controller when generalizing to novel terrain. Third, we
compare variation of the neural network capacity and analyze
robustness for the different architectures. Fourth, we change the
reward and aim for a given target velocity while using a curricu-
lum of increasingly uneven terrain during training. Fifth, as one
further area of interest, in a post-hoc analysis we visualize the
importance of input channels in a trained controller for the case
that all possible inputs are available during training. The Table 3
provides an overview of our research questions and the different
experiments and evaluations.

5.1. Experiment 1 – DRL for variation of the controller architecture
for the four-legged robot

Overall goal of the first experiment: The first learning exper-
ment aims to answer the question how does different control
rchitectures—w.r.t. decentralization of the action space, the in-
ut scope of the observation space, and the decomposition of the
eward, see Table 1—affect performance and learning over time.
xperimental procedure: We studied learning to walk on flat

terrain for the simulated four-legged walker. The different archi-
tectures (see description in Table 1) were each trained 10 times
using random seeds for 20 million environment simulation steps.
Variation was done with respect to decentralization and input
scope. Last, we consider the effect of reward decomposition in
an additional experiment.

5.1.1. Research Question 1.1: Can decentralized controller perform
on the same high level compared to standard centralized approaches
after training?
Result — Performance of learned controller: All architectures
converged over time towards a return of around 3000 (see Sup-
porting information, Table S4) and all learning approaches were

able to learn walking behavior (see supplemental video S1) at a

710
Fig. 7. Learning curves for different controller architectures over learning time
(experiment 1): (a) Mean return per episode—calculated over 10 seeds—for all
different learning architectures is shown during learning, given in simulation
steps (interactions with the environment). Standard deviation between seeds is
given as shaded area. (b) Individual learning curves for centralized (blue) and
fully decentralized (orange) controller architecture over learning time, given in
simulation steps (interactions with the environment) and shown is the return
per episode. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

high velocity. While all approaches were able to learn walking
behavior, learning progressed quite differently for the different
architectures (see learning curves in Fig. 7(a)). The centralized,
global approach shows worse learning characteristics. First, re-
turn is increasing much slower compared to all the other archi-
tectures. Second, variance becomes very large for a considerable
time of training. Considering slower learning, we allowed the
centralized approach to learn for a longer time, but it converged
to a similar return value when trained for overall 40 million time
steps (see supporting information, Fig. S1).

5.1.2. Research Question 1.2: How is learning speed affected by
decentralization and locality of information?

From our first observation that learning progresses differently
for the different architectures, we want to better understand
which factors influences this learning behavior. Therefore, in a
next step, we take a more detailed look on the learning phase
from experiment 1.1.
Result — Comparing learning performance: The centralized
approach shows a remarkably different learning characteristic
(Fig. 7). In particular, there appears much more variance
during learning for the individual trained centralized, global con-
troller. Therefore, we visualized these 10 trained seeds individ-
ually (Fig. 7(b)). For comparison, only the fully decentralized
approach is shown (in orange), the other architectures behave
more similarly to this approach. Learning of all 10 fully de-
centralized controllers follows a common trajectory and there
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s—for Deep Reinforcement Learning surprisingly—little variation.
n contrast, for the centralized approach there are basically two
ifferent extremes of how learning progresses: On the one hand,
earning continuously improves which is comparable to the other
earning architectures. But, importantly, even in these best cases,
earning still progresses much slower compared to learning in
he other architectures (e.g. a mean return of 1000 over all 10
eeds is reached in the fully decentralized case already after
.2 million simulation steps, while the best centralized approach
equires 3.5 million steps). On the other hand, for many cases
he reward is stuck for a long time around zero. This can be
xplained by the reward structure as we see different phases
uring learning: Initially, there is a strong negative return that
s due to the costs associated with the actions. The controller
earns to avoid unnecessary and costly movements (captured in
he reward structure as the control cost, the summed squared
ction signals). During this phase, not moving at all appears as
good solution as it does not incur any costs. In a next phase,

earning has to find movements that produce a large positive
eward which at the same time overcomes the resulting costs
f these actions. In a centralized approach, this problem is quite
ard as all costs are lumped together, and it is difficult to dis-
inguish which of the costs are necessary for the positive reward
rom locomotion and which point out unnecessary movements.
his is a difficult credit-assignment-problem in the case of the
entralized controller with global information and a single global
eward. As a consequence, some centralized approaches struggle
or a long time until (by chance) they find actions that produce
positive reward. Afterwards, these start to improve steadily as
ell. In contrast, for the decentralized control approaches, we
sed a decomposed reward in experiment 1.1 that can be split as
ell. The reward consists of local cost terms which means these
nly affect the reward of the controlled leg (see Fig. 5(a), bottom
ow shows the rewards).

To further access the learning performance, Andrychowicz
t al. (2020) proposed a measurement that integrates returns dur-
ng the learning over time. The learning performance is evaluated
s the average score over time during the learning phase. It is
valuated as the mean of the episode return over learning epochs
uring that particular run—which is proportional to the area
nder the learning curve (Fig. 7). Fast learning approaches will
how higher scores compared to approaches that take more time
o reach a certain level (Andrychowicz et al., 2020). We apply this
easure to further highlight the difference in learning over time

see Fig. 8(a)). In particular, we are interested in comparing the
earning performance at the end of training: Fig. 8(b) shows the
earning performance and variation at the end of training for all
he architectures (detailed values see in Table S5).

We analyzed the learning performance of the unpaired sam-
les from the different architectures using the non-parametric
ruskal–Wallis test (Kruskal & Wallis, 1952) (as the data appears
ot normally distributed) and for post-hoc analysis using the
unn (Dunn & Dunn, 1961) post-hoc test (applying Bonferroni
orrection) following Raff (2019). The Kruskal–Wallis test showed
hat control architecture had a significant strong effect on how
ell the controller learned (H statistic = 42.421, 8 groups,
ach 10 values, p < .001, ϵ2

= 0.423, η2
= 0.464 which

indicates the portion of variance in the dependent variable that
is explained by the independent variable). The post-hoc test us-
ing Dunn’s test with Bonferroni correction showed significant
differences between the centralized architecture compared to
other architectures. The centralized architecture showed a highly
significant (p < 0.01) worse learning performance compared to
the fully decentralized, local (sensory input from two neighbor-
ing legs), single neighbor, biological inspired (information from

single neighbor, directed to the front), and the sidewise pair

711
Fig. 8. Learning performance over learning time, evaluated as the average score
over time during the learning phase. (a) shows learning performance over
training time (y-axis). (b) Learning performance accumulated during learning at
the end of training for different architectures. For each architecture, 10 individual
training runs were performed. Shown is the mean learning performance over 20
million simulation steps. Learning performance, as proposed by Andrychowicz
et al. (2020), differs from mean return during learning (as shown as learning
curves in Fig. 7). The learning curves show the mean return at a specific point in
time. Learning performance was especially introduced as a measure for learning
up to a specific point in time. It is meant as a summary of all learning up to
that point in time and is integrating the mean return over time which leads to a
smoother curve. Learning performance is evaluated as the mean of the episode
return over learning epochs during that particular run which is proportional to
the area under the learning curves (Fig. 7).

of controller architecture. Furthermore, there was a significant
difference between the centralized architecture and the single
neighbor architecture which only used information from the diag-
onal leg (p < 0.05). Last, the pairs of controllers for diagonal legs
showed a highly significant worse learning performance com-
pared to the sidewise pair of controller architecture (for details
see supporting information, Table S5, and Fig. 8).

