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Abstract
In competing event settings, a counterfactual contrast of cause-specific cumulative
incidences quantifies the total causal effect of a treatment on the event of interest.
However, effects of treatment on the competing event may indirectly contribute to
this total effect, complicating its interpretation. We previously proposed the separable
effects to define direct and indirect effects of the treatment on the event of interest. This
definition was given in a simple setting, where the treatment was decomposed into
two components acting along two separate causal pathways. Here we generalize the
notion of separable effects, allowing for interpretation, identification and estimation
in a wide variety of settings. We propose and discuss a definition of separable effects
that is applicable to general time-varying structures, where the separable effects can
still be meaningfully interpreted as effects of modified treatments, even when they
cannot be regarded as direct and indirect effects. For these settings we derive weaker
conditions for identification of separable effects in studies where decomposed, or
otherwise modified, treatments are not yet available; in particular, these conditions
allow for time-varying common causes of the event of interest, the competing events
and loss to follow-up. We also propose semi-parametric weighted estimators that are
straightforward to implement. We stress that unlike previous definitions of direct and
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indirect effects, the separable effects can be subject to empirical scrutiny in future
studies.

Keywords Causal inference · Competing events · Effect decomposition · G-formula ·
Hazard functions · Separable effects

1 Introduction

Researchers are often interested in treatment effects on an event of interest that is
subject to competing events, that is, events that make it impossible for the event of
interest to subsequently occur. For example, when the event of interest is kidney injury,
death is a competing event because any individual who dies prior to kidney injury
cannot subsequently suffer from kidney injury. Several estimands have already been
suggested for causal inference in competing events settings with known shortcomings.

A counterfactual contrast in cause-specific cumulative incidences (risks) quantifies
the total effect of the treatment on the event of interest through all causal pathways.
Here we intentionally use the term total effect to bridge competing event settings to
results from mediation analysis (Stensrud et al. 2020; Robins and Richardson 2010;
Robins et al. 2020). When the treatment affects competing events, the total effect also
partly includes pathways mediated by these competing events (Robins 1986; Young
et al. 2020). For example, a harmful total effect of blood pressure therapy on the risk of
kidney injury may be due to a biological side-effect on the kidneys, but could also be
fully or partly explained by a protective treatment effect on cardiovascular death. As
previously discussed (Robins 1986;Young et al. 2020; TchetgenTchetgen 2014), other
popular estimands in competing events settings do not resolve this interpretational
problem. This includes popular approaches based on cause-specific or subdistribution
hazard models, even if formulated in terms of counterfactuals. Hazard based contrasts
are broadly problematic as causal contrasts (Martinussen et al. 2020; Robins 1986;
Hernán 2010; Stensrud and Hernán 2020), also in competing event settings (Young
et al. 2020).

Other estimands that have been considered for causal inference in the face of com-
peting events that do have a causal interpretation include the controlled direct effects
(Robins and Greenland 1992; Young et al. 2020) and pure (natural) effects (Robins
and Greenland 1992; Pearl 2009). However, these estimands refer to treatment effects
under unspecified interventions on the competing events; in the example on blood
pressure therapy, we would need to consider an intervention that “eliminates” death
from all causes. Such hypothetical interventions are irrelevant in nearly every practical
setting. Furthermore, identification of pure (natural) effects relies on counterfactual
assumptions across different “worlds” that are untestable, even in principle (Robins
and Richardson 2010).

To address these problems, we recently proposed the separable effects for causal
inference in competing event settings (Stensrud et al. 2020), inspired by Robins and
Richardson’s extended graphical approach tomediation analysis (Robins and Richard-
son 2010; Didelez 2018; Robins et al. 2020). Given a plausible decomposition of the
treatment into different components, we defined these effects as counterfactual con-
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trasts indexed by hypothetical interventions that assign these components different
values. The separable effects have clear advantages over existing causal estimands,
explicitly quantifying the effects of modified treatments and forcing investigators
to sharpen specifications about their causal question of interest, in turn, fostering
new ideas and hypotheses about future real-world treatment strategies (Robins and
Richardson 2010; Stensrud et al. 2020). The separable effects generally rely onweaker
assumptions for identification than the alternative estimands outlined above (Robins
and Richardson 2010; Stensrud et al. 2020; Didelez 2018). They do not conceptual-
ize hypothetical interventions that eliminate competing events and avoid cross-world
assumptions, which can never be subject to empirical scrutiny. Instead, the separable
effects can, at least in principle, be directly identified in a future experiment where the
treatment components are assigned different values. However, the interpretation and
identification of separable effects given in our initial work (Stensrud et al. 2020) relied
fundamentally on the assumption that there exist only pre-treatment common causes of
the competing event and event of interest. This assumption, which has implications for
both the interpretation and identification of the separable effects, is overly restrictive
in many real-world applications thus limiting the applicability of these initial results.

Here, we generalize the early results of Stensrud et al. (2020) to allowmore realistic
data structures, such that time-varying covariates and common causes of the competing
event and event of interest can exist. Our results substantially broaden the theory of
separable effects, providing an explicit and transparent approach to reasoning around
mechanism in general competing events settings and, in turn, translating this reasoning
into a statistical analysis. Specifically, in this paper we formalize conditions that allow
particular mechanistic interpretations of separable effects in a range of settings. The
strongest of these conditions ensures that the separable effects can be interpreted as the
direct effects of the treatment on the event of interest (capturing all treatment effects
on the event of interest not via treatment effects on competing events) and the indirect
effects of the treatment on the event of interest (capturing all treatment effects on the
event of interest only via treatment effects on competing events). However, we show
that weaker conditions also allow practically relevant mechanistic interpretations of
these effects – e.g. capturing some (but not all) direct effects; that is, some (but not
all) treatment effects on the event of interest not via effects on competing events.
We formalize conditions for identification of the separable effects in this general
setting where baseline and time-varying covariates are measured. Interestingly, the
identification formulas are actually identical to formulas contained in Shpitser (2013),
although these identification results have different interpretations and require different
assumptions. Finally we present semi-parametric weighted estimators of the separable
effects under this time-varying data structure.

The manuscript is organized as follows. In Sect. 2, we describe the observed data
structure in which the event of interest is subject to competing events and both baseline
and time-varying covariates are measured. In Sect. 3, we review the definition of the
total effect on an event of interest subject to competing events. In Sect. 4, we define
a generalized decomposition assumption that is agnostic to the mechanism by which
the treatment exerts effects on the competing event and the event of interest. We also
formally define the separable effects. In Sect. 5, we formalize a range of conditions
by which the treatment components may exert effects on future outcomes and explain
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the interpretation of the separable effects in each case. In Sect. 6, we give conditions
that allow identification of the separable effects under the observed data structure
by a particular g-formula (Robins 1986). We also generalize identification results to
allow for censored data. In Sect. 7, we provide two weighted representations of the
g-formula for the separable effects and use these representations to motivate weighted
estimators,which are supplementedwith sensitivity analysis techniques.We also apply
these results to a randomized study of the effect of intensive versus standard blood
pressure therapy on acute kidney injury. In Sect. 8, we provide a discussion.

2 Observed data structure

We consider an experiment in which i = 1, . . . , n individuals are randomly assigned
to one of two treatment arms A ∈ {0, 1} at baseline (e.g. A = 0 and A = 1 denote
assignment to standard and intensive blood pressure therapy, respectively).We assume
that observations are independent and identically distributed and suppress the i sub-
script. Let k = 0, 1, 2, ..., K + 1 be equally spaced time intervals with interval k = 0
corresponding to baseline (the interval of randomization) and interval k = K + 1 the
maximum follow-up of interest at or before the administrative end of follow-up (e.g.
60 months).

For k > 0, let Yk and Dk denote indicators of an event of interest (e.g. kidney
injury) and a competing event (e.g. death) by interval k, respectively, and Lk a vector
of individual time-varying covariates in that interval. Define D0 ≡ Y0 ≡ 0, i.e. the
population is restricted to those alive and at risk of all events prior to randomization.
Further, define L0 as a vector of pre-randomization covariates. We denote the history
of a random variable by an overbar, e.g. Ȳk = (Y0, Y1, ..., Yk) is the history of the event
of interest through interval k, and the future of a random variable through K +1 by an
underline, e.g. Y k = (Yk, Yk+1, ..., YK+1). Throughout, we assume a temporal order
(Dk, Yk, Lk) in each interval k > 0. As interval lengths become arbitrarily small, this
temporal order assumption is guaranteed because the probability that two events of any
type occur within that interval approaches zero (equivalent to the common assumption
in survival analysis of no tied event times). When the event of interest is terminal (e.g.
death due to prostate cancer), the time-varying event history DK+1, Y K+1 coincides
with the more familiar “competing risks” data structure {T̃ = min(T , G), J } for T
the time to failure from any cause, G a censoring time and J an indicator of cause of
failure such that J = 0 when T̃ = G and J > 0 otherwise (e.g. J = 1 if failure from
the event of interest and J = 2 if failure from the competing event). Regardless of
whether the event of interest is terminal (we have a “competing risks” data structure) or
nonterminal (we have a “semicompeting risks” data structure), defining the observed
data structure in terms of time-varying failure status, as opposed to summarized failure
times, is essential for understanding identification and interpretation of many causal
estimands in survival analysis, including those considered here. Further, it avoids the
assumption that there exists a censoring time G for individuals who are observed to fail
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(e.g. die) during the follow-up.1 Importantly, our results throughout apply regardless
of whether the event of interest is terminal or nonterminal.

By definition of a competing event, if an individual experiences this event by inter-
val k without history of the event of interest (Yk−1 = 0, Dk = 1) then Y k = 0;
an individual who experiences the competing event cannot subsequently experience
the event of interest, regardless of whether this is terminal or nonterminal, that is,
regardless of whether it is also the case that Yk−1 = 1 determines Dk = 0. For ease of
presentation, we will assume no individual is censored by loss to follow-up (that is,
DK+1, Y K+1 is fully observed for all individuals randomized at baseline) until Sect.
6.3.

3 The total treatment effect on the event of interest

For any individual in the study population and for k ∈ {0, . . . , K }, let Y a
k+1 be the

indicator of the event of interest by interval k +1 had, possibly contrary to fact, he/she
been assigned to A = a. The contrast

Pr(Y a=1
k+1 = 1) vs. Pr(Y a=0

k+1 = 1) (1)

is then the cause-specific cumulative incidence function,whichwe intentionally denote
a total effect of treatment A on the risk of the event of interest by interval k + 1 in
this study population. This effect includes treatment effects on the competing event
(Young et al. 2020).

We will use causal directed acyclic graphs (DAGs) (Pearl 2009) to represent under-
lying assumptions on the mechanisms by which random variables in the study of
Sect. 2 are generated. A causal DAG must represent all common causes of any vari-
able represented on the DAG. For example, the causal DAG in Fig. 1a represents a
generally restrictive assumption on this data generating process for a subset of time
points because it depicts no common causes (measured or unmeasured) of event sta-
tus over time. Throughout we will assume that causal DAGs represent a Finest Fully
Randomized Causally Interpreted Structural Tree Graph (FFRCISTG) model, a type
of counterfactual causal model that includes the non-parametric structural equation
model with independent errors (NPSEM-IE) (Robins 1986; Robins et al. 2020; Robins
and Richardson 2010; Pearl 2009; Shpitser et al. 2020) as a submodel, and we assume
that statistical independencies in the data are faithful to the DAG (Verma and Pearl
1991).

The total effect of A on Y2 in Fig. 1a includes all directed (causal) paths between
A and Y2. This includes causal paths that do not capture the treatment’s effect on the
competing event (e.g. A → Y1 → Y2 and A → Y2) as well as causal paths that
capture this effect (e.g. A → D1 → D2 → Y2 and A → D2 → Y2). While the
total effect can be straightforward to identify from a study in which A is randomly

1 Many authors use the term “censoring by death” without reference to an estimand. This terminology is
appropriate when the estimand is defined with respect to interventions that eliminate competing events,
but it is misleading in general. See Young et al. (2020) for details. Here we intentionally avoid the term
“censoring by death” because we do not consider such estimands.
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Fig. 1 The directed acyclic graph (DAG) in a represents a restrictive data generating assumption on the
observed data structure such that there are no common causes of the event of interest and the competing
event at any time. The extended DAG in b is an augmented version of the graph in a representing a treatment
decomposition satisfying the generalized decomposition assumption. The bold arrows encode deterministic
relationships

assigned, its interpretation is complicated when pathways like A → D2 → Y2 in
Fig. 1a are present (Young et al. 2020; Stensrud et al. 2020). For example, a harmful
total effect of intensive versus standard blood pressure therapy on kidney injury, i.e.
Pr(Y a=1

k+1 = 1) > Pr(Y a=0
k+1 = 1), may be wholly or partially explained by one of these

pathways (e.g. a protective effect of intensive therapy on death).