Overall, these results confirmed our initial observations: Learn-
ing of a centralized control architecture performs significantly
worse compared to the decentralized (four leg) architectures
that use local cost structures and only rely on local information.
The type of architecture showed a strong effect on learning
performance.

5.1.3. Research Question 1.3: How is learning speed affected by the
factorization of the reward signal and using local costs as part of the
reward?

Considering the difference in learning, we argued that the
decomposition of the reward structure is guiding exploration in
the decentralized cases, leading to faster learning without getting
stuck in local minima.
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Fig. 9. Learning curves for different controller architectures over learning time
experiment 1.3) when relying on a global reward: (a) Mean return per episode—
alculated over 10 seeds—for all different learning architectures is shown during
earning, given in simulation steps (interactions with the environment). Standard
eviation between seeds is given as shaded area. (b) Comparison of mean return
er episode during learning for decentralized architectures using either the
ecomposed reward (as in experiment 1.3, shown as a solid line) or when using
single global reward for all controllers (dotted line).

xperimental procedure for global reward experiment: We re-
eated our training under the same conditions as above (training
n flat terrain, different architectures w.r.t. decentralization and
ocality of input information), but changed the reward signal
nd used for all different architectures the same global reward
ignal. In case of the decentralized cases, this means that the
ositive reward and all costs were, first, globally aggregated and
ummed up. In a second step, this reward was simply distributed
o the individual decentralized controllers without any local cost
r reward information (reward was simply divided by the number
f controllers in order to keep the overall reward comparable; this
caling had no effect on the PPO training Engstrom et al., 2020
hich we ruled out through an additional experiment, described

n supplement S-III).
esult — Influence of local cost structure: The results for 10
eeds for each architecture with a global reward are shown in
ig. 9(a). As a first observation, when using the same global
eward for all different architectures, we still can observe that
ecentralization leads to faster learning. But the results vary con-
iderably for the differing architectures. First, we observe more
ariance (shown as shaded area) in all cases. Still, the fully-
ecentralized case learns very fast and shows limited variation.
hen increasing the dimensionality of the state space (adding

nformation of an additional leg, as is the case for the single
iagonal and single neighbor architecture), learning is a little
lower. The same holds true for the two architectures that consist
f a pair of controllers which also depend on information of two
712
legs and which learns at a comparable speed. All these approaches
show only mild variation (shown as standard deviation in shaded
area). But, this changes when dimensionality of the state space is
further enlarged towards information from both neighboring legs.
Variation becomes much larger, as in individual cases learning
gets stuck in local minima (simulated robot not moving) for some
time. As a result, the learning curve of the local controller is much
closer to the centralized approach that uses all information as
input and, in the end, is even performing below the centralized
control architecture in the mean. It appears that the lower dimen-
sionality of the state space is helping faster learning as it reduces
the search space for exploration. The only exemption is the single
to-front controller that is based on the state space of two legs,
but performs worse than all the other approaches of the same
dimensionality and is in the range of the centralized case.

Fig. 9(b) compares results for four selected architectures: On
the one hand, learning curves are shown for using decomposed
reward (as in Section 5.1) as solid lines. On the other hand, learn-
ing curves are provided as dotted line when relying on the same
global reward signal. The decomposed reward helped in all cases
to learn considerably faster. Furthermore, in the decentralized
cases the decomposed reward function resulted in higher returns
at the end of learning and better performing controllers when
comparing these two conditions.
Summary — Influence of decomposed reward: The compari-
son of training controller with a decomposed reward in con-
trast to a global reward supports our argument that local costs
considerably help learning.

Summary experiment 1:
The first learning experiment demonstrated that only relying

on local information did not negatively impact the performance
of trained decentralized controller on flat terrain (the terrain the
controller was trained on). Secondly, we found that decentral-
ized learning was significantly faster compared to the standard
centralized case (which required three to eight times the number
of simulation steps for reaching a similar level). Third, local cost
structures for the decentralized control architectures showed to
help guide the learning process and, in particular, the exploration
process of DRL.

5.2. Experiment 2: Evaluation of trained controller — Generalization
and efficiency

5.2.1. Research Question 2.1: How does the different controller gen-
eralize to novel, more difficult and uneven terrain? I.e. what is the
influence of decentralization and locality of information on behavior
generalization performance?
Goal: In a next step, we evaluated how the different trained
control architectures perform when tested on uneven terrain
(Fig. 1(a)). Uneven terrain poses a novel problem for the trained
controller. Therefore, we used this to test for generalization and
robustness.
Approach: Uneven terrain was generated using the bumpy ter-
rain generator from the DeepMind control suite (Tassa et al.,
2018) which is realized inside the simulation as a height field.
The terrain was randomly generated and consisted of overlaid
sinusoidal shapes which are parametrized by the spatial scale
(we used the pre-defined value) and a smoothness factor (rang-
ing from 1.0 for a smooth, flat plane towards 0.0 which would
generate a maximal bumpy terrain). We systematically varied the
smoothness of the surface from a smooth surface (1.0 which is
the same as the setting during training for flat terrain) towards
more bumpy surfaces (smoothness factor of 0.9, 0.8, 0.7, 0.6)
until the controller were struggling to produce locomotion any
further. For each controller architecture, each of the 10 different
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Fig. 10. Evaluation on different types of terrain: For each architecture, all
trained controller are evaluated for 100 runs on more and more uneven terrain
(smoothness 1.0 is flat terrain and 0. would be very bumpy terrain). In (a) mean
return for four selected architectures is shown and how performance decreases
for more difficult terrain. For comparison, for the most difficult terrain the best
found expert policy (i.e. trained on the bumpy terrain) is shown as a dotted,
green circle. (b) and (c) compare mean returns for two specific selected types of
terrain (smoothness = 0.6 and 0.8 respectively) for the different architectures.
The fully decentralized architecture performs significantly worse compared to
the local, decentralized architecture.

trained seeds was tested for 100 simulation runs of 1000 control
steps (equaling 50 s). Mean results for the different controller
architectures are shown in Fig. 10.
Result – Generalization capabilities: As a first observation, we
see that mean return per episode is going considerably down
when facing more difficult terrain as is to be expected. Impor-
tantly, this is not alone due to the difficulty of the task, as
expert policies that were trained on uneven terrain showed better
performance (see Supplement, Fig. S3; best performing architec-
ture when trained on uneven terrain was the local architecture
with a mean return of 924.39 when evaluated on a height field
of smoothness 0.6; worst performance was found for the fully
decentralized architecture with a mean return of 714.92).