4 Generalized decomposition assumption and separable effects

Consider the following assumption:

Generalized decomposition assumption

The treatment A can be decomposed into two binary

components AY ∈ {0, 1} and AD ∈ {0, 1} such that,
in the observed data, the determinism

A ≡ AD ≡ AY holds, but in a future study, AY and AD

could, in principle, be assigned different values. (2)

Let Zk , k ∈ {0, . . . , K }, be the vector of all (direct or indirect) causes of Yk+1
and/or Dk+1, excluding (AY , AD), and Z j , j = 0, . . . , k, are these causes in inter-
val j , where V is a cause of W if changing the value of V may result in a change
in the value of W . We intentionally distinguish time-varying covariates that are
measured in our study, Lk , from Zk ; Lk could e.g. be a subset of Zk . We shall see
that the variables in Zk are needed to express the substantive meaning of partic-
ular separable effects. We will need to make assumptions about the nature of Lk

to reason about whether separable effects can be identified using only what was
measured in our study, which will require that Lk is a subset of Zk . There is not
surprisingly a link between these interpretation and identification tasks as we for-
malize in Sect. 6.1. We keep these tasks separate because explicit reasoning about
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interpretation of separable effects provides value for the design of future studies
even if identification in the current study fails given limitations of measurement.
This may be the case if causal reasoning about questions and assumptions occurs
after the data collection is complete.
We also assume that an intervention that assigns A = a results in the same outcome
as an intervention that assigns AY = AD = a, that is,

Y aY =a,aD=a
k+1 = Y a

k+1,

DaY =a,aD=a
k+1 = Da

k+1,

ZaY =a,aD=a
k+1 = Za

k+1, k ∈ {0, . . . , K }, (3)

where W aY ,aD
k+1 for Wk+1 ∈ {Yk+1, Dk+1, Zk+1} k ∈ {0, . . . , K }, is the value of

Wk+1 had, contrary to fact, he/she been assigned the components AY = aY and
AD = aD , in place of assignment to a value of the original treatment A.

Beyond (3), the generalized decomposition assumption makes no mechanistic
assumptions on the effects exerted by AY and AD .Wewill consider different examples
of treatment decompositions in Sect. 5 where, unlike those considered by Stensrud
et al. (2020), the effects exerted by AY and AD are not necessarily direct and indirect
effects. Furthermore, in Appendix A we consider straightforward further generaliza-
tions of our results to settingswhere AY and AD are not a decomposition of A, violating
(2), but are still treatments satisfying (3).

For k ∈ {0, . . . , K }, the contrast

Pr(Y aY =1,aD
k+1 = 1) vs. Pr(Y aY =0,aD

k+1 = 1), aD ∈ {0, 1}, (4)

quantifies the causal effect of the AY component on the risk of the event of interest by
k + 1 under an intervention that assigns AD = aD (Stensrud et al. 2020; Robins and
Richardson 2010; Robins et al. 2020). Similarly

Pr(Y aY ,aD=1
k+1 = 1) vs. Pr(Y aY ,aD=0

k+1 = 1), aY ∈ {0, 1}, (5)

quantifies the causal effect of the AD component on the risk of the event of interest
by k + 1 under an intervention that assigns AY = aY .

We will refer to (4) as the AY separable effect under AD = aD , aD ∈ {0, 1} and
(5) as the AD separable effect under AY = aY , aY ∈ {0, 1}. Given the generalized
decomposition assumption, the total effect can be expressed as a sum of particular AY

and AD separable effects, for example,

Pr(Y aY =1,aD=1
k+1 = 1) − Pr(Y aY =0,aD=1

k+1 = 1)

+ Pr(Y aY =0,aD=1
k+1 = 1) − Pr(Y aY =0,aD=0

k+1 = 1)

= Pr(Y a=1
k+1 = 1) − Pr(Y a=0

k+1 = 1).

123



A generalized theory of separable effects in… 595

5 Isolation conditions and interpretation of separable effects

In this section,we consider conditions, beyond the generalized decomposition assump-
tion, under which we can ascribe a more precise interpretation to the separable effects
(4) and (5). The strongest of these assumptions allows interpretation of these effects
as the separable direct and indirect effects of Stensrud et al. (2020).

To formally define these additional conditions, we will first review the definition of
an extended causal DAG (Robins and Richardson 2010): an extended causal DAG aug-
ments the original causal DAG with additional nodes representing components of the
treatment, and bold edges representing the deterministic relation between these com-
ponents and the full treatment in the observed data. For example, the extended causal
DAG inFig. 1b is an augmented version of the causalDAG inFig. 1a,which generalizes
the extended DAG in Figure 3 of Robins and Richardson (2010) to time-dependent
mediators and outcomes. The extended causal DAG also encodes assumptions, not
represented on the original causal DAG, on the mechanisms by which each treatment
component exerts effects on future variables. Arrows from Dk to Yk+ j , j > 0 (for
example D1 → Y2 in Fig. 1a, b) are unnecessary in our case, where time-varying
mediators constitute competing events, but these arrows could have been included
without changing any of our results.

5.1 Full isolation

Consider an extended causal DAG inwhich A is decomposed into two components AY

and AD satisfying the generalized decomposition assumption, and define the following
conditions:

The only causal paths from AY to Dk+1, k = 0, ..., K are directed

paths intersected by Y j , j = 0, ..., k. (6)

The only causal paths from AD to Yk+1, k = 0, ..., K are directed

paths intersected by D j+1, j = 0, ..., k. (7)

When both conditions (6) and (7) hold we will say there is full isolation. This assump-
tion is satisfied in Fig. 1b which assumes there are no common causes of the event of
interest and the competing event. It is also satisfied in Fig. 2bwhich allows the presence
of both pre-randomization (Z0) and post-randomization (Z1) common causes.

Under the generalized decomposition assumption and full isolation, (4) are the
separable direct effects of A on the risk of the event of interest by k + 1, which do
not capture the treatment’s effect on the competing event: that is, a distinct causal
mechanism by which A directly affects the event of interest outside of A’s indirect
effects through the competing event. Similarly, (5) are the separable indirect effects
of A on this risk, which only capture the treatment’s effect on the competing event.
Full isolation coincides with the settings considered by Stensrud et al. (2020), which
allowed for the presence of pre-randomization, but not post-randomization, common
causes of the event of interest and the competing event.
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D2

Z1Z0

(a)

A

AY
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Y1
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Y2

D2

Z1Z0

(b)

Fig. 2 The causal DAG in a allows a pre-randomization common cause (Z0) of Y 1 and D1 and post-
randomization common cause (Z1) of Y2 and D2 but assumes Z1 is not affected by treatment A. b is an
extension of a satisfying full isolation

Returning to our running example, assume that the blood pressure treatment A
can be decomposed into a component AY that binds to receptors in the kidneys, e.g.
by relaxing the efferent arterioles which is a well-known biological effect of com-
monly used blood pressure drugs such as angiotensin-converting-enzyme inhibitors
(ACE) and angiotensin II receptor blockers (ARB), and a component AD that includes
the remaining components of the antihypertensive therapy, some of which lead, for
example, to reductions in systemic blood pressure.

Then, AY = 0 and AY = 1 are the levels (e.g., doses) of the AY component under
standard and intensive therapy, respectively, and AD = 1 and AD = 0 are defined
analogously.

Full isolation would be satisfied in this case if (i) the AY component only exerts
effects on death through its effects on kidney function and (ii) the remaining AD

component only exert effects on kidney function through its effects on survival. In
Sect. 5.2, however, we argue that the assumption of full isolationmay not be reasonable
in this example.

5.2 AY partial isolation

The causal graphs in Figs. 1 and 2 make the restrictive assumption that there are
no common causes of the event of interest and competing event that are, themselves,
affected by treatment. In our running example, this assumption likely fails: a reduction
in blood pressure may increase the risk of kidney injury (the event of interest) due
to hypoperfusion of the kidneys (for example, when patients are dehydrated) (Aalen
et al. 2019) and also may affect the risk of mortality (the competing event). Further,
blood pressure itself clearly may be affected by the blood pressure treatment. The
causal DAG in Fig. 3 depicts the more realistic assumption that blood pressure (Z1) is
both a possible common cause of future kidney injury Y2 and mortality D2 and also,
itself, affected by treatment A (represented by the dashed arrow connecting A to Z1).
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Fig. 3 A causal DAG
representing the assumption that
Z1, a common cause of Y2 and
D2, may be affected by
treatment A (dashed arrow)

A

Y1

D1

Y2

D2

Z1Z0

Suppose, however, that the AY component of the treatment A (that which binds to
receptors in the kidneys) has no effect on blood pressure outside of its possible effect
on kidney function, such that only the remaining components of treatment, AD , can
directly affect blood pressure. The extended DAG in Fig. 4a, which is one possible
extension of the causal DAG in Fig. 3, represents this assumption by the dashed arrow
from AD into Z1 and the absence of an arrow from AY into Z1. In this case, condition
(6) holds but (7) does not. When only the condition (6) holds, but (7) fails, we will
say there is AY partial isolation.

Unlike under full isolation, under AY partial isolation, the AD separable effects
(5) quantify both direct effects of the treatment on the event of interest not through
the competing event (e.g. the path AD → Z1 → Y2 in Fig. 4a) and indirect effects
through the competing event (e.g. the path AD → D1 → Y1 → Y2 in Fig. 4a).2

By contrast, the AY separable effects only quantify direct effects not through the
competing event. However, the AY separable effects do not capture all direct effects
in this case, because some of these pathways may originate from AD as described
above. In the current example, the AY separable effect evaluated at aD = 1 may be of
particular clinical interest, quantifying the effect of assignment to the current intensive
therapy containing all components versus a modified intensive therapy that lacks the
component possibly affecting the kidneys.

5.3 AD partial isolation

When (7) holds, but (6) fails, we will say there is AD partial isolation. AD partial
isolation is represented in Fig. 4b, depicting an alternative augmentation of the causal
DAG in Fig. 3. Under AD partial isolation, the AY separable effects (4) quantify both
direct effects of the treatment on the event of interest not through the competing event
(e.g. the path AY → Z1 → Y2 in Fig. 4b) and indirect effects through the competing

2 The extended graph in Fig. 4a is the generalization of Richardson and Robins’s extended graph in their
Figure 6A and the graph in Fig. 4b is the generalization of Richardson and Robins’s graph in their Figure
6B to settings with time dependent confounders, mediators and outcomes.
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Fig. 4 Extensions of the causal DAG in Fig. 3 illustrating partial isolation. The dashed arrow in a represents
the A → Z1 relation in Fig. 3 under AY partial isolation, and the dashed arrow in b represents AD partial
isolation

event (e.g. the path AY → Z1 → D2 → Y2 in Fig. 4b). By contrast, the AD separable
effects only quantify indirect effects through the competing event. However, the AD

separable effects do not capture all indirect effects in this case, because some of these
pathways may originate from AY as above.

As an example of AD partial isolation, trials have reported an increase in the risk of
new-onset type 2 diabetes among patients assigned to statins (Sattar et al. 2010; Ridker
et al. 2012). However, statins also reduce the risk of all-cause mortality, a competing
event for type 2 diabetes onset (the event of interest). It is therefore unclear whether
a total effect of statin treatment on type 2 diabetes is due a protective treatment effect
on mortality, a biologically harmful process leading to type 2 diabetes onset or some
combination.

Figure 3 illustrates a possible underlying causal structure for a trial with random
assignment to statin therapy relating treatment assignment A, mortality Dk and new-
onset type 2 diabetes Yk , k = 1, 2. Body weight (Z1) is a possible common cause
of both mortality and onset of type 2 diabetes which may also be affected by statin
treatment. Consider a decomposition of A (represented in Fig. 4b) where AD may
lead to increased risk of diabetes only by reducing mortality risk (e.g. through AD →
D1 → D2 → Y2,where the reduction inmortality risk is likely due to reduced levels of
low density lipoprotein in the blood), while a second component AY exerts unintended
effects of statins on diabetes through body weight (e.g. through AY → Z1 → Y2).
As in the previous example of blood pressure therapy and kidney injury, the AY

separable effect of statin therapy on type 2 diabetes risk evaluated at aD = 1 may
be of particular clinical interest, quantifying the effect of assignment to the original
statin therapy containing both components versus a modified treatment that removes
the component possibly leading to weight gain.
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Fig. 5 Causal graphs illustrating no isolation. a Violates Zk partition while b satisfies Zk partition

5.4 No isolation

If there are direct arrows from AY and AD into common causes of Yk+1 and Dk+1,
k ∈ {0, . . . , K }, as illustrated in Fig. 5, then both (6) and (7) fail. In this case, both the
AY separable effects (4) and the AD separable effects (5) quantify direct and indirect
effects of the treatment on the event of interest, outside of and through, the competing
event. When both conditions (6) and (7) fail, we will say there is no isolation.

There are two important cases of no isolation that have different implications for
the interpretation of separable effects and, as we will see, their identification in a two-
arm trial. First, suppose there are direct arrows from AY and AD into the same set
of common causes Zk of Y k+1 and Dk+1, as illustrated in Fig. 5a. In this case, the
AY separable effects and the AD separable effects will capture common downstream
pathways (e.g. Z1 → Y2 in Fig. 5a) between the original treatment A and the event of
interest Yk+1.

Alternatively, suppose AY and AD may only exert effects on different sets of com-
mon causes ZY ,1 and Z D,1 of Yk+1 and Dk+1 as illustrated in Fig. 5b; here AY exerts
effects on Yk+1 through one set of causal paths from AY to Yk+1, and AD exerts effects
on Yk+1 through a distinct set of causal paths. In this case, the AY separable effects
and the AD separable effects will capture no common pathways between the original
treatment A and the event of interest Yk+1.

5.5 Zk partition

Suppose there exist vectors Z D,k, ZY ,k such that Zk ≡ (Z D,k, ZY ,k), k > 0, and

The only causal paths from AY to Dk+1 and Z D,k+1, k = 0, ..., K are through
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Fig. 6 Causal graphs illustrating partial isolation but violation of Zk partition. AY partial isolation holds
in a and AD partial isolation holds in b

Y j or any component of ZY , j , j = 0, ..., k. (8)

The only causal paths from AD to Yk+1 and ZY ,k+1, k = 0, ..., K are through

D j+1 or any component of Z D, j , j = 0, ..., k. (9)

When both conditions (8) and (9) hold we will say there is a Zk partition.
The assumption of a Zk partition holds trivially under full isolation for any partition

of Zk as illustrated in Fig. 2b. However, this assumption will only hold in some cases
of partial isolation (e.g. Fig. 4) and no isolation (e.g. Fig. 5b). Zk partition fails under
the case of no isolation represented in Fig. 5a, which is the generalization of Robins
and Richardson’s (2010) extended graph in Figure 6A to the time dependent case.

Zk partition also fails under the case of AY partial isolation represented in Fig. 6a
and AD partial isolation represented in Fig. 6b. Under any version of Zk partition, the
AY separable effects and the AD separable effects will capture no common pathways
between the original treatment A and the event of interest Yk+1.

6 Identification of separable effects

Regardless of the isolation assumptions that impact the interpretation of separable
effects, if we had data from a four-arm trial in which AY and AD were randomly
assigned with no loss to follow-up, we would be guaranteed identification of the
separable effects (Stensrud et al. 2020; Robins 2016); that is, we could identify, for
k ∈ {0, . . . , K },

Pr(Y aY ,aD
k+1 = 1) for aY , aD ∈ {0, 1} (10)

by Pr(Yk+1 = 1 | AY = aY , AD = aD) (Hernan and Robins 2018). However,
in order to identify (10) for aY �= aD in the absence of a four-arm trial, we must
make assumptions that are not guaranteed to hold, even in a two-armed trial such
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as that described in Sect. 2 with no loss to follow-up. In addition to the generalized
decomposition assumption, consider the following assumptions that are expected to
hold by design when A is randomly assigned (Hernan and Robins 2018) (recalling
that Lk is the measured covariate history in our two-arm trial which may or may not
coincide with Zk):

1. Exchangeability:

Y a
1, Da

1, La
1 ⊥⊥ A | L0. (11)

Figure 7 illustrates various extended graphs that explicitly depict measured (e.g.
L0, L1) and unmeasured (e.g. UL,Y ) variables. Exchangeability is represented
in Fig. 7a–f by the absence of any unblocked backdoor paths between A and
(Y 1, D1, L1) conditional on L0 (Pearl 2009).

2. Consistency:

If A = a, then Ȳk+1 = Ȳ a
k+1, D̄k+1 = D̄a

k+1 and L̄k+1 = L̄a
k+1 for k ∈ {0, . . . , K }.

(12)

Consistency states that if an individual has observed treatment consistent with an
intervention that sets A = a, then that individual’s future observed outcomes and
time-varying covariates are equal to his/her counterfactual outcomes and time-
varying covariates, respectively, under an intervention that sets A = a.

3. Positivity:

fL0(l0) > 0 �⇒ Pr(A = a | L0 = l0) > 0, for a ∈ {0, 1} (13)

Assumption (13) states that, for any possibly observed level of the measured base-
line covariates, there exist individuals with A = 1 and individuals with A = 0.

The above assumptions guarantee identification of the total effect (1), a contrast of
Pr(Y a

k+1 = 1) for different levels of a (Young et al. 2020) but are not sufficient for
identification of separable effects, contrasts of Pr(Y aY ,aD

k+1 = 1) for different levels of
aY and aD which require the following additional assumptions.

4. Dismissible component conditions:
Let G refer to a hypothetical four-arm trial in which both AY and AD are randomly
assigned, possibly to different values; We add the string “(G)” to indicate the ran-
dom variables that are defined in this trial. In particular, let Yk+1(G) and Dk+1(G)

be the outcome of interest and the competing event had we, contrary to fact, ran-
domly assigned AY (G) and AD(G). Furthermore, let LY ,k(G) and L D,k(G) be
disjoint vectors such that Lk(G) ≡ (LY ,k(G), L D,k(G)). We define the following
conditions for k ∈ {0, . . . , K }:

Yk+1(G) ⊥⊥ AD(G) | AY (G), Dk+1(G) = Yk(G) = 0, L̄k(G), (14)

Dk+1(G) ⊥⊥ AY (G) | AD(G), Dk(G) = Yk(G) = 0, L̄k(G), (15)
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Fig. 7 Extended graphs that explicitly depict measured and unmeasured variables. The dismissible compo-
nent conditions hold in a–d. The dismissible component conditions are violated in e–f
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LY ,k(G) ⊥⊥ AD(G) | AY (G), Yk(G) = Dk(G) = 0, L̄k−1(G), L D,k(G), (16)

L D,k(G) ⊥⊥ AY (G) | AD(G), Dk(G) = Yk(G) = 0, L̄k−1(G), (17)

It follows directly from the generalized decomposition assumption that, using
d-separation rules (Robins andRichardson 2010; Pearl 2009), the dismissible com-
ponent conditions can be read off of a transformation of the extended causal DAG,
representing an augmented version of our original data generating assumption, in
which A and the deterministic arrows originating from A are eliminated. These
transformations are isomorphic to dynamic Single World Intervention Graphs
(SWIGs) (Richardson and Robins 2013; Robins et al. 2020), with interventions
on AY and AD (we have explicitly drawn such a SWIG in Appendix Fig. 11).
See also similar results in Didelez (2018, Figure 2). We denote these graphical
transformations as G transformations, describing a four-arm trial where AY and
AD are randomly assigned.
For example, consider Fig. 8a, a transformation of Fig. 4a, simply assuming
Lk ≡ Zk . Assumption (14) holds in Fig. 8a by the absence of any unblocked back-
door paths between AD(G) and Y2(G) conditional on AY (G), D1(G), D2(G),
L1(G) and Y1(G), and similarly assumption (15) holds due to the absence of
any unblocked paths between AY (G) and D2(G) conditional on AD(G), D1(G),
L1(G) and Y1(G). Analogously, by choosing Lk(G) = (LY ,k(G),∅), k = 1, 2,
(16) and (17) also hold in Fig. 8a.
Consider also the examples in Fig. 7; under G transformations of each graph,
all dismissible component conditions hold in Fig. 7a–d, where L D,1 = L1 and
LY ,1 = ∅ in Fig. 7a–c. By contrast, Fig. 7e–f illustrate failure of these conditions
under their G transformations. For example, while (15)–(17) hold in Fig. 7e, (14)
is violated by the the unblocked collider path AD(G) → D2(G) ← UL,D →
L1(G) ← UL,Y → Y2(G), regardless of whether we define L D,1 = L1 and

LY ,1 = ∅ or LY ,1 = L1 and L D,1 = ∅. Indeed, here UL,D and UL,Y are recant-
ing districts (Shpitser 2013; Robins et al. 2020), and our identification conditions
would hold if we were able to measure either UL,D or UL,Y . Similarly, in Fig. 7f,
while (15)–(17) hold when we define L D,1 = L1 and LY ,1 = ∅, (14) is violated
by the unblocked collider path AD(G) → L1(G) ← UL,Y → Y2(G).

5. Strong positivity:

fLk ,Dk+1,Yk
(lk, 0, 0) > 0 �⇒ Pr(A = a|Dk+1 = Yk = 0, Lk = lk) > 0,

for a ∈ {0, 1} and k ∈ {0, . . . , K }. (18)

Assumption (18) implies (13) and requires that for any possibly observed level
of the measured time-varying covariate history among those surviving all events
through each follow-up time, there exist individuals with A = 1 and individuals
with A = 0. Even when A is randomized, assumption (18) does not hold by
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Fig. 8 The graph in a is a successive transformation of Fig. 4a for L1 = Z1 that represents a hypothetical
trial G in which both AY and AD are randomly assigned (We have removed L0 to avoid clutter, but all
our arguments are valid in the presence of L0). The graph in b is a transformation of Fig. 5b, in which
LY ,1(G) ≡ ZY ,1(G), L D,1(G) ≡ Z D,1(G). All dismissible component conditions hold in both graphs

design. However, it can be assessed in the observed data. Given the dismissible
component conditions, we need assumption (18) to ensure that all the terms in the
identification formula are well-defined (see Sect. 6.2).

The identification conditions in this section are linked to previous general iden-
tification results on identification of path-specific effects (Shpitser 2013; Avin et al.
2005) (who did not consider competing events): there exist (cross-world) path specific
effects that may be identified by isomorphic identification formulas as the separable
effects (Shpitser 2013).

6.1 Relation between isolation and dismissible component conditions

Note that Zk partition is a necessary condition for the dismissible component condi-
tions to hold for any choice of measured covariates Lk and their partition (see proof
in Appendix C). However, Zk partition is not sufficient to ensure these conditions as
also illustrated by Fig. 7. For example, in Fig. 7e, full isolation holds but, as we noted
above, the dismissible component conditions fail due to failure to measure either the
common cause UL,D or UL,Y . Similarly, the graph in Fig. 7f satisfies Zk partition,
but, as we noted above, the dismissible component conditions fail due to failure to
measure the common cause UL,Y .
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In Appendix C we also show that: (i) if the dismissible component conditions hold
when we define L D,k = Lk and LY ,k = ∅ for all k ∈ {1, . . . , K }, then AY partial
isolation holds; (ii) if the dismissible component conditions hold when we define
LY ,k = Lk and L D,k = ∅ for all k ∈ {1, . . . , K }, then AD partial isolation holds;
and (iii) if the dismissible component conditions hold when we choose either of the
partitions in (i) and (ii) then full isolation holds and Lk is independent of A at any k,
given the measured past.

More generally, our identification conditions will only hold when L D,k and LY ,k

are independent of each other given the measured past. When both L D,k and LY ,k are
non-empty, our identification results are related to Robins and Richardson’s (2010)
identification results for mediation estimands in a non-extended DAGwith a recanting
witness under cross-world independence assumptions (See Robins and Richardson’s
2010 Figure 2b and Section 4.4).

6.2 The g-formula for separable effects

For k ∈ {0, . . . , K }, let lk = (lY ,k, lD,k) be a realization of the measured time-varying
covariates at k, such that lY ,k and lD,k are possible realizations of LY ,k and L D,k ,
respectively (a chosen partition of Lk under an assumed temporal order L D,k, LY ,k).
Provided that exchangeability, consistency, positivity and the 4 dismissible component
conditions hold, we can identify Pr(Y aY ,aD

k+1 = 1) by

∑

l̄k

[ k∑

s=0

Pr(Ys+1 = 1 | Ds+1 = Ys = 0, L̄s = l̄s, A = aY )

s∏

j=0

{
Pr(D j+1 = 0 | D j = Y j = 0, L̄ j = l̄ j , A = aD)

× Pr(Y j = 0 | Y j−1 = D j = 0, L̄ j−1 = l̄ j−1, A = aY )

× f (LY , j = lY , j | Y j = D j = 0, L̄ j−1 = l̄ j−1, L D, j = lD, j , A = aY )

× f (L D, j = lD, j | Y j = D j = 0, L̄ j−1 = l̄ j−1, A = aD)
}]

, (19)

k ∈ {0, . . . , K }, where for any vector of random variables A and B, f (A = a |
B = b) is the conditional density of A given B evaluated at a, b. See Appendix
B for proof. We will refer to expression (19) as the g-formula (Robins 1986) for
Pr(Y aY ,aD

k+1 = 1), which is equivalent to identification formulas for path-specific effects
with a different interpretation and under different identification assumptions (Shpitser
2013) and interventionist’s mediation effects (Robins et al. 2020).

6.3 The g-formula in the presence of censoring

We now relax the assumption of no losses to follow-up, allowing that some individuals
are censored at some point during the study. For k > 0, let Ck denote censoring by
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loss to follow-up by interval k, and assume a temporal order (Ck, Dk, Yk, Lk) in each
interval k > 0. We remind the reader that the the temporal ordering assumption
is analogous to assumptions about ties in continuous time settings, which becomes
practically irrelevant when the time intervals are small. Hereby, we will implicitly
redefine all counterfactual outcomes Y aY ,aD

k+1 in terms of outcomes under an additional
intervention that eliminates censoring.