Secondly, when considering the different control architectures,
we further observe that they show different generalization ca-
pabilities. This, in particular, differentiates the different types
713
of decentralized architectures. It appears that an important fac-
tor is the scope of information used by the control architec-
ture: The global, centralized architecture is gaining compared
to some of the other approaches, in particular compared to the
fully decentralized approach. Furthermore, in particular the local
approach—a decentralized approach that nonetheless is integrat-
ing information from two neighboring legs—shows the best per-
formance on more difficult terrain. It performs highly significant
better compared to the fully decentralized approach for an inter-
mediate uneven terrain, and significantly better for even more
uneven (bumpy) terrain (Fig. 10(b) and (c)) in which the fully
decentralized approach is not able to produce any positive mean
return anymore. It appears that for more challenging terrain more
sensory information becomes advantageous and important for
behavior. This is further supported as the decentralized approach
that integrates information from one neighboring leg significantly
outperforms the fully decentralized approach for intermediate
difficult (uneven) terrain. Further, note how narrow these two
distributions (of the decentralized local and single neighbor archi-
tecture) are. While some amount of information appears helpful,
for the centralized approach we observe that the distribution is
much wider (10(b) and (c)). It appears that in the case of the
centralized approach some of the architectures are very bad at
generalization.
Summary: The scope of input information (the observation space)
of decentralized controller showed to be important for gener-
alization performance which we evaluated as robust behavior
on uneven terrain. Information from neighboring leg(s) appears
as crucial information for coordination in uneven terrain. But
already local information from only two neighbors was sufficient
to produce well performing controller. It appears therefore as
unnecessary to include all available information from all legs as
these appear as redundant.

5.2.2. Research Question 2.2: How do the different controller com-
pare with respect to efficiency and velocity?
Goal: We want to compare the different trained controller with
respect to individual behavioral measurements instead of using
the return signal that accumulates different contributions. How
good is the learned behavior, measured as velocity? And how
energy efficient are the different walking behaviors?
Approach: DRL is optimizing towards the given reward function
which in our case integrates different components of positive
reward (as velocity in x-direction) and control as well as contact
costs. We used the evaluation runs (Section 5.2) to disentangle
the different contributions and compare the performance with re-
spect to different characteristics (see Table 4). As described in the
previous section, results were collected on 100 evaluation runs
of each 1000 control steps for each of the ten different seeds for
each of the eight different control architectures. When test runs
terminated early, due to the robot flipping over, we accounted for
that in the calculation of velocity. Evaluation was run on different
types of terrain. First, we are interested in forward locomotion
and measure this as the resulting velocity. Secondly, we want to
measure the efficiency of the resulting gaits. This can be assessed
using the Cost of Transport (CoT) which is defined as the ratio of
the average power consumption with respect to the product of
velocity and weight (Gabrielli, 1950; Ijspeert, 2014):

CoT =
P

mgv

The power consumption in simulation is calculated for each
joint as the torque acting along the joint movement, i.e. the
product of torque multiplied by the velocity of that joint. Calcu-
lation of individual cost of transports for each run and afterwards
averaging would have the drawback that runs with a low velocity
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Table 4
Evaluation of different control architectures. Each architecture was trained 10 times and each of these seeds was
evaluated for 100 episodes on multiple different terrains (flat terrain; uneven terrain, smoothness 0.8; bumpy terrain,
smoothness 0.6). Given is the mean return, mean velocity, and cost of transport over all episodes per architecture
for a specific terrain type. Shown are the different control architectures (figures highlight decentralization and
information available in each controller — white lines signify one controlled entity, e.g. in the decentralized case a
single white leg means that each leg has its own controller; gray illustrates the information that are available to
that single shown controller, e.g. for local sensory information from a neighboring leg, a leg controller has access
to information from itself and the in gray shown legs; arrows indicate how information is shared between other
legs).
close to zero would have very high CoT that would dominate
the average. Such low velocities occur with increasing difficulty
of terrain more often, as the robot got stuck from time to time
and was not able to move any further forward. These runs would
be highly overvalued in the efficiency calculation and the CoT
in these cases was mostly dependent how early the simulated
robot encountered a bump in the terrain, it could not climb.
Therefore, we calculated mean cost of transport as the mean of
power consumption over all runs divided by the mean velocity of
the robot over all runs for that particular architecture.
Result – Efficiency of learned locomotion: When looking at
he results for the different architectures, we see that the archi-
ectures all reached a similar mean velocity on flat terrain. The
astest velocity (by a small margin) was reached by the split con-
roller which consists of two controllers, one for each side (left,
ight). The centralized and local architecture (four controllers, in-
egrating information from both neighboring legs) follow with re-
pect to velocity. The fully decentralized approach was the slow-
st. With respect to energy efficiency (Arena, Patanè, & Taffara,
021), the decentralized architectures actually performed much
etter and were considerably more energy efficient—measured as
ost of transport—when compared to the centralized approach.
detailed analysis of the resulting behavior and differences be-

ween the controller from a behavioral perspective is beyond the
cope of this article. We analyzed emergent gaits and produced
ootfall patterns for the different architectures (see supplement
-VII), but these provide more a qualitative view onto the emerg-
ng behavior and did not show considerable differences.

When turning towards generalization to uneven terrain, we,
irst, observe that velocities went down and cost of transport
ncreased. This was true in particular for the fully decentralized
pproach which was walking at a much slower velocity compared
o the centralized or local architecture (around half the velocity).
n general, energy efficiency should be expected to get worse for
neven terrain as the robot has to climb up and down through the
mall hills in the environment. All approaches appear to struggle
ith this task. With respect to the required energy, we observed
714
that the local controller performed relatively well: It still pro-
duced a reasonable velocity and the cost of transport was the
lowest (for the intermediate uneven terrain, the local controller’s
cost of transport is even smaller compared to the centralized
approach on flat terrain). Other decentralized approaches start to
produce considerably higher costs of transport.
Summary: Decentralized controller and centralized controller
were all able to produce fast walking on flat terrain (on which
they were trained) which is in agreement with the results of
experiment one. But there was a considerable difference in ef-
ficiency. Decentralized control architectures appear to be more
energy efficient (producing lower cost of transport). When turn-
ing towards uneven terrain (not used during training) including
information from neighboring legs as input to the controller
showed important, but again it was sufficient to use information
from two neighboring legs. As a result, a decentralized local
controller that integrates information from two neighboring legs
showed to generalize relatively well to uneven terrain and was
the most energy efficient on the more difficult terrains.

5.3. Experiment 3 – Variation of neural network model hyperparam-
eters

Research Question 3: How robust is training with respect to
hyperparameter variation? In particular, considering the selection
of hyperparameters of the neural networks and the possibility of
overfitting?
Goal: The different control architectures differ in the number
of concurrent controllers. In the third experiment, we want to
test how changing the overall capacity of the whole architecture
influences performance. On the one hand, we want to exclude
that decentralized controller gain an advantage due to a larger
capacity as they simply consisted of multiple control modules
that were setup using the same simple neural network model.
On the other hand, varying neural network size allows us to
analyze how robust the different architectures are with respect
to selection of hyperparameters.
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Fig. 11. Comparison of locomotion performance for different sizes of neural
etworks used in the architectures. Shown is mean performance (y-axis) over
en seeds for each neural network configuration at the end of training (after 20
illion simulation steps). Horizontal axis represents size of networks, i.e. overall
umber of neurons (shown in a) in all networks of that particular architecture
each controller consists of a policy and a value function network with each two
idden layers; in the decentralized case there are four (or two) such controllers
n an architecture, leading to more neurons). In (b) the same data is plotted,
ut overall number of parameters of controller is used for size comparison.

xperimental procedure: We varied the size of the used neural
etwork models for the different architectures and compared the
erformance for the trained controller with respect to the overall
epresentational capacity of that particular architecture. In order
o compare this capacity, we use both, number of neurons and
umber of weights.
Each controller is represented as a neural network that—using

PO as an actor–critic approach, see Section 4.1—consists of a
olicy network and a network for approximating the value func-
ion (details on neural networks, see 4.3). Both networks share
he input space, but the action network provides for each action
imension two outputs (as this produces a stochastic policy, one
utput represents the mean and the other the standard deviation
or that particular degree of freedom), and the value function
etwork provides a single value estimate. Both networks consist
f two hidden layers. In all the previous experiments, we used
4 neurons for each hidden layer. In comparing performance
ased on the capacity of the model, we varied systematically
he size of the hidden layer (detailed results and network sizes
re given in the supplement, Table S6). Sizes for the different
rchitectures were chosen in a way to use comparable overall
umber of neurons and weights. We selected smaller and larger
izes. For each size, 10 seeds were trained on flat terrain, and the
ean performance at the end of training was used to compare

he performance.
esult — Influence of neural network size: The results for five
rchitectures are shown in Fig. 11. First, for the baseline approach
the centralized approach), we observe a known and expected
roblem in overfitting, as the performance drops considerably
or larger architectures. Further, we can see that the initially
hosen size of 64 neurons per hidden layer (third datapoint
715
from left in all graphs) appears as a reasonable selection. This
is in agreement with the literature on these types of locomotion
problems (Andrychowicz et al., 2020). In contrast, for the decen-
tralized approaches there is nearly no drop off in performance for
any size when using the decomposed reward function for guiding
learning. As one further variation, we considered for the fully
decentralized architecture again learning towards a global reward
(orange dotted line in Fig. 11) as done in experiment one. Using
the global reward had a negative impact on overall performance,
but only for larger neural networks. Importantly, there is only
a slight drop of performance when compared to the centralized
architecture which was also trained using a global reward, but
basically produced no positive return at all for larger network
sizes and showed severe overfitting. This is an agreement with
our assumption that a decomposed reward structure mostly helps
facilitate learning and leads to faster learning.
Summary: Considering the neural network size as one influen-
tial parameter that differs between the different architectures,
we found that a specific selection of network size was only
important for the standard centralized approach. The decentral-
ized approaches showed robust to variations of neural network
size. Furthermore, for other hyperparameters we selected val-
ues and tuned values explicitly on the centralized approach and
simply applied these on the decentralized approaches as well
which did not appeared negatively impacted. The decentralized
architectures showed quite robust to hyperparameter selection.

5.4. Experiment 4 — Learning to walk at a given target speed in
uneven terrain

Overall goal of experiment 4: The goal of this task is to turn
towards a more realistic scenario which brings us closer to re-
alization on a robot. This will integrate what we have learned in
the previous experiments. We aim for training an agent towards
a stable walking speed in increasingly more and more difficult
terrain. Our hypothesis is that training in more diverse terrains
leads to more robust controller under varying conditions.
Experimental procedure: We trained four architectures that
were selected as they performed well in the previous experiments
and cover the whole range of decentralization and information
scope. The setting was changed for these training runs. First, the
agent was explicitly trained in a curriculum of uneven terrain that
got over time more and more difficult. The maximum difficulty—
due to the terrain—was increased during the first ten million
simulation steps linearly (smoothness ranges from initially 1.0,
equaling flat terrain, to 0.8 which corresponds to uneven ter-
rain). Height fields were randomly generated for every simulation
episode with a smoothness value randomly chosen from the
interval of minimal smoothness (maximum difficulty) to flat
terrain. This value was used to randomly generate a terrain. As
a consequence, after the first half of training the controller were
still facing easy environments in flat terrain and quite challenging
terrains.

Secondly, we were not aiming for a maximum velocity as
widely used as a benchmark. For the long term goal of application
on a real system, we would not necessarily be interested to run
as fast as possible, but would aim more for well coordinated
behavior which, for example, is not too taxing for the servo
motors or joints (see Azayev & Zimmerman, 2020 and discussion
in Section 4.2). Therefore, we aim for specific target velocities
(reward see Table 2) which is nowadays applied more and more
in locomotion tasks. Reaching that target velocity was rewarded.
We, furthermore, chose the decomposed reward structure for the
decentralized architectures as the local reward structure had a
positive impact on training and performance (experiment 1.3,
Section 5.1.3). Two different target velocities were used randomly
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Fig. 12. Learning curves for different controller architectures over learning time
n experiment 3, trained to reach two target velocities on increasingly more
neven terrain: (a) Mean return per episode—calculated over 10 seeds—for all
ifferent learning architectures is shown during learning, given in simulation
teps (interactions with the environment). Standard deviation between seeds
s given as shaded area. (b) Individual learning curves over learning time for
entralized (blue) and decentralized (green) controller architecture with local
nformation from both neighboring legs, given in simulation steps (interactions
ith the environment) and shown is the return per episode. (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

uring training that would correspond to slow and fast walking in
neven terrain (target velocity of 2.0 m s−1 or 1.0 m s−1). These

were randomly selected for every simulation run. Target velocity
was used as an additional input to the control network(s), and we
trained four selected architectures (for overview of all controllers,
see Table 1). We again used a centralized approach as a baseline
which is compared to, first, a fully decentralized approach of
four controllers with only information from the controlled leg.
Secondly, a decentralized controller with information from the
two neighboring legs. Last, the architecture consisting of two
controllers, one for each side (left, right).

5.4.1. Research Question 4.1: Can decentralized controller learn co-
ordinated walking at a given target speed on the same level as a
centralized approach, and do we observe a gain in learning speed?
Result — Learning of a target velocity in uneven terrain: All
controller were able to learn locomotion at a given target velocity
during 20 million simulation interaction steps (Fig. 12, and see
supplemental video S2). Learning progressed differently for the
different control architectures, as observed in experiment 1 (Sec-
tion 5.1). For the centralized approach, learning developed in two
phases. Initially, it took the centralized architecture quite a long
time to reduce the high costs in the first part of learning (for mean
values in Fig. 12(a) up to around three million steps). As a result,
all actions were inhibited. Only afterwards, in a second phase,
learning of movements towards gaining rewards is observable.
All decentralized control architectures show smooth and much
faster learning without getting stuck in the local minima around
zero. Considering individual learning runs (Fig. 12 b) even the best
centralized learning seed required three to four time of learning
until reaching a similar plateau of learning compared to the worst
716
local decentralized approach (importantly, all these approaches
are quite close together).

Analysis of emergent gaits and produced footfall patterns is
shown in the supplement, section S-VII. The qualitative view
of example footfall patterns indicates anti-phase relationships
between neighboring legs which was in particular pronounced for
hind legs. Even in the case of the decentralized architectures in
which no explicit communication exists between those hind legs.
Summary: Learning differed between centralized and decentral-
ized architectures. Decentralized architectures quickly learned to
walk at different target velocities and in uneven terrain. The
centralized architecture learned much slower and often got stuck
for a long time during which the controller only avoided incurring
any costs and did not move.