When censoring is present, the isolation conditions defined in Sect. 5 and their
implications for interpretation of separable effects are unchanged. However, in this
case, additional exchangeability, positivity and consistency assumptions are required
for identification of (10) using only the observed data. Given assumptions (28)–(37)
in Appendix B, which extend the assumptions of Sect. 6 to allow that censoring is
present and dependent on the measured time-varying risk factors Lk , we can identify
(10) by

∑

l̄k

[ k∑

s=0

Pr(Ys+1 = 1 | Cs+1 = Ds+1 = Ys = 0, L̄s = l̄s, A = aY )

s∏

j=0

{
Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j = l̄ j , A = aD)

× Pr(Y j = 0 | C j = D j = Y j−1 = 0, L̄ j−1 = l̄ j−1, A = aY )

× f (LY , j = lY , j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, L D, j = lD, j , A = aY )

× f (L D, j = lD, j | C j = Y j = D j = 0, L j−1 = l̄ j−1, A = aD)
}]

. (20)

See Appendix B for proof. We say expression (20) is the g-formula for (10) under
elimination of censoring. When assumptions (28)–(37) hold replacing Lk = L0,
k ∈ {0, . . . , K } then identification of (10) is achieved by a simplified version of (20),
which was given in Stensrud et al. (2020).

7 Estimation of separable effects and data example

The g-formula (20) has the following alternative representations,

k∑

s=0

E[WC,s WD,s WL D,s(1 − Ys)(1 − Ds+1)Ys+1 | A = aY ], (21)

where

WD,s =
∏s

j=0 Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j , A = aD)
∏s

j=0 Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j , A = aY )
,

WL D ,s =
∏s

j=0 Pr(A = aD | C j = Y j = D j = 0, L D, j , L̄ j−1)
∏s

j=0 Pr(A = aY | C j = Y j = D j = 0, L D, j , L̄ j−1)
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×
∏s

j=0 Pr(A = aY | C j = Y j = D j = 0, L̄ j−1)
∏s

j=0 Pr(A = aD | C j = Y j = D j = 0, L̄ j−1)
,

WC,s = I (Cs+1 = 0)
∏s

j=0 Pr(C j+1 = 0 | C j = D j = Y j = 0, L̄ j , A)
,

and

k∑

s=0

E{WC,s WY ,s WLY ,s(1 − Ys)(1 − Ds+1)Ys+1 | A = aD}, (22)

where WC,s is defined as in (21) and

WY ,s = Pr(Ys+1 = 1 | Cs+1 = Ds+1 = Ys = 0, L̄s, A = aY )

Pr(Ys+1 = 1 | Cs+1 = Ds+1 = Ys = 0, L̄s, A = aD)

×
∏s−1

j=0 Pr(Y j+1 = 0 | C j+1 = D j+1 = Y j = 0, L̄ j , A = aY )
∏s−1

j=0 Pr(Y j+1 = 0 | C j+1 = D j+1 = Y j = 0, L̄ j , A = aD)
,

WLY ,s =
∏s

j=0 Pr(A = aY | C j = Y j = D j = 0, L̄ j )
∏s

j=0 Pr(A = aD | C j = Y j = D j = 0, L̄ j )

×
∏s

j=0 Pr(A = aD | C j = Y j = D j = 0, L D, j , L̄ j−1)
∏s

j=0 Pr(A = aY | C j = Y j = D j = 0, L D, j , L̄ j−1)
,

as formally shown in Appendix D.
Here, WY ,s and WD,s are products of conditional discrete cause-specific hazards

of the event of interest and the competing event, respectively. The weights WLY ,s and
WL D ,s are derived from re-expression of conditional probabilities of LY ,s and L D,s ,
respectively, see Appendix D.

Representations (21) and (22)motivateweighted estimators of the separable effects,
which generalize theweighted estimators givenbyStensrud et al. (2020) and are related
to inverse odds ratio weights for mediation analysis (Tchetgen Tchetgen 2013). We
let νk denote (20), and (Lk,i , L D,k,i ) is individual i’s values of (Lk, L D,k) for a user-
chosen partition of Lk .

Define

ŴD,k,i (β̂D) =
∏k

j=0 Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j,i , A = aD; β̂D)
∏k

j=0 Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j,i , A = aY ; β̂D)
,

ŴL D ,k,i (β̂L1, β̂L2) =
∏k

j=0 Pr(A = aD | C j = Y j = D j = 0, L D, j,i , L̄ j−1,i ; β̂L1)
∏k

j=0 Pr(A = aY | C j = Y j = D j = 0, L D, j,i , L̄ j−1,i ; β̂L1)

×
∏k

j=0 Pr(A = aY | C j = Y j = D j = 0, L̄ j−1,i ; β̂L2)
∏k

j=0 Pr(A = aD | C j = Y j = D j = 0, L̄ j−1,i ; β̂L2)
,
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ŴC,k,i (β̂C ) = I (Ck+1 = 0)
∏k

j=0 Pr(C j+1 = 0 | C j = D j = Y j = 0, L̄ j,i , Ai ; β̂C )
,

where Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j , A = aD;βD) is a parametric
model for the numerator (and denominator) of WD,k indexed by parameter βD , and
β̂D is a consistent estimator of βD (e.g. the MLE). The terms in ŴL D ,k,i (β̂L1, β̂L2)

and ŴC,k,i (β̂C ) are defined analogously, where β̂L1, β̂L2, β̂C are consistent estimators
of corresponding model parameters βL1, βL2, βC , respectively.

Let β1 = (βD, βL1, βL2, βC ), and define the estimator ν̂1,k of νk as the solution to
the estimating equation

∑n
i=1 U1,k,i (νk, β̂1) = 0 with respect to νk with

U1,k,i (νk, β̂1) = I (Ai = aY )
[ k∑

s=0

{Ŵ1,s,i (β̂1)Ys+1,i (1 − Ys,i )(1 − Ds+1,i )} − νk

]
,

and Ŵ1,s,i (β̂1) = ŴD,s,i (β̂D)ŴL D ,s,i (β̂L1, β̂L2)ŴC,s,i (β̂C ).
Provided that themodels indexedby elements inβ1 are correctly specified and β̂1 is a

consistent estimator forβ1, then consistencyof ν̂1,k forνk followsbecause (20) and (21)
are equal.Wedescribe an implementation algorithm for ν̂1,k inAppendixE. In practice,
we can use popular regression models for binary outcomes to estimate the weights
WD,k and WC,k . However, when we parameterize the terms in ŴL D ,k(β̂L1, β̂L2), we
must ensure that the statistical models are congenial, which may fail for popular
models, such as logistic regressions models. In Appendix D, we have provided an
alternative expression of WLY ,k that motivates different weighted estimators based on
estimation of the conditional joint densities of Lk . Theseweighted estimators avoid the
problem of incongenial models at the expense of needing to model higher dimensional
quantities.

The estimator based on (22) is derived analogously to the estimator based on (21).
Suppose

ŴY ,k,i (β̂Y ) = Pr(Yk+1 = 1 | Ck+1 = Dk+1 = Yk = 0, L̄k,i , A = aY ; β̂Y )

Pr(Yk+1 = 1 | C j+1 = Dk+1 = Yk = 0, L̄k,i , A = aD; β̂Y )

×
∏k−1

j=0 Pr(Y j+1 = 0 | C j+1 = D j+1 = Y j = 0, L̄ j,i , A = aY ; β̂L3)
∏k−1

j=0 Pr(Y j+1 = 0 | C j+1 = D j+1 = Y j = 0, L̄ j,i , A = aD; β̂L3)
,

ŴLY ,k,i (β̂L3, β̂L4) =
∏k

j=0 Pr(A = aY | C j = Y j = D j = 0, L̄ j,i ; β̂L4)
∏k

j=0 Pr(A = aD | C j = Y j = D j = 0, L̄ j,i ; β̂L4)

×
∏k

j=0 Pr(A = aD | C j = Y j = D j = 0, L D, j,i , L̄ j−1,i ; β̂C )
∏k

j=0 Pr(A = aY | C j = Y j = D j = 0, L D, j,i , L̄ j,i ; β̂C )
,

where the terms in ŴY ,k,i (β̂Y ), ŴLY ,k,i (β̂L3, β̂L4) are statistical models for binary
outcomes, and where β̂Y , β̂L3, β̂L4 are consistent estimators for βY , βL3, βL4, respec-

123



A generalized theory of separable effects in… 609

tively. Similar to ŴL D,k,i (β̂L1, β̂L2), however, we must ensure that congenial models
are used to estimate the terms in ŴLY ,k,i (β̂L3, β̂L4).

Let β2 = (βY , βL3, βL4, βC ), and define the estimator ν̂2,k of νk as the solution to
the estimating equation

∑n
i=1 U2,k,i (νk, β̂2) = 0 with respect to νk , where

U2,k,i (νk, β̂2) = I (Ai = aD)
[ k∑

s=0

{Ŵ2,s,i (β̂2)Ys+1,i (1 − Ys,i )(1 − Ds+1,i )} − νk

]
,

and Ŵ2,s,i (β̂2) = ŴC,s,i (β̂C )ŴY ,s,i (β̂Y )ŴLY ,s,i (β̂L3, β̂L4). Analogous to the estima-
tor based on (21), provided that the models indexed by elements in β2 are correctly
specified and β̂2 is a consistent estimator for β2, then consistency of ν̂2,k for νk follows
because (20) and (22) are equal.

7.1 Simplified estimators under assumptions on Lk

Given a user-chosen partition of Lk such that LY ,k ≡ Lk, L D,k ≡ ∅ for k = 0, . . . , K ,
then WL D ,k = 1 and the consistency of ν̂1,k only requires consistent estimation of the
weights WD,k and WC,k . Thus, if the identification conditions hold and there is no
direct effect (arrow) from AD to Lk , which implies that AD partial isolation holds (see
Lemma 6), we suggest using the estimator ν̂1,k , which is motivated by (21), because
it does not require any modelling of the covariate distributions (Lk).

Similarly, the partition L D,k ≡ Lk, LY ,k ≡ ∅ gives WLY ,k = 1, such that the
consistency of ν̂2,k only relies on consistent estimation of the weights WY ,k and WC,k .
Thus, if the identification conditions hold and there is no direct effect (arrow) from
AY to Lk , which implies AY partial isolation holds (see Lemma 5), we suggest using
the estimator ν̂2,k , which is motivated by (22).

Of course, these simplified Lk partitions are only justified if they satisfy the dis-
missible component conditions. As discussed in Sect. 6.1, identification under these
simplified Lk partitions implies partial or full isolation, impacting the interpretation
of the separable effects.

7.2 Data example: blood pressure therapy and acute kidney injury

As an illustration,we analyzed data from the SystolicBloodPressure InterventionTrial
(SPRINT) (SPRINT Research Group 2015), which randomly assigned individuals to
intensive (A = 1) or standard (A = 0) blood pressure treatment. We used follow-up
data from each month k + 1, k = 0 . . . , 29 and restricted our analysis to participants
aged older than 75 years at baseline in whom the most deaths (competing events)
occurred (Williamson et al. 2016). For simplicity, we further restricted to those patients
with complete data on baseline covariates (described below). This resulted in a data
set with 1304 and 1297 in the intensive (A = 1) and standard (A = 0) blood pressure
therapy arms, respectively. During the 30-month follow-up period, 107 and 98 of these
patients were lost to follow-up (censored) in some month k + 1 ≤ 30 in the intensive
and standard arms, respectively.
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In order to adjust for informative censoring by loss to follow-up, we used inverse
probability of censoring weighted Aalen-Johansen estimators (Aalen and Johansen
1978; Young et al. 2020) to estimate the total effects of treatment assignment on the
cause-specific cumulative incidences at each k + 1 of kidney injury and mortality.
We adjusted for the baseline covariates (L0) smoking status, history of clinical or
subclinical cardiovascular disease, clinical of subclinical chronic kidney disease, statin
use and gender as well as the time-varying covariates (Lk) defined by the most recent
measurements of systolic and diastolic blood pressure, scheduled monthly for the first
3 months and every 3 months thereafter. The weight denominators were estimated
under the following pooled logistic model for the probability of being censored within
each month k + 1 given the measured past,

logit{Pr(Ck+1 = 1 | Dk = Yk = C̄k = 0, A, L̄k)} (23)

= βC,0,k+1 + βC,1A + βC,2Ak + β ′
C,1L0 + β ′

C,2Lk, (24)

where βC,0,k+1 are time-varying intercepts modeled as 3rd degree polynomials. For all
analyses, 95% percent confidence intervals were constructed using 500 nonparametric
bootstrap samples.

The estimated cumulative incidence of acute kidney injury (the event of interest)
under the intensive treatment assignmentwas consistently higher compared to standard
treatment assignment (Fig. 9a, solid lines), in line with a harmful total effect on acute
kidney injury. Specifically, the total effect estimate (on the additive scale) of intensive
therapy assignment versus standard was 0.01 (95% CI: [0.00, 0.03]) at 30 months
of follow-up. This weighted estimator is consistent for the total effect under weaker
conditions than those outlined above for separable effects – unlike the separable effects,
covariate adjustment here is only necessary due to censoring by loss to follow-up
(Young et al. 2020). However, as discussed in Sect. 3, this harmful effect is hard
to interpret due to a possible protective effect of intensive treatment assignment on
death (the competing event). This concern is not easily ruled out by the data; the
cumulative incidence of death under intensive treatment assignment is consistently
slightly lower compared to standard treatment assignment over the 30-month follow-
up with differences increasing at 25 months, as shown with dashed lines in Fig. 9a. At
30 months, the total effect estimate on mortality was -0.01 (95% CI: [−0.03, 0.00]).
Effects that quantify mechanism are therefore naturally of interest.

As discussed in Sect. 5.2, for AY defined as the component of treatment A that may
exert biological effects on the kidneys, e.g. by relaxing the efferent arterioles, and AD

defined as all remaining components of A, AY partial isolation may be a reasonable
assumption given background subject matter knowledge. Under this assumption, the
AY separable effect (4) evaluated at aD = 1 does not capture effects of the treatment
on the competing event. It also may be of clinical interest as it quantifies the effect of
removing the possibly harmful AY component from the original treatment A.

Following the recommendations of Sect. 7.1, given our subject-matter driven
assumption of AY partial isolation, the inverse probability weighted estimator ν̂2,k
described in Sect. 7, based on the representation (22), will rely on considerably fewer
parametric model assumptions than the alternative estimator ν̂1,k , based on the repre-
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Fig. 9 aWeighted Aalen-Johansen estimates of the cumulative incidence functions for acute kidney injury
(AKI, solid lines) and death (dashed lines) under intensive (a = 1, black) and standard (a = 0, red)
treatment. b Estimates of AKI cumulative incidence based onmethods of Sect. 7 under a modified treatment
containing only the AD component (aD = 1, aY = 0, green). Cumulative incidence estimates under the
original intensive (a = aY = aD = 1, black) and the standard (a = aY = aD = 0, red) of a are overlaid

sentation (21). The estimator ν̂2,k further avoids the problem of model incongeniality
of ν̂1,k because we do not need to specify the weights WLY ,s . Therefore, we used ν̂2,k
to estimate (10) and, in turn, the AY separable effect (4) evaluated at aD = 1 on acute
kidney injury at each k +1 under the assumption that the measured baseline and time-
varying covariates are sufficient to ensure identification, i.e. to adjust for common
causes of the event of interest and the competing event. That is, we assume that the
dismissible component conditions (14)–(17) hold under the partitioning Lk = L D,k .
This assumption, at best, approximately holds because Lk contains only intermittent
measurements of systolic and diastolic blood pressure.

We estimated WY ,k under the pooled logistic models

logit{Pr(Yk+1 = 1 | Dk+1 = Yk+1 = C̄k+1 = 0, A = 0, L̄k)}
= βY ,0,k+1 + β ′

Y ,1L0 + β ′
Y ,2Lk + β ′

Y ,3L2
k + β ′

Y ,4Lkk,

logit{Pr(Yk+1 = 1 | Dk+1 = Yk+1 = C̄k+1 = 0, A = 1, L̄k)}
= βY ,5,k+1 + β ′

Y ,6L0 + β ′
Y ,7Lk + β ′

Y ,8L2
k + β ′

Y ,9Lkk,

(25)

for k = 0, . . . , 20, where βY ,0,k+1 and βY ,5,k+1 are time-varying intercepts modeled
as 3rd degree polynomials. The inverse probability of censoring weights WC were
estimated under (24).

Figure 9b shows estimates of the counterfactual cumulative incidence for acute
kidney injury under assignment to different combinations of aY and aD over time.
The vertical distance between the black and the green line is a point estimate of the
additive AY separable effect when aD = 1, and similarly the vertical distance between
the red and the green line is the AD separable effect when aY = 0. In particular, the
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estimated AY separable effect of 0.00 (95% CI: [−0.10, 0.02]) at 30 months when
aD = 1, suggests that removing the AY component from the intensive therapy will
not decrease the average risk of kidney injury at 30 months. R code is provided in the
supplementary materials.

As a comparison, we estimated the cause-specific hazard ratio under a proportional
hazards model conditional on the same baseline covariates (L0) and time-varying
covariates (Lk), which was 1.23(95% : [0.82, 1.93]). This estimated association,
which is conditional not only on acute kidney injury not having occurred before k,
but also on death not having occurred before k and time-varying history of blood
pressure measurements, is further from the null than our separable effect estimates.
Importantly, this estimand is not guaranteed a causal interpretation even under our
identifying conditions of Sect. 6 (Young et al. 2020; Stensrud et al. 2020).

7.3 Sensitivity analysis

To illustrate a sensitivity analysis technique for violations of the dismissible component
conditions, consider a selection bias function for dismissible component condition
(14),

tk(l̄k , aY ) =Pr(Y aY ,aD=0,c̄=0
k+1 = 1 | DaY ,aD=0,c̄=0

k+1 = Y aY ,aD=0,c̄=0
k = 0, L̄aY ,aD=0,c̄=0

k = l̄k)

− Pr(Y aY ,aD=1,c̄=0
k+1 = 1 | DaY ,aD=1,c̄=0

k+1 = Y aY ,aD=1,c̄=0
k = 0, L̄aY ,aD=1,c̄=0

k = l̄k),

which is identified in a perfectly executed randomized trial in which AY and AD are
randomly assigned. Analogous sensitivity functions could be defined for dismissible
component conditions (15)–(17). If dismissible component condition (14) holds for
L̄k , we know that t(L̄k, aY ) = 0. However, if (14) was violated, we would expect that
tk(l̄k, aY ) �= 0 for some values of l̄k and aY . In particular, (14) can be violated in the
presence of an unmeasured cause of Yk and D j , where 0 < j ≤ k.

While the following strategy for sensitivity analysis is applicable to any setting
in which Zk partition holds, we consider a simpler setting in which (i) AY partial
isolation holds, (ii) dismissible component condition (14) holds for some L ′ ≡ L ′

D that
contains the measured variable L as a subset, L ⊂ L ′, and (iii) dismissible component
conditions (15)–(17) hold. This is coherent with our blood pressure example in Sect.
7.2, and one such setting is described in Fig. 7f where (14) is violated due to failure
of measuring UL,Y . Now, suppose that tk(l̄k, aY ) is known. Then the separable effects
can be identified through the modified version of identification formula (22),

k∑

s=0

E{WC,s W †
Y ,s(1 − Ys)(1 − Ds+1)Ys+1 | A = aD}, (26)

where
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W †
Y ,s = (−1)aD ts+1(l̄s+1, aY ) + Pr(Ys+1 = 1 | Cs+1 = Ds+1 = Ys = 0, L̄s , A = aY )

Pr(Ys+1 = 1 | Cs+1 = Ds+1 = Ys = 0, L̄s , A = aD)

×
∏s−1

j=0(−1)aD t j (l̄ j , aY ) + Pr(Y j+1 = 0 | C j+1 = D j+1 = Y j = 0, L̄ j , A = aY )
∏s−1

j=0 Pr(Y j+1 = 0 | C j+1 = D j+1 = Y j = 0, L̄ j , A = aD)
,

which is equal to (22) under AY partial isolation when tk(l̄k, aY ) = 0 and aY �= aD for
all k and l̄k . Formula (26) motivates the estimator ν̂†2,k , a modified version of ν̂2,k from

Sect. 7, such that ν̂†2,k is the solution to the estimating equation
∑n

i=1 U †
2,k,i (νk, β̂2) = 0

with respect to νk , where

U †
2,k,i (νk, β̂2)

= I (Ai = aD)
[ k∑

s=0

{Ŵ †
2,s,i (β̂2)Ys+1,i (1 − Ys,i )(1 − Ds+1,i )} − νk

]
,

and Ŵ †
2,s,i (β̂2) = ŴC,s,i (β̂C )Ŵ †

Y ,s,i (β̂Y ), where

Ŵ †
Y ,k,i (β̂Y )

= (−1)aD tk+1(l̄k+1, aY ) + Pr(Yk+1 = 1 | Ck+1 = Dk+1 = Yk = 0, L̄k,i , A = aY ; β̂Y )

Pr(Yk+1 = 1 | C j+1 = Dk+1 = Yk = 0, L̄k,i , A = aD; β̂Y )

×
∏k−1

j=0(−1)aD t j+1(l̄ j+1, aY ) + Pr(Y j+1 = 0 | C j+1 = D j+1 = Y j = 0, L̄ j,i , A = aY ; β̂Y )
∏k−1

j=0 Pr(Y j+1 = 0 | C j+1 = D j+1 = Y j = 0, L̄ j,i , A = aD; β̂Y )
,

see Appendix F for proof.
A formal sensitivity analysis can be conducted by repeatedly estimating ν̂

†
2,k for

each choice of tk(l̄k, aY ) for a set of functions T = {tk,λ(l̄k, aY ) : λ}, where λ is a
finite dimensional parameter and tk,0(l̄k, aY ) ≡ 0 describes the setting with no bias,
that is, no unmeasured common causes of Yk and D j or of Yk and L j , for any j, k
such that 0 < j ≤ k.

Subject matter knowledge can help us to reason about the sensitivity function
tk(l̄k, aY ). To fix ideas, suppose that the graph in Fig. 7f represents the blood pressure
example, where UL,Y is an unmeasured common cause that increases the blood pres-
sure (Lk) and the risk of kidney failure (Yk). Then we would expect tk(l̄k, aY ) to be
negative due to selection over time; subjects who do not receive the treatment compo-
nent that intensively reduces blood pressure (aD = 0) are less likely to be alive with
larger values of UL,Y compared to those who received the component that intensively
reduces blood pressure (aD = 1).

Our sensitivity analysis technique is inspired by Tchetgen Tchetgen (2014). How-
ever, unlike Tchetgen Tchetgen (2014), the terms in our sensitivity function are not
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cross-world quantities that are unobservable in principle, but conditional expecta-
tions that can be identified in a future experiment in which AY and AD are randomly
assigned.

Furthermore, note that our identification results from Sect. 6 also motivate sen-
sitivity analyses of violations of the isolation conditions from Sect. 5. In particular,
suppose that an investigator assumed that full isolation was satisfied and, thus, used
the simplified identification formula that was given in Stensrud et al. (2020). Then, the
assumption of full isolation could be falsified by comparing these estimates to esti-
mates derived from the estimators in Sect. 7, only assuming Zk partition. To do this
sensitivity analysis, the investigator needs to measure a set of time-varying covariates
Lk, k ∈ {0, . . . , K }.

8 Discussion

We have provided generalized results for interpretation and identification of separable
effects in competing events settings. These results allow the separable effects to be
identified and meaningfullly interpreted in much broader settings than those initially
considered by Stensrud et al. (2020). Generally these effects clarify the interpreta-
tion of total effects when competing events are affected by treatment, provide more
information to patients and doctors for current treatment decisions and inform the
development of improved treatments with unwanted components removed. In gen-
eral, our framework provides a basis that allows subject matter experts to formally
reason about the mechanisms by which treatments act on time-to-event outcomes and
subsequently falsify this reasoning in a future trial.

Even under our generalized conditions, the separable effects may be difficult to
identify given currently available data in many studies. However, they can point to
shortcomings of the data typically collected in studies of competing events, and may
guide the planning for improved data collection in future studies. This is particularly
true of randomized trials which have historically relied heavily on the treatment ran-
domization; failing to collect data on baseline and time-varying covariates makes it
nearly impossible to adjust for selection bias due to censoring and/or to target esti-
mands other than the total effect of the randomization. Furthermore, we outlined
strategies for sensitivity analysis to both the dismissible component conditions and
isolation conditions in Appendix F.

We have focused on establishing fundamental results for interpretation and iden-
tification of separable effects, as well as suggesting three estimators that are easy to
implement. In futurework,we aim to derive new estimators from the efficient influence
function, which may achieve parametric convergence rates even when machine learn-
ing methods are used for model fitting (Robins et al. 1994; Chernozhukov et al. 2018;
Robins et al. 2017; Van der Laan and Rose 2018), such that e.g. bias-aware model
selection can be performed to minimize bias due to model misspecification (Cui and
Tchetgen Tchetgen 2019). We will also extend our results to separable effects of time-
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varying treatment interventions (Robins et al. 2020) in competing events settings,
including per-protocol effects in trials with nonadherence.
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Appendices

Appendix A: Modified treatment assumption.
Appendix B: Proof of identifiability.
Appendix C Zk partition and the dismissible component conditions.
Appendix D Proof of weighted representation of (20).
Appendix E Estimation algorithms.
Appendix F Proof of sensitivity analysis.

AModified treatment assumption

To define the generalized decomposition assumption in Sect. 4, we considered a
decomposition of treatment A into different components, AY and AD , satisfying (2).
Yet, a physical decomposition of A into components AY and AD is not necessary
for the validity of our results on identification and estimation of separable effects in
Sects. 6–7. Specifically, the proofs in Appendix B only require condition (3) of the
generalized decomposition assumption, which may also hold for treatments AY and
AD that are not components of A.