5.4.2. Research Question 4.2: How does the different controller gen-
eralize to variation of terrain? I.e. what is the influence of decen-
tralization and locality of information on behavior generalization
performance?
Goal: Again, we want to compare the capabilities of the different
architectures (see Section 5.2). On the one hand, with respect
to our behavioral measurements, on the other hand, concerning
generalization to more challenging, bumpy terrain.
Approach: We evaluated the different trained control architec-
tures on terrain of increasing difficulty. We systematically varied
the smoothness of the surface from a smooth surface (1.0 which
equals flat terrain) towards more bumpy surfaces (smoothness
factor of 0.9, 0.8, 0.7, 0.6). On the one hand, we evaluated control
architectures on uneven terrain which they faced already during
learning (smoothness in range of 1.0 to 0.8). On the other hand,
we tested for generalization on more difficult terrain (smooth-
ness of 0.7 and 0.6). In all cases, target velocity was set to the
two velocities used during training. For each controller architec-
ture, each of the 10 different trained seeds was tested for 100
simulation runs of 1000 control steps each (equaling 50 s).
Result — Performance on uneven terrain: Mean results for
the different controller architectures at high velocity are shown
in Fig. 13 (for slow walking, see supplemental, Fig. S4). As the
costs are going up on more uneven terrain, we, first, observe an
expected drop in overall return with increased difficulty. Further-
more, the centralized approach performs significantly worse on
all terrains for fast walking.

Secondly, again, the different control architectures show dif-
ferent generalization capabilities. While all architectures show a
considerable drop for novel terrain, it appears that integrating
more information is helpful for more difficult terrains. The fully
decentralized approach and the two-side controller show a much
larger drop in performance compared to the decentralized local
approach. All these decentralized approaches started on a simi-
lar performance level on known terrain as used during training
(Fig. 13(a)). On the most difficult novel terrain (smoothness 0.6),
we found that the decentralized local approach performed much
better compared to the other approaches (Fig. 13(b)). We used a
Kruskal–Wallis test that showed a significant, very strong effect
on how well the controller performed on novel terrain when
compared for architecture (H statistic = 17.327, 4 groups, each
10 values, p < .001, ϵ2

= 0.444, η2
= 0.398 which indicates the

portion of variance in the dependent variable that is explained
by the independent variable). The post-hoc test using Dunn’s
test with Bonferroni correction showed significant differences:
The decentralized local architecture showed a highly significant
(p < 0.01) difference in performance on novel, difficult bumpy
terrain compared to the fully decentralized and the centralized
architecture.

It is important to note that the return values are not compa-
rable to the return values from previous experiments. The return
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Fig. 13. Evaluation on different types of terrain: For each architecture, all
trained controller are evaluated for 100 runs on more and more uneven terrain
(smoothness 1.0 is flat terrain and 0. would be very bumpy terrain). In (a)
mean return for the four architectures is shown and how performance decreases
for more difficult terrain. Target velocity is set to 2.0 (fast walking). Panel (b)
compares mean returns for bumpy terrain (smoothness = 0.6) for the different
rchitectures. Local architecture performs highly significant better compared to
ully decentralized and centralized architecture.

s composed of a reward for reaching target velocity (linear scale,
ith maximum reward of 1.0 when moving at target velocity;
herefore, maximum return over 1000 control steps would be
000; see Table 2). On the other hand, there are as well costs fac-
ored in: A control cost and a contact cost that initially dominate
he overall return and combine early-on to costs of around 800.
osts got considerably reduced during learning, even for more
ifficult terrain (overall costs for the centralized approach were at
round 210 and around 180 for the decentralized approach that
sed local information at the end of training).
esult – Efficiency of learned locomotion: As we are interested
n efficiency of resulting locomotion, we again used 100 evalua-
ion runs of each 1000 control steps for each of the ten different
eeds for each of the four different control architectures. Eval-
ation was run on different types of terrain. Efficiency is again
easured as cost of transport (see Section 5.2.2) for the resulting
alking behavior. These CoT values are better comparable as
hey are with respect to the same target velocity which has an
nfluence of possible efficiency (see Table 5).

With respect to the cost of transport, we again compared
he results using Kruskal–Wallis test (Kruskal & Wallis, 1952) in
ll different conditions (variation of velocity and unevenness of
errain) and found a very strong effect of architecture (H statistic

21.92 for all conditions, 4 groups, each 10 values, p < .001,
2 > 0.56, η2 > 0.52). Using Dunn’s test with Bonferroni
orrection as a post-hoc test showed that the decentralized local
717
able 5
valuation of different control architectures. Each architecture was trained ten
imes (on a curriculum of terrains, reward aims for reaching a specified velocity)
nd each of these seeds was evaluated for 100 episodes on multiple different
errains (flat terrain; uneven terrain, smoothness 0.8; bumpy terrain, smoothness
.6). Given is the mean return and cost of transport over all episodes per
rchitecture for a specific terrain type and the selected target velocity.
Configuration Low velocity (1.0) High velocity (2.0)

Return CoT Return CoT

Flat terrain (used during training)
Centralized 547.0 9.911 372.4 7.438
Fully decentralized 588.0 8.072 577.4 5.665
Decentr., local inf. 585.7 7.277 590.8 5.442
Split c. (sides) 621.5 7.958 619.0 5.699

Uneven terrain (smoothness 0.8; used during training)
Centralized 499.6 10.176 327.1 7.871
Fully decentralized 552.9 8.297 515.3 6.014
Decentr., local inf. 560.3 7.395 547.6 5.689
Split c. (sides) 590.5 8.144 554.7 6.076

Bumpy terrain (smoothness 0.6; unseen, test for generalization)
Centralized 307.5 11.828 126.1 9.777
Fully decentralized 268.6 9.939 147.5 7.971
Decentr., local inf. 342.8 8.271 274.0 6.686
Split c. (sides) 351.4 9.558 165.5 7.938

controller has highly significant lower costs of transport com-
pared to the centralized approach (p < .01) for all conditions.
The fully decentralized architecture produced significantly more
efficient gaits compared to the centralized approach for known
terrain (flat or smoothness of 0.8) for high velocity. Again, we find
here a trend that for more difficult tasks decentralization provides
an advantage.
Summary: The experiment confirmed results from the first ex-
periment. With respect to the influence of additional information,
the earlier experiments brought us to the assumption that ad-
ditional information becomes more important for increasingly
more difficult tasks. The evaluation results support this assump-
tion that generalization benefits from additional information, but
only up to a certain degree. As mentioned, the decentralized
control approaches performed significant better and at lower
costs of transport compared to the centralized approach. The
local approach (decentralized, using local information from both
neighboring legs) further showed significantly more efficient on
unseen, quite difficult terrain when compared to the fully de-
centralized approach and the two controller approach (one for
each side) for high velocity (and for low velocity w.r.t. the fully
decentralized approach).

5.4.3. Research Question 4.3: How does the different controller gen-
eralize to variation of target velocity?
Goal: Temporal coordination of locomotion appears better char-
acterized as free gaits in which temporal relations emerge from
the interaction with the environment (Bidaye et al., 2018; DeAn-
gelis et al., 2019). As locomotion in challenging environments
requires such constantly changing adaptations of velocity, we
are interested in how the different architectures deal with a
continuous variation of velocity.
Approach: During training, two different target velocities (1.0 and
2.0) were used which were randomly chosen for each episode
and which were given to the controller as an additional input.
In the previous evaluation, we used these two training velocities.
As a next step, we are now considering variations of the target
velocity. For each architecture, all trained controller were evalu-
ated for 10 runs for target velocities in the range of [0.5, 2.5] with
increments of 0.1. This was done again for the different terrains,
ranging from flat to bumpy terrain. Overall, each controller was
tested for 26 different target velocities on 5 different terrain types
10 times.
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Fig. 14. Evaluation of different target velocities on uneven terrain: For each
architecture, all trained controller are evaluated for 10 runs at different target
velocities (x-axis, ranging from 0.5 to 2.5 in increments of 0.1). Shown is the
mean return for each target architecture (y-axis). Red shaded areas indicate the
two target velocities used during training.

Result — Generalization to novel target velocities: Fig. 14 shows
he results of the evaluation for a quite uneven terrain (smooth-
ess = 0.7). This terrain presents a hard task that was not used
uring training (for results on other terrains see supporting in-
ormation, Fig. S5). The two target velocities used during training
re shown as the red shaded area. In between, we observe the
ean return as a performance measure when interpolating tar-
et velocity between two known values. The decentralized local
ontroller shows smooth interpolation at a high level. This is
imilar for the two-side controller that shows a single outlier that
ay be due to the lower number of evaluation runs. The fully
ecentralized approach shows more variation. The centralized
pproach shows linear interpolation, but overall performance
egrades considerably for higher velocities. Considering extrapo-
ation of target velocities, we see a performance drop for all archi-
ectures. This is to be expected for higher velocities in particular,
s the simulated robot reaches its limit of possible target velocity.
or extrapolation towards lower velocities it is important to note
hat the calculated reward gets more sensitive towards deviation
rom the target velocity as it is linearly scaled. Comparing the
ifferent architectures, their performance is on a similar level for
arget velocity 1.0. But for lower velocities this gap appears to
iden in favor of the local decentralized controller.
For a better comparison of the architectures, we further show

n Fig. 15 how performance of architectures is impacted by varia-
ion of terrain and velocity. It is based on the same evaluation
uns as before, but now given in a box plot that, in addition,
isualizes the variance of each approach. First, we consider walk-
ng at a target velocity of 1.0 as used during training. There is
nly little impact when switching from flat terrain (Fig. 15(a),
eft) towards uneven terrain (middle) and mainly the centralized
lobal approach is affected. For bumpy terrain (on the right),
e observe that, for the low target velocities, performance goes
own for all architectures (see as well Fig. S3). All architectures
ppear to generalize similarly when the task is not too demanding
we showed before that for the high velocity there is not only
highly significant difference, but that the gap also widens be-

ween the local and the fully decentralized as well as centralized
rchitecture, Fig. 10).
When choosing a novel target velocity—in between the two

sed for training—, we see a similar effect (Fig. 15(b)). For flat
errain, mostly the variance of the gained returns of the central-
zed architecture increased. Switching to uneven terrain does not
urt the performance too much, until we get towards bumpy
errain. For bumpy terrain (shown on the right), all controllers are

ffected. But again, the fully decentralized approach is affected

718
the most. It appears—in agreement with the other experiments—
that for more difficult terrain, more information is advantageous.
The last row (Fig. 15(c)) shows selection of a very slow target
velocity outside the range of the two target velocities during
training (extrapolation to slow walking). As detailed above (see
Fig. 14), all architectures perform considerably worse. But switch-
ing to uneven terrain does not impact controller performance.
Only when further increasing difficulty, we observe a drop in
performance. This time the margin between, on the one side,
local decentralized (mean return: 228.2) as well as the two-side
architectures (mean return: 218.8) and, on the other hand, the
centralized (mean return: 113.1) as well as fully decentralized
architecture (mean return: 111.1) widens. This further confirms
our previous observations that, for a decentralized approach, ad-
ditional information helps when facing more demanding and, to a
certain extend, even novel tasks. But that full global information
does not appear to further help in these cases.
Summary: For generalization towards target velocities to values
not used during training, we see that the decentralized approach
using local information from both neighboring legs performs rela-
tively well across different types of terrain. Interpolation between
used velocities is realized on a high level, while for extrapola-
tion towards even slower or higher velocities we see a drop in
performance (as for all the architectures).

5.5. Experiment 5: Analysis of importance of input features

Research Question 5: Which input information is used by a
trained standard centralized controller? Does the learned impor-
tance of input features on action selection align with our assumed
and exploited organization?
Goal: As we systematically varied the scope of input information
and the selection of input features, we, at last, investigate which
input features influence control and to what extend. Therefore,
we want to measure the importance of each feature dimension
in a well performing controller that in principle has access to all
available information.
Approach: We access the importance of an observed feature as
the effect on the control signal when applying a small change in
a particular input dimension. This is comparable to saliency map
based approaches which highlight features in input space that
contribute to decisions of neural networks (Simonyan, Vedaldi,
& Zisserman, 2013). Most of this work on explaining the function
of neural networks has been traditionally in the area of visual—
and in particular classification—tasks (Alber et al., 2019; Zeiler &
Fergus, 2014). We are following here a similar approach in that
we are evaluating how the output of the network changes when
altering the input, i.e. we algorithmically compute the gradient of
the output with respect to a given input which is a type of input
modification method (Grün, Rupprecht, Navab, & Tombari, 2016).

As we are dealing with DRL, we are accumulating this gradient
over multiple rollouts and runs of the agent in the environ-
ment. We selected the centralized architecture that uses global
information for the analysis. In this architecture, all information
for control is available for the decision making for each action
dimension. After successful training, the control network should
have learned which information is necessary and should accord-
ingly weight these input information higher. In contrast, for input
channels that do not contain any meaningful information the
influence would be narrowed. In principle, input could contain
all available (44) feature dimensions, and we want to understand
which dimensions are used to what extend. Each seed from
experiment four (Section 5.4) of the centralized architecture was
run for 10 evaluation runs (producing multiple trajectories τ ) of
ach t = 1000 control steps. We are interested in how a change in
he input (observation o over all i = 44 dimensions) changes the
i
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Fig. 15. Comparison of four different control architectures at different target velocities on different terrains. For each architecture, all ten trained controller are
evaluated for 10 runs at different target velocities and for a selected terrain smoothness. Shown is the mean performance and standard deviation for each architecture.
Left column always shows evaluation on flat terrain, middle column on uneven terrain (which was as well used during training), right column shows generalization
to bumpy terrain. In (a) mean returns for a low target velocity (1.0, used during training) are shown. In (b) an intermediate target velocity was selected (1.5, right
between the two target velocities used during training). Last, (c) a very low target velocity was selected (0.5).
output of the network (µj – mean value of the normal distribution
rom which actions are sampled):