In this case, the separable effects can still be meaningfully interpreted as the effects
of joint assignment to alternative treatments AY and AD in place of assignment to A.
The isolation conditions of Sect. 5 still constitute additional mechanistic assumptions
on how these alternative treatments operate on the event of interest and the competing
event. In themain textwedefined aG transformation as a transformationof an extended
causal DAG under the assumption of a physical decomposition. More generally, a G
transformation can be understood as a (conventional) causal DAG representing data
generating assumptions in a trial in which AY and AD are randomly assigned. Thus,
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the G transformation graph differs from the causal DAG describing the observed data
in that it depicts assumptions about a study in which the alternative treatments AY

and AD , rather than the original study treatment A, are assigned, including how these
treatments operate on future events. The isolation conditions, which only refer to
assumptions about the mechanisms by which the alternative treatments AY and AD

operate, can thus be evaluated in G transformation graphs, even when AY and AD are
not assumed a physical decomposition of A. The G transformations are isomorphic to
dynamic Single World Intervention Graphs (SWIGs) (Richardson and Robins 2013).

However, when treatments AY and AD are not components of A, we require addi-
tional assumptions beyond (3) for the separable effects to explain the mechanism by
which the original treatment A exerts its effects on Yk+1 for k ∈ {0, . . . , K }. The
following is an alternative assumption to (2) that, when coupled with (3), is sufficient
for the separable effects to explain the total effect of the original treatment A on the
event of interest when AY and AD are not a decomposition of A. For variables, MY

and MD , consider the following assumption:

AY and AD exert all their effects through MY and MD, respectively, and

MaY =a,aD
Y = Ma

Y for aD ∈ {0, 1}, MaY ,aD=a
D = Ma

D for aY ∈ {0, 1}, (27)

where the counterfactuals on the right and left hand side of both equalities in (27) refer
to assignment to A = a and no level of AY and AD , and assignment to (AY = aY ,
AD = aD) and no level of A, respectively. A transformed DAG that is consistent with
(27) is shown in Fig. 10 where G ′ refers to a six arm trial in which subjects are either
randomly assigned to A (and no level of AY and AD) or a combination of AY = aY

and AD = aD (and no level of A).
Note that assumptions (3) and (27) can, in principle, be falsified in a future ran-

domized experiment. For example, by randomly assigning individuals to A or a joint
treatment (AY , AD), we can assess whether E(W | AY = a, AD = a) �= E(W | A =
a), for any W ∈ {Y1, . . . , YK+1, D1, . . . , Dk+1, Z1, . . . , Zk+1, MY , MD}.

Tofix ideas, consider a studyof estrogen therapyversus placebo inmenwith prostate
cancer, which was the running example in Stensrud et al. (2020). Estrogen therapy
is thought to reduce death due to prostate cancer, because it reduces testosterone
levels and thus prevents the cancer cells from growing. However, there is concern
that estrogen therapy may also increase mortality due to cardiovascular disease, e.g.
through estrogen-induced synthesis of coagulation factors (Turo et al. 2014). Stensrud
et al. (2020) used this example to motivate the separable direct and indirect effects
under full isolation, and suggested that alternative treatments, such as castration and
luteinizing hormone releasing hormone (LHRH) antagonists, can have the same effect
as estrogen on testosterone reduction (MY ), but, unlike estrogen, these treatments do
not exert effects on the coagulation factors (MD). Whereas Stensrud et al. (2020) did
not formally define the variables MY and MD , providing the story that includes these
additional variables, satisfying (27), is essential to connect the effect of e.g. AY = 1
(here, assigning testosterone or LHRH antagonists) to the separable direct and indirect
effects of estrogen therapy (A) itself.
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MY (G′)

MD(G′)

Y1(G′)
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D2(G′)
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Fig. 10 Modified DAG including the additional variables MY and MD and their relation to A, AY and AD

Fig. 11 Single World
Intervention Graph (SWIG)
(Richardson and Robins 2013)

AY AY (G)

AD AD(G) D1(G) D2(G)

Y1(G) Y2(G)

L1(G)

A

B Proof of identifiability

Before we provide a proof of identification formula (20), consider the following iden-
tifiability conditions that generalize the conditions from Sect. 6 to allow for censoring.

1. Exchangeability:

Ȳ a,c̄=0
K+1 , D̄a,c̄=0

K+1 , L̄a,c̄=0
K+1 ⊥⊥ A | L0 (28)

Y a,c̄=0
k+1 , Da,c̄=0

k+1 , La,c̄=0
k+1 ⊥⊥ Ck+1 | Yk = Dk = C̄k = 0, L̄k, A (29)

Condition (28) holds when AY and AD are randomly assigned at baseline, possibly
conditional on L0. Condition (29) requires that losses to follow-up are independent
of future counterfactual events, given the measured past; this assumption does not
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hold by design in a randomised trial, as losses to follow-up are not randomly
assigned in practice.

2. Positivity:

f (L0 = l0) > 0 �⇒
Pr(A = a | L0 = l0) > 0, (30)

fLk ,Dk+1,Ck+1,Yk
(lk, 0, 0, 0) > 0 �⇒

Pr(A = a|Dk+1 = Ck+1 = Yk = 0, Lk = lk) > 0 (31)

Pr(A = a, Yk = 0, Dk = 0, C̄k = 0, L̄k = lk) > 0 �⇒
Pr(Ck+1 = 0 | Yk = 0, Dk = 0, C̄k = 0, L̄k = lk, A = a) > 0 (32)

for a ∈ {0, 1}, k ∈ {0, . . . , K } and Lk ∈ L. Conditions (30) and (31) were
described in the main text. Condition (32) requires that for any possible history of
treatment assignment and covariates among those who are event-free and uncen-
sored at k, some subjects will remain uncensored at k + 1.

3. Consistency:

if A = a and C̄k+1 = 0,

then Ȳk+1 = Ȳ a,c̄=0
k+1 , D̄k+1 = D̄a,c̄=0

k+1 and L̄k+1 = L̄a,c̄=0
k+1 . (33)

Consistency is satisfied if any individual who has data history consistent with the
intervention under a counterfactual scenario, would have an observed outcome
that is equal to the counterfactual outcome.

4. Dismissible component conditions:

Y c̄=0
k+1 (G) ⊥⊥ AD(G) | AY (G), Dc̄=0

k+1(G) = Y c̄=0
k (G) = 0, L̄ c̄=0

k (G), (34)

Dc̄=0
k+1(G) ⊥⊥ AY (G) | AD(G), Dc̄=0

k (G) = Y c̄=0
k (G) = 0, L̄ c̄=0

k (G), (35)

Lc̄=0
Y ,k (G) ⊥⊥ AD(G) | AY (G), Y c̄=0

k (G) = Dc̄=0
k (G) = 0, L̄ c̄=0

k−1(G), Lc̄=0
D,k (G),

(36)

Lc̄=0
D,k (G) ⊥⊥ AY (G) | AD(G), Dc̄=0

k (G) = Y c̄=0
k (G) = 0, L̄ c̄=0

k−1(G). (37)

The dismissible component conditions are identical to the conditions in Sect. 6,
but the superscript c̄ = 0 is included to emphasize that we consider outcomes in a
setting in which loss to follow-up is eliminated even under G.
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Lemma 1 Under a FFRCISTG model, the dismissible component conditions (34)–(37)
imply the following equalities for aY , aD ∈ {0, 1}:

Pr(Y aY ,aD=0,c̄=0
k+1 = 1 | Y aY ,aD=0,c̄=0

k = 0, DaY ,aD=0,c̄=0
k+1 = 0, L̄aY ,aD=0,c̄=0

k = l̄k)
(38)

= Pr(Y aY ,aD=1,c̄=0
k+1 = 1 | Y aY ,aD=1,c̄=0

k = DaY ,aD=1,c̄=0
k+1 = 0, L̄aY ,aD=1,c̄=0

k = l̄k),

Pr(DaY =0,aD ,c̄=0
k+1 = 1 | Y aY =0,aD,c̄=0

k = DaY =0,aD,c̄=0
k = 0, L̄aY =0,aD,c̄=0

k = l̄k)
(39)

=Pr(DaY =1,aD,c̄=0
k+1 =1 | Y aY =1,aD ,c̄=0

k =0, DaY =1,aD,c̄=0
k =0, L̄aY =1,aD,c̄=0

k = l̄k),

f (LaY ,aD=1,c̄=0
Y ,k+1 = lY ,k+1 | Y aY ,aD=1,c̄=0

k+1 = DaY ,aD=1,c̄=0
k+1 = 0, (40)

L̄aY ,aD=1,c̄=0
k = l̄k, LaY ,aD=1,c̄=0

D,k+1 = lD,k+1)

= Pr(LaY ,aD=0,c̄=0
Y ,k+1 = lY ,k+1 | Y aY ,aD=0,c̄=0

k+1 = DaY ,aD=0,c̄=0
k+1 = 0,

L̄aY ,aD=0,c̄=0
k = l̄k, LaY ,aD=0,c̄=0

D,k+1 = lD,k+1),

f (LaY =0,aD,c̄=0
D,k+1 = lD,k+1 | Y aY =0,aD,c̄=0

k+1 = DaY =0,aD ,c̄=0
k+1 = 0, L̄aY =0,aD,c̄=0

k = l̄k)
(41)

= f (LaY =1,aD,c̄=0
D,k+1 = lD,k+1 | Y aY =1,aD,c̄=0

k+1 = DaY =1,aD ,c̄=0
k+1 = 0,

L̄aY =1,aD ,c̄=0
k = l̄k).

Proof

Pr(Y aY ,aD=0,c̄=0
k+1 = 1 | Y aY ,aD=0,c̄=0

k = 0, DaY ,aD=0,c̄=0
k+1 = 0, L̄aY ,aD=0,c̄=0

k = l̄k)

= Pr(Y c̄=0
k+1 (G) = 1 | Y c̄=0

k (G) = 0, Dc̄=0
k+1(G) = 0, L̄ c̄=0

k (G) = l̄k,

AY (G) = aY , AD(G) = 0) by def. of G

= Pr(Y c̄=0
k+1 (G) = 1 | Y c̄=0

k (G) = 0, Dc̄=0
k+1(G) = 0, L̄ c̄=0

k (G) = l̄k,

AY (G) = aY , AD(G) = 1) due to (34)

= Pr(Y aY ,aD=1,c̄=0
k+1 = 1 | Y aY ,aD=1,c̄=0

k = 0, DaY ,aD=1,c̄=0
k+1 = 0,

L̄aY ,aD=1,c̄=0
k = l̄k) by def. of G,

which shows that equality (38) holds, and (39)–(41) can be shown from analogous
arguments, where we use conditions (35)–(37) in the second step, respectively, instead
of (34). ��
Lemma 2 Suppose that conditions (28)–(33) hold. Then, for s = 0, . . . , K and
aY , aD ∈ {0, 1},

Pr(Y aY =aD=a,c̄=0
s+1 = 1 | DaY =aD=a,c̄=0

s+1 = Y aY =aD=a,c̄=0
s = 0, L̄aY =aD=a,c̄=0

s = l̄s)

= Pr(Ys+1=1 | Cs+1=Ds+1 = Ys = 0, L̄s=l̄s, A = a), (42)

Pr(DaY =aD=a,c̄=0
s+1 = 1 | DaY =aD=a,c̄=0

s = Y aY =aD=a,c̄=0
s = 0, L̄aY =aD=a,c̄=0

s = l̄s)
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= Pr(Ds+1 = 1 | Cs+1 = Ds = Ys = 0, L̄s = l̄s, A = a), (43)

Pr(LaY =aD=a,c̄=0
Y ,s =lY ,s | Y aY =aD=a,c̄=0

s =DaY =aD=a,c̄=0
s = 0, L̄aY =aD=a,c̄=0

s−1 =l̄s−1,

LaY =aD=a,c=0
D,s = lD,s)

= f (LY ,s = l̄Y ,s | Cs = Ds = Ys = 0, L̄s−1 = l̄s−1, A = a, L D,s = lD,s),

(44)

Pr(LaY =aD=a,c̄=0
D,s =lD,s | Y aY =aD=a,c̄=0

s =DaY =aD=a,c̄=0
s =0, L̄aY =aD=a,c̄=0

s−1 = l̄s−1)

= f (L D,s = lD,s | Cs = Ds = Ys = 0, L̄s−1 = l̄s−1, A = a). (45)

Proof Consider first (42),

Pr(Y aY =aD=a,c̄=0
s+1 = 1 | DaY =aD=a,c̄=0

s+1 = Y aY =aD=a,c̄=0
s = 0, L̄aY =aD=a,c̄=0

s = l̄s)

= Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = 0, L̄a,c̄=0

s = l̄s)

= Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = Y0 = D0 = C̄0 = 0, L0 = l0, L̄a,c̄=0

s = l̄s)

= Pr(Y a,c̄=0
s+1 = 1, D̄a,c̄=0

s+1 = Ȳ a,c̄=0
s = 0, L̄a,c̄=0

s = l̄s | Y0 = D0 = C̄0 = 0, L0 = l0, A = a)

Pr(D̄a,c̄=0
s+1 = Ȳ a,c̄=0

s = 0, L̄a,c̄=0
s = l̄s | Y0 = D0 = C̄0 = 0, L0 = l0, A = a)

,

where we used the fact that all subjects are event-free and uncensored at s = 0,
laws of probability and (28). Using (29) and positivity,

Pr(Y a,c̄=0
s+1 = 1, D̄a,c̄=0

s+1 = Ȳ a,c̄=0
s = 0, L̄a,c̄=0

s = l̄s | Y0 = D0 = C̄1 = 0, L0 = l0, A = a)

Pr(D̄a,c̄=0
s+1 = Ȳ a,c̄=0

s = 0, L̄a,c̄=0
s = l̄s | Y0 = D0 = C̄1 = 0, L0 = l0, A = a)

,

= Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = 0, L̄a,c̄=0

s =l̄s , Y0 = D0=C̄1 = 0, L0=l0, A = a).

(46)

For s = 0, under consistency,

Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = 0, L̄a,c̄=0

s = l̄s , Y0 = D0 = C̄1 = 0, L0 = l0, A = a)

= Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = 0, L̄a,c̄=0

s =l̄s , Y0 = D1 = C̄1=0, L0 = l0, A = a)

= Pr(Y a,c̄=0
s+1 = 1 | Y0 = D1 = C̄1 = 0, L0 = l0, A = a) (47)

which proves the lemma for s = 0.
Further, for s > 1, using consistency,

Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = 0, L̄a,c̄=0

s = l̄s , Y0 = D0 = C̄1 = 0, L0 = l0, A = a)

= Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s =0, L̄a,c̄=0

s =l̄s , Y1 = D1 = C̄1=0, L1 = l1, A = a)

(48)

Apply (29) and positivity again,

Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = 0, L̄a,c̄=0

s = l̄s , Y1 = D1 = C̄1 = 0, L1 = l1, A = a)
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= Pr(Y a,c̄=0
s+1 = 1, D̄a,c̄=0

s+1 =Ȳ a,c̄=0
s = 0, L̄a,c̄=0

s =l̄s | Y1 = D1 = C̄2=0, L1 = l1, A = a)

Pr(D̄a,c̄=0
s+1 = Ȳ a,c̄=0

s = 0, L̄a,c̄=0
s = l̄s | Y1 = D1 = C̄2 = 0, L1 = l1, A = a)

,

= Pr(Y a,c̄=0
s+1 =1 | Da,c̄=0

s+1 = Y ac̄=0
s = 0, L̄a,c̄=0

s =l̄s , Y1 = D1 = C̄2=0, L1 = l1, A = a).

(49)

Using consistency,

Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = 0, L̄a,c̄=0

s = l̄s , Y1 = D1 = C̄2 = 0, L1 = l1, A = a)

= Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = 0, L̄a,c̄=0

s = l̄s , Y2 = D2 = C̄2 = 0, L2 = l2, A = a)

(50)

Arguing iteratively, we find that
Pr(Y a,c̄=0

s+1 = 1 | Da,c̄=0
s+1 = Y a,c̄=0

s = 0, L̄a,c̄=0
s = l̄s)

= Pr(Ys+1 = 1 | Cs+1 = Ds+1 = Ys = 0, L̄s = l̄s, A = a). (51)

Analogous arguments can be used to show (43)–(45). ��
Theorem 1 Suppose conditions (28)–(37) hold. Then, for aY , aD ∈ {0, 1},

Pr(Y aY ,aD,c̄=0
k+1 = 1)

=
∑

l̄K

[ K∑

s=0

Pr(Ys+1 = 1 | Cs+1 = Ds+1 = Ys = 0, L̄s = l̄s, A = aY )

s∏

j=0

{
Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j = l̄ j , A = aD)

× Pr(Y j = 0 | C j = D j = Y j−1 = 0, L̄ j−1 = l̄ j−1, A = aY )

× f (LY , j = lY , j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, L D, j = lD, j , A = aY )

× f (L D, j = lD, j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, A = aD)
}]

.

Proof If aY = aD ∈ {0, 1}, it is straightforward to use laws of probability to show
that the theorem holds. Consider now the case where aY �= aD . In particular, let
aY = 1 �= aD = 0. Using laws of probability and Lemma 1,

Pr(Y aY =1,aD=0,c̄=0
K+1 = 1)

=
∑

l̄K

Pr(Y aY =1,aD=0,c̄=0
K+1 = 1 | L̄aY =1,aD=0,c̄=0

K = l̄K )Pr(L̄aY =1,aD=0,c̄=0
K = l̄K )

=
∑

l̄K

[ K∑

s=0

Pr(Y aY =1,aD=0,c̄=0
s+1 = 1 | DaY =1,aD=0,c̄=0

s+1

= Y aY =1,aD=0,c̄=0
s = 0, L̄aY =1,aD=0,c̄=0

s = l̄s)
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s∏

j=0

{
Pr(DaY =1,aD=0,c̄=0

j+1 = 0 | DaY =1,aD=0,c̄=0
j = Y aY =1,aD=0,c̄=0

j = 0,

L̄aY =1,aD=0,c̄=0
j = l̄ j )

× Pr(Y aY =1,aD=0,c̄=0
j = 0 | DaY =1,aD=0,c̄=0

j = Y aY =1,aD=0,c̄=0
j−1 = 0,

L̄aY =1,aD=0,c̄=0
j = l̄ j )

× f (LaY =1,aD=0,c̄=0
Y , j = lY , j | Y aY =1,aD=0,c̄=0

j = DaY =1,aD=0,c̄=0
j = 0

L̄aY =1,aD=0,c̄=0
j−1 = l̄ j−1, LaY =1,aD=0,c̄=0

D, j = lD, j )

× f (LaY =1,aD=0,c̄=0
D, j = lD, j | Y aY =1,aD=0,c̄=0

j = DaY =1,aD=0,c̄=0
j = 0,

L̄aY =1,aD=0,c̄=0
j−1 = l̄ j−1)

}]

=
∑

l̄K

[ K∑

s=0

Pr(Y a=1,c̄=0
s+1 = 1 | Da=1,c̄=0

s+1 = Y a=1,c̄=0
s = 0,

L̄ AY =AD=a1,c̄=0
s = ls)

s∏

j=0

{
Pr(Da=0,c̄=0

j+1 = 0 | Da=0,c̄=0
j = Y a=0,c̄=0

j = 0, L̄a=0,c̄=0
j = l̄ j )

× Pr(Y a=1,c̄=0
j = 0 | Da=1,c̄=0

j = Y a=1,c̄=0
j−1 = 0, L̄a=1,c̄=0

j = l̄ j )

× f (La=1,c̄=0
Y , j = lY , j | Y a=1,c̄=0

j = Da=1,c̄=0
j = 0, L̄a=1,c̄=0

j−1 = l̄ j−1,

La=1,c̄=0
D, j = lD, j )

× f (La=0,c̄=0
D, j = lD, j | Y a=0,c̄=0

j = Da=0,c̄=0
j = 0, L̄a=0,c̄=0

j−1 = l̄ j−1)
}]

,

(52)

where Y aY ,aD,c̄=0
−1 , and LaY ,aD,c̄=0

−1 are empty sets. Using Lemma 2, we can substitute
the terms in the last equality in (52),

=
∑

l̄K

[ K∑

s=0

Pr(Y a=1,c̄=0
s+1 = 1 | Da=1,c̄=0

s+1 = Y a=1,c̄=0
s = 0, L̄ AY =AD=aY ,c̄=0

s = ls)

s∏

j=0

{
Pr(Da=0,c̄=0

j+1 = 0 | Da=0,c̄=0
j = Y a=0,c̄=0

j = 0, L̄a=0,c̄=0
j = l̄ j )

× Pr(Y a=1,c̄=0
j = 0 | Da=1,c̄=0

j = Y a=1,c̄=0
j−1 = 0, L̄a=1,c̄=0

j−1 = l̄ j−1)

× f (La=1,c̄=0
Y , j = lY , j | Y a=1,c̄=0

j = Da=1,c̄=0
j = 0, L̄a=1,c̄=0

j−1 = l̄ j−1, La=1,c̄=0
D, j = lD, j )

× f (La=0,c̄=0
D, j = lD, j | Y a=0,c̄=0

j = Da=0,c̄=0
j = 0, L̄a=0,c̄=0

j−1 = l̄ j−1)
}]

=
∑

l̄K

[ K∑

s=0

Pr(Ys+1 = 1 | Cs+1 = Ds+1 = Ys = 0, L̄s = l̄s, A = aY )
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s∏

j=0

{
Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j = l̄ j , A = aD)

× Pr(Y j = 0 | C j = D j = Y j−1 = 0, L̄ j−1 = l̄ j−1, A = aY )

× f (LY , j = lY , j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, L D, j = lD, j , A = aY )

× f (L D, j = lD, j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, A = aD)
}]

.

��

C Zk partition and the dismissible component conditions

Lemma 3 Zk partition fails if and only if any of the following statements are true for
some k ∈ {1, . . . , K }: (i) there is a direct arrow from AY into Dk+1, (ii) there is a
direct arrow from AD into Yk+1, or (iii) there exists a node W ∈ Z̄k such that there
are direct arrows from both AY and AD into W .

Proof First we directly show that if (i), (ii) or (iii) holds then Zk partition fails. If (i)
holds then (8) is violated by the presence of a causal path AY → Dk+1 and therefore
Zk partition is violated. If (ii) holds then (9) is violated by the presence of a causal
path AD → Yk+1 and therefore Zk partition is violated. Now suppose (iii) is true and
define a partition of Zk such that W ∈ Z̄ D,k . Then a causal path AY → W will exist
and (8), and therefore Zk partition, is violated. Alternatively suppose (iii) is true and
define a partition of Zk such that, instead, W ∈ Z̄Y ,k Then a causal path AD → W
will exist and (9), and therefore Zk partition, is violated.

Nextwe showby contradiction that if Zk partition fails then (i), (ii) or (iii)must hold.
Suppose Zk partition holds and (i), (ii) or (iii) also hold. If (i), (ii) or (iii) hold then one
of the following causal paths must be present: AY → Dk+1, for some k ∈ {1, . . . , K };
AD → Yk+1, for some k ∈ {1, . . . , K }; AY → W for some W ∈ Z̄ D,K ; or AD → W
for some W ∈ Z̄Y ,K . The presence of any of these paths violates either (8) or (9) such
that Zk partition fails. Thus, we have a contradiction and we are done. ��
Lemma 4 If Zk partition fails, then at least one of the dismissible component condi-
tions fail.

Proof Suppose Zk partition fails. Then, by lemma 3, (i), (ii) or (iii) must hold such
that at least one of the following paths must be present for W ∈ Z̄ j , j ≤ k, a cause
of Yk+1 and/or Dk+1, for some k ∈ {1, . . . , K }: AY → Dk+1; AD → Yk+1; AY →
W → . . . → Dk+1 and AD → W → . . . → Dk+1; or AD → W → . . . → Yk+1
and AY → W → . . . → Yk+1.

If the path AY → Dk+1 is present then the dismissible component condition(15)
fails for any choice of Lk . If the path AD → Yk+1 is present then the dismissible
component condition (14) fails for any choice of Lk .

Suppose W /∈ L̄ K , (W is unmeasured). If the path AY → W → . . . → Dk+1 is
present then the dismissible component condition (15) fails for any choice of Lk . If
the path AD → W → Yk+1 is present then the dismissible component condition (14)
fails for any choice of Lk .
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Suppose W ∈ L̄ j+1 for some j ∈ {0, . . . , K } (W is measured). If the paths
AY → W → . . . → Dk+1 and AD → W → . . . → Dk+1 are present then,
no matter our choice of L j , if we choose W ∈ L̄Y , j+1 the dismissible component
condition (16) fails and ifwe chooseW ∈ L̄ D, j+1 the dismissible component condition
(17) fails. Similarly, if the paths AD → W → . . . → Yk+1 and AY → W →
. . . → Yk+1 are present then, no matter our choice of L j , if we choose W ∈ L̄Y , j+1
the dismissible component condition (16) fails and if we choose W ∈ L̄ D, j+1 the
dismissible component condition (17) fails. ��
Lemma 5 If the dismissible component conditions hold when we define LY ,K = ∅,
then AY partial isolation holds.

Proof Wegive aproof by contradiction. Suppose thedismissible component conditions
hold under LY ,k = ∅, but AY partial isolation does not hold. Then, if there is a direct
arrow AY → Dk+1 for any k ∈ {0, . . . , K }, this arrow would violate (15), which
is a contradiction. Alternatively, AY partial isolation can only be violated if there
exists a W such that AY → W → ... → Dk+1 for any k ∈ {0, . . . , K }. However, if
W ⊂ L D,k (because LY ,k = ∅), then (17) is violated, which is a contradiction. If W is
unmeasured, then either (15) is violated or (17) is violated, which is a contradiction.