mportance Map Mij = σj

∑
τ

∑
t

abs
(

∂µj

∂oi

)
For approximating this gradient, we measured the original

utput of the policy network during each control step and com-
uted the gradient numerically with respect to the individual
nput dimensions of the observation space. As the different input
imensions are of quite different scale and variation during walk-
ng, we had to normalize the computed gradient for which we
sed the standard deviation of the particular feature dimension
measured over time as σi). As a result, we get for each of the
4 input dimensions how it affects the eight control signals
Fig. 16(a)).
esult — Importance of input features: There were ten trained
entralized controllers (used from experiment four, trained on
neven terrain and for two different target velocities) which did
719
not show a large difference w.r.t. the computed importance maps.
Importance maps did not differ for different tasks (different veloc-
ity, uneven terrain) too much as well. Therefore, we only provide
information for one well performing controller. There are two
main observations: First, there are two stair-like structures visible
in the joint angle and joint velocity inputs. These high diagonal
importance values indicate that for each joint control signal,
information from that particular joint are crucial and highly im-
portant. To further analyze the impact of local information, we
grouped the 44 inputs depending on the scope of information into
five groups: Global information (about torso), local information
from the controlled joint, local information from that leg (i.e. from
the other joint in that leg), information from the two neighboring
legs, and information from the diagonal leg (Fig. 16(b)). Compar-
ing this to a uniform distribution of importance (as we would
get for an untrained network), we can see that importance of
global information is overweighted. The same is true for infor-
mation from the single controlled leg for which importance is
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Fig. 16. Importance of input features for selecting control signals: (a) Importance map showing how a small change in one input (rows, y-axis, named on the
eft) feature dimension affects the control signals (columns, shown on the bottom). For the joint inputs, ordering is front left leg (hip, followed by knee joint for
ll legs), hind left leg, hind right leg, and front right leg. (b) Importance grouped for locality of information is shown on the right (as there is no difference for
ifferent legs and joints, these are integrated as well): Global information (body height, torso orientation, torso velocities, target velocity), local information from the
ontrolled joint, information from the second joint of the same leg, information from all four joints of the two neighboring legs, and information from the two joints
f the diagonal leg. On the left, an assumed uniform distribution simply based on the number of features for that group is given for comparison. (c) Importance is
rouped by type of information: Global information (body height, torso orientation, torso velocities without x velocity which showed to be very important), velocity
n x-direction (single dimension), target velocity (single dimension), joint angles, joint velocities, passive torques, and last control signals. On the left, an assumed
niform distribution simply based on the number of features for that group is given for comparison.
wice as high as assumed by a uniform distribution. All the other
nformation are equally weighted (w.r.t. to the number of input
hannels).
Secondly, we observe that different types of input appear to be

f different importance. In particular, target velocity (bottom of
6(a)) and velocity in x-direction (first dark line of body velocities
n 16(a)) appear prominent in the importance map. Therefore,
e grouped the importance map with respect to different types,
ifferentiating seven groups: Global features (not including target
elocity and velocity in x-direction), velocity in x-direction, target

velocity, joint angles, joint velocities, passive torques measured in
each joint, and, last, control signal (Fig. 16(c)). As a comparison,
we use an assumed uniform distribution (shown on the left).
Further, we distinguished the two joints of each leg, hip (which
might be misleadingly named, but this produces the for- and
backward movements) and knee joint (we summed these up for
all legs as there was no difference between legs). As a result,
we found that passive torque and last control signals appear
as of reduced importance. The rest of the global features, joint
angle, and velocity information appear of expected importance.
But target velocity and velocity in x-direction are of a largely
increased importance. This importance reflects that the task is
to keep track of the provided target velocity. This is even more
pronounced in the hip joint which appears sensible as this joint
is contributing the most to forward movement of the body.
Summary: In a trained controller that has access to all available
information, we found that, first, global information on current
velocity and target velocity as well as body orientation is quite
important. Secondly, local information from the controlled joint
itself is crucial and highly important for control, while other joints
show a much lower influence.

6. Discussion and conclusion

The central research question in this work is on the impact
of decentralization of control architectures, the scope of input
information, and the structure of the reward function. Following
biological inspiration, we considered different types of decen-
tralized and modular control structures which lead to local and
concurrent processing of control. We used locomotion of a four-
legged simulated robot in uneven and unknown terrain as a task
as it requires adaptive behavior, i.e., adapting to unpredictable
720
challenges in the environment immediately. In particular, we
considered variation of three characteristics: First, the degree
of decentralization of control which was systematically varied
for the chosen four-legged robot. Second, this had a further in-
fluence, as we were employing a Deep Reinforcement Learning
approach, on the reward and cost structure that drives learning.
We considered decomposition of the reward following the degree
of decentralization as we were differentiating local costs. Third,
the input scope of the specific controllers, ranging from small
input spaces of local observations to larger input spaces for each
controller including all information. As we considered these char-
acteristics, we wanted to, first, answer what kind of information is
required for control of locomotion and how this affects learning.
And, secondly, how this translates to generalization performance
in unseen environments (for an overview of results, see Table 6).

First, for learning locomotion we found that decentralized
approaches—that only have access to limited information—are
capable of learning well performing behaviors. This corroborates
our earlier qualitative finding showing this for a simulated six-
legged robot (Konen, Korthals, Melnik, & Schilling, 2019; Schilling
et al., 2020) that was able to learn running as fast as possi-
ble using only a decentralized architecture. While this previous
work already indicated that learning in decentralized architec-
tures might progress faster, our current data do not only show
this as a much more prominent effect, but allow further con-
clusions that significantly go beyond that: In contrast to the
previous study, we considered a more refined reward strategy
during learning which also accounted for movement costs. This
decomposition of costs as part of the reward showed to have a
large effect on learning speed. Local costs helped to drive learning
considerably faster towards high performing control. This is in
agreement with assumptions on reward decomposition which is
known to facilitate faster learning (Schneider et al., 1999), but
usually restricted to simpler problems. While recent work has put
a focus on reward decomposition, we think that for articulated
robots such a decomposition of rewards is intrinsically given
through the morphology and should be exploited. In general, it
appears that a modular control structure allows to exploit local
cost structures which can help DRL considerably. Usually, during
exploration in the context of DRL, high dimensional actions are
stochastically tried out and there is only a single reward that
cannot be disentangled. In contrast, in a decentralized approach
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able 6
ummary of selected results for comparison of different controller types: Shown are main results from the experiments for the different control architectures.
he architectures are, first, differentiated with respect to control (action space) into centralized and decentralized approaches. On a second level, we can further
istinguish—for the decentralized architectures—what kind of information (state space) each controller is using as an input. Rows show different experiments and
valuations. Single cell colors provide a relative comparison of results for a single measurement: For each row, a mean value is calculated over all different approaches.
he color of a cell is set to white if the value is close to the mean; it is set to a green color if the value is better (higher for velocities and returns, lower for
osts) compared to the mean, and to red if it is worse. Saturation of color indicates deviation of the mean for that particular cell (fully saturated color represents a
eviation of more than one standard deviation of the mean).