��
Lemma 6 If the dismissible component conditions hold when we define L D,K = ∅,
then AD partial isolation holds.

Proof The proof is analogous to the proof of lemma 5.

Lemma 7 If the dismissible component conditions hold for both the partition L D,k =
∅, LY ,k = Lk and the partition LY ,k = Lk, L D,k = ∅, then full isolation holds.

Proof It follows immediately from Lemma 5 and Lemma 6, because full isolation
holds by definition if both AY partial isolation and AD partial isolation holds. ��
Lemma 8 If the dismissible component conditions hold for both the partition L D,k =
∅, LY ,k = Lk and the partition LY ,k = Lk, L D,k = ∅, then

Lk+1 ⊥⊥ A | Dk+1 = Yk+1 = 0, L̄k .

Proof We give a proof by contradiction. Suppose that the dismissible component
conditions hold for both the partition L D,k = ∅, LY ,k = Lk and the partition LY ,k =
Lk, L D,k = ∅, and there is a conditional dependence such that

Lk �⊥⊥ A | Dk = Yk = 0, L̄k−1,

for at least one k = 0, . . . , K . Using the rules of d-separation (Pearl 2009), we will
consider the 4 possible ways in which A and Lk can be d-connected, conditional on
Dk = Yk = 0, L̄k−1.

Suppose that the conditional dependence is due to a direct arrow from A into
Lk . Then, under the generalized decomposition assumption, either there is a direct
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arrow from AD into Lk or a direct arrow from AY into Lk , and these arrows would,
repsectively, violate (16) under the partition LY ,k = Lk, L D,k = ∅ and (17) under the
partition L D,k = Lk, LY ,k = ∅, which is a contradiction.

Suppose that the conditional dependence is due the unmeasured common cause W
of of A and Lk . Then, under the generalized decomposition assumption, either (i) W
is a common cause of either AY and Lk or (ii) W is a common cause of AD and Lk .
However, (i) or (ii) would violate dismissible component condition (16) or (17), which
is a contradiction.

Suppose that the conditional dependence is due to an unblocked path due to con-
ditioning on Dk = 0, Yk = 0 and L̄k−1, that is, by conditioning on a collider or a
descendant of a collider. Then, under the generalized decomposition assumption, this
path would lead to a conditional dependence between either Lk and AY or Lk and
AD . Any such path would violate (16) or (17), which is a contradiction of the result
in Lemma 7.

Finally, suppose that the conditional dependence is due to a direct arrow from Lk

where k = 1, . . . , K into A. This would violate our assumption of a temporal order,
that is, it would imply that A occurs after Lk , which is a contradiction. ��

D Proof of weighted representation of (20)

First, using laws of probability we can re-formulate the weights WLY ,k and WL D ,k ,

WL D ,k =
∏k

j=0 Pr(A = aD | C j = Y j = D j = 0, L D, j = lD, j , L̄ j−1 = l̄ j−1)
∏k

j=0 Pr(A = aY | C j = Y j = D j = 0, L D, j = lD, j , L̄ j−1 = l̄ j−1)

×
∏k

j=0 Pr(A = aY | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1)
∏k

j=0 Pr(A = aD | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1)

=
∏k

j=0
Pr(A=aD |C j =Y j =D j =0,L D, j =lD, j ,L̄ j−1=l̄ j−1) Pr(C j =Y j =D j =0,L D, j =lD, j ,L̄ j−1=l̄ j−1)

Pr(C j =Y j =D j =0,L̄ j−1=l̄ j−1,A=aD )

∏k
j=0

Pr(A=aY |C j =Y j =D j =0,L D, j =lD, j ,L̄ j−1=l̄ j−1) f (C j =Y j =D j =0,L D, j =lD, j ,L̄ j−1=l̄ j−1)

Pr(C j =Y j =D j =0,L̄ j−1=l̄ j−1,A=aY )

=
∏k

j=0 f (L D, j = lD, j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, A = aD)
∏k

j=0 f (L D, j = lD, j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, A = aY )
,

and

WLY ,k =
∏k

j=0 Pr(A = aY | C j = Y j = D j = 0, L̄ j = l̄ j )
∏k

j=0 Pr(A = aD | C j = Y j = D j = 0, L̄ j = l̄ j )

×
∏k

j=0 Pr(A = aD | C j = Y j = D j = 0, L D, j = lD, j , L̄ j−1 = l̄ j−1)
∏k

j=0 Pr(A = aY | C j = Y j = D j = 0, L D, j = lD, j , L̄ j−1 = l̄ j−1)

=
∏k

j=0
Pr(A=aY |C j =Y j =D j =0,L̄ j =l̄ j )Pr(C j =Y j =D j =0,L̄ j =l̄ j )

f (C j =Y j =D j =0,L D, j =lD, j ,L̄ j−1=l̄ j−1,A=aY )

∏k
j=0

Pr(A=aD |C j =Y j =D j =0,L̄ j =l̄ j ) f (C j =Y j =D j =0,L̄ j =l̄ j )

f (C j =Y j =D j =0,L D, j =lD, j ,L̄ j−1=l̄ j−1,A=aD)
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=
∏k

j=0 f (LY , j=lY , j | C j=Y j=D j=0, L D, j=lD, j , L̄ j−1=l̄ j−1, A=aY )
∏k

j=0 f (LY , j=lY , j | C j=Y j=D j=0, L D, j=lD, j , L̄ j−1=l̄ j−1, A=aD)
.

Define

W ′
C,k(aY ) = 1

∏k
j=0 Pr(C j+1 = 0 | C j = D j = Y j = 0, L̄ j = l̄ j , A = aY )

.

Consider the expression

E[WC,k(aY )WD,k WL D ,kYk+1(1 − Yk)(1 − Dk+1) | A = aY ]
= E[W ′

C,k(aY )WD,k WL D ,kYk+1(1 − Yk)(1 − Dk+1)(1 − Ck+1) | A = aY ]
=

∑

l̄k

∑

ȳk+1

∑

d̄k+1

[ f (ȳk+1, dk+1, ck+1, l̄k | A = aY )W ′
C,k(a)WD,k WL D ,k

× yk+1(1 − yk)(1 − dk+1)(1 − ck+1)]
=

∑

l̄k

[Pr(Yk+1 = 1, Yk = Dk+1 = Ck+1 = 0, Lk = lk | A = aY )W ′
C,k(aY )WD,k WL D ,k ]

=
∑

l̄k

[Pr(Yk+1 = 1 | Yk = Dk+1 = Ck+1 = 0, Lk = lk , A = aY )

Pr(Dk+1 = 0 | C̄k+1 = D̄k = Ȳk = 0, Lk = lk , A = aY )

× Pr(Ck+1 = 0 | D̄k = Ȳk = C̄k = 0, Lk = lk , A = aY ) f (l̄k | C̄k = D̄k = Ȳk = 0, A = aY )

× Pr(Ȳk = D̄k = C̄k = 0 | A = aY )

× W ′
C,k(aY )WD,k WL D ,k ]

=
∑

l̄k

[Pr(Yk+1 = 1 | Yk = Dk+1 = Ck+1 = 0, Lk = lk , A = aY )

Pr(Dk+1 = 0 | C̄k+1 = D̄k = Ȳk = 0, Lk = lk , A = aY )

× Pr(Ck+1 = 0 | D̄k = Ȳk = C̄k = 0, Lk = lk , A = aY )

× f (lk | Ȳk = D̄k = C̄k = 0, Lk−1 = lk−1, A = aY )

× Pr(Ȳk = D̄k = C̄k = 0, L̄k−1 = lk−1 | A = aY )

× W ′
C,k(aY )WD,k WL D ,k ],

where we use the definition of expected value in the second equation, the fact that
Yk and Dk are binary in the third equation, laws of probability in the fourth and fifth
equation.

We use laws of probability to express f (Ȳk = D̄k = C̄k = 0, l̄k−1 | A = aY ) as

Pr(Yk = 0 | Ck = Dk = Yk−1 = 0, Lk−1 = lk−1, A = aY )

× Pr(Dk = 0 | Ck = Dk−1 = Yk−1 = 0, Lk−1 = lk−1, A = aY )

× Pr(Ck = 0 | Dk−1 = Yk−1 = Ck−1 = 0, Lk−2 = lk−2, A = aY )

× f (lk−1 | Ck−1 = Dk−1 = Yk−1 = 0, Lk−2 = lk−2, A = aY )

× f (Ȳk−1 = D̄k−1 = 0, Lk−2 = lk−2, C̄k−1 = 0 | A = aY ),
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where any variable indexed with a number m < 0 is defined to be the empty set.
Arguing iteratively for k − 1, k − 2, ..., 0 we find that

E[W ′
C,k(aY )WD,k WL D ,kYk+1(1 − Yk)(1 − Dk+1)(1 − Ck+1) | A = aY ]

=
∑

l̄k

[
Pr(Yk+1 = 1 | Yk = Dk+1 = Ck+1 = 0, Lk = lk, A = aY )

k∏

j=0

{
Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j = l̄ j , A = aY )

× Pr(Y j = 0 | C j = D j = Y j−1 = 0, L̄ j−1 = l̄ j−1, A = aY )

× Pr(C j+1 = 0 | D̄ j = Ȳ j = C̄ j = 0, L̄ j = l̄ j , A = aY )

× f (L j = l j | C j = D j = Y j = 0, L̄ j−1 = l̄ j−1, A = aY )
}

× W ′
C,k(aY )WD,k WL D,k

]

=
∑

l̄k

[
Pr(Yk+1 = 1 | Yk = Dk+1 = Ck+1 = 0, Lk = lk, A = aY )

k∏

j=0

{
Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j = l̄ j , A = aY )

× Pr(Y j = 0 | C j = D j = Y j−1 = 0, L̄ j−1 = l̄ j−1, A = aY )

× Pr(C j+1 = 0 | D̄ j = Ȳ j = C̄ j = 0, L̄ j = l̄ j , A = aY )

× f (LY , j = lY , j | C j−1 = Y j−1 = D j = 0, L̄ j−1 = l̄ j−1,

L D, j = lD, j , A = aY )

f (L D, j = lD, j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, A = aY )
}

× W ′
C,k(aY )WD,k WL D,k

]
,

where we use that Lk = (LY ,k, L D,k) in the second equality.
By plugging in the expression for W ′

C,k(aY ), we get

=
∑

l̄k

[Pr(Yk+1 = 1 | Yk = Dk+1 = Ck+1 = 0, L̄k = l̄k, A = aY )

×
k∏

j=0

{
Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j = l̄ j , A = aY )

× Pr(Y j = 0 | C j = D j = Y j−1 = 0, L̄ j−1 = l̄ j−1, A = aY )

× f (LY , j = lY , j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, L D, j = lD, j , A = aY )

× f (L D, j = lD, j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, A = aY )
}

× WD,k WL D ,k],
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By plugging in the expression for the weights WL D ,k and WD,k we obtain

=
∑

l̄k

[Pr(Yk+1 = 1 | Yk = Dk+1 = Ck+1 = 0, L̄k = l̄k, A = aY )

×
k∏

j=0

{
Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j = l̄ j , A = aD)

× Pr(Y j = 0 | C j = D j = Y j−1 = 0, L̄ j−1 = l̄ j−1, A = aY )

× f (LY , j = lY , j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, L D, j = lD, j , A = aY )

× f (L D, j = lD, j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, A = aD)
}
,

and the final expression is equal to (20).

E Estimation algorithms

Here we describe an algorithm to estimate the separable effects using estimators based
on (21); i.e. the estimator ν̂1,k described in Sect. 7. We initially construct our input
data set such that each subject has K ∗ + 1 lines, indexed by k = 0, . . . , K ∗, and
there are measurements of (A, Ck+1, Dk+1, Yk+1, L̄k+1) on each line k. For each
subject, K ∗ = K if CK+1 = DK+1 = YK+1 = 0, otherwise K ∗ = m, where
Cm = Dm = Ym = 0 and either Cm+1 = 1, Dm+1 = 1 or Ym+1 = 1. Due to the
temporal ordering, we do the following: if Ck+1 = 1, then Dk+1 and Yk+1 are set
missing. Similarly, if Ck+1 = 0 and Dk+1 = 1, then Yk+1 = 1 is set missing. Then
we do the following to estimate (21) at K :

1. Using all subject-intervals records, i.e. all lines in the data set, obtain β̂D by fitting
a parametricmodel (e.g. pooled logistic regressionmodel) with dependent variable
Dk+1 and independent variables a specified function of k = 0, . . . K , L̄k and A.

2. Using all subject-intervals records, obtain β̂C by fitting a parametric model (e.g.
pooled logistic regression model) with dependent variable Ck+1 and independent
variables a specified function of k = 0, . . . K , L̄k and A.

3. Using all subject-intervals records, estimate β̂L1 by fitting a parametric model
with dependent variable A and independent variables a specified