Control architecture (action space variation) Centralized ↔ 2 Controller ↔ Decentralized, 4 controller

Input scope (observation space var.) Global Each side diag. legs Both neigh. Single n. diag. leg tow. front ctrl. leg

Experiment 1: Effect on decentralization, locality of information, reward decomposition (Section 5.1)
1.2 Learning performance (end of training), Section 5.1.2

Mean Learning Performance 1251.83 2706.61 2353.34 2503.28 2510.03 2486.14 2542.02 2543.97

Experiment 2: Generalization to uneven terrain and efficiency (Section 5.2)
2.1 Generalization to uneven terrain (smoothn. 0.8), Section 5.2.1

Velocity m s−1 2.55 2.60 2.43 2.55 2.37 2.37 2.32 2.15
Cost of Transport 9.324 8.391 8.467 7.283 7.967 7.420 7.594 7.424

2.2 Performance of trained controller (after 20M steps) on flat terrain (from exp. 1) Section 5.2.2
Velocity m s−1 3.57 3.85 3.51 3.54 3.48 3.47 3.43 3.33
Cost of Transport 8.224 6.758 7.021 6.169 6.244 6.137 6.056 6.283

Experiment 4: Walking at a given target velocity (Section 5.4)
4.1 Performance of trained controller (uneven terrain, used in curriculum tr.), Section 5.4.1

Mean return, low velocity 499.6 590.5 / 560.3 / / / 552.9
Mean return, high velocity 327.1 554.7 / 547.6 / / / 515.3

4.2 Generalization trained controller (bumpy terrain), Section 5.4.2
Mean return, low velocity 307.5 351.4 / 342.8 / / / 268.6
Mean return, high velocity 126.1 165.5 / 274.0 / / / 147.5

Efficiency of trained controller (uneven terrain, used in curriculum tr.), Section 5.4.2
Cost of transport, low velocity 10.176 8.144 / 7.395 / / / 8.297
Cost of transport, high velocity 7.871 6.076 / 5.689 / / / 6.014
we exploit the given local cost structure to which there is direct
access. This helps to avoid costly local actions, unless they show
a positive net reward for the whole system.

The second main contributing factor for faster learning ap-
ears to be the smaller search space when only relying on local
ensory information and the resulting lower dimensional state
pace. Leaving out distant sensory signals does not appear to neg-
tively affect the learned controller for the tasks of dealing with
nown uneven terrains. This information on the contributions of
ther more distal legs might be redundant as, for example, lifting
f another leg has direct consequences that can be sensed in a
eg without requiring direct neural transmission of this infor-
ation. Such an approach has been demonstrated in robots in
waki and Ishiguro (2017). Furthermore, in the last experimental
ection we used a visualization approach from explainable AI that
ighlighted the importance of local information in a centralized
ontroller that had access to all information during training. The
entralized controller learned to mostly rely on information from
he controlled joint. While we considered state spaces following
he morphology of the robot, we want to turn in the future
owards uncovering meaningful state spaces, e.g. using graph
eural network based approaches, comparable to the approach
n Huang et al. (2020) who use a message passing approach
or sharing information across body morphology or to Sanchez-
onzalez et al. (2018) who are further incorporating and learning
ynamics across a graph for planning of movements.
When turning towards generalization towards more challeng-

ng terrains then experienced during training, all considered ar-
hitectures were, expectedly, affected by the difficulty. But to a
ifferent degree: A fully decentralized approach performed worst
n such a scenario. We found that including more information
rom other legs appeared advantageous and lead to higher re-
urns. However, it appeared that it is not necessary to include
nformation from all legs. In fact, the local controller that used
nformation from only two neighbors performed best in novel
nd more unpredictable terrain. This increased importance of
ensory inputs when facing a more difficult locomotion task is
gain well in agreement with research on locomotion in insects
721
that points out that, for slower walking and climbing, control is
more and more sensory driven (Neveln, Tirumalai, & Sponberg,
2019; Schilling, Hoinville et al., 2013) which is also assumed for
animals in general (Dickinson et al., 2000) and humans (Kuo,
2002). This finding is well in agreement with our handcrafted
model Walknet that uses a similar local connection structure on
a six-legged robot (Schilling, Hoinville et al., 2013), but is much
more limited with respect to agility of motor behavior.

Last, we found that decentralized control architectures showed
higher robustness of the learning process. In the third experi-
ment (Section 5.3), we found that the centralized approach was
brittle with respect to hyperparameter variation and degraded
substantially when changing the hidden layer size of the neural
network—it overfitted. In contrast, the decentralized approaches
produced well performing solutions without any significant per-
formance drop when varying the hidden layer sizes and was
learning more robustly.

Finally, we want to acknowledge that this type of interdisci-
plinary research appears to benefit the individual disciplines: For
the field of machine learning and DRL, we learned that decentral-
ized control architectures can facilitate DRL as they speed up the
learning process and can yield high robustness with respect to the
selection of hyperparameters related to the specific neural net-
work model. Furthermore, after learning, the controller showed
adaptive behavior and an improved ability for generalization.
Admittedly, decentralization cannot be applied in all DRL ap-
proaches. With the current focus of the last years on game playing
or environments using discrete actions, typical environments do
not offer an easy factorization or decomposition into modules
(but see, for example, Chang, Kaushik, Levine, and Griffiths (2021)
who aim for modular decomposition when assigning rewards
in a simple RL task). Still, decentralization and decomposition
of reward might be worthwhile when dealing with articulated
actuators as are legged robots or in manipulation tasks. Finally,
our study provides a detailed analysis of the potential benefits
of modularization in artificial neural networks (cf. Amer & Maul,
2019), in a concrete application scenario.

Correspondingly, we think that this research strategy has also
a lot to offer for biology: Simulated robots and implemented
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ypothetical models have always been used as tools to under-
tand general principles and their implementation as mechanisms
not only in motor control) (McClelland, 2009; Webb, 2001). This
ften requires detailed work in setting up and parametrizing
odels in small and narrow experimental paradigms. Learning-
ased approaches not only allow broader applications in more
iverse environments, but also allow to observe the process of
inding solutions. Based on such observations, one can compare
ifferent mechanisms or variations of mechanisms that can di-
ectly translate back to insight or possible experimentation in
iology. In the present case of control structures for walking,
e started with one organizational principle of motor control,
ecentralization, and in particular pointed out detailed research
n decentralization in insects. This work comprises behavioral
nalysis and neuroscientific studies. One still open and hotly
ebated question is how local ensembles of neurons and higher
evels interact (see, for example, recently published results in
eng et al. (2020) on how lower level control and top-down
ommands interact in backward walking of Drosophila). Our com-
putational study provides interesting complementary insights on
local and decentralized computation. Local control is often seen
as a necessity, i.e., due to sensory delays it would be too slow
to rely on a central controller (a brain) to react. In such a view,
decentralized control based on local information appears only
as a required compromise. But—as we are not even considering
latencies that would benefit the local approaches—our results
show that decentralized control is a viable approach that ac-
tually simplifies the problem at hand and can compete on the
same level as a centralized approach. Even further, it indicates a
tradeoff for information: A decentralized approach that only had
information to information from neighboring legs showed best
generalization performance towards more unpredictable environ-
ments. Importantly, we still found that some global (top-down)
information is crucial and required for control. From our point
of view, decentralization and limited scope of information offer
a way to cut up the large sensory state and control space into
well manageable subspaces. Such a view on different concurrent
control processes differs from the standard paradigm of DRL in
which decision making is assumed in one central control unit.
From our point of view, it is worthwhile to further consider such a
modular perspective for Deep Reinforcement Learning and neural
networks.
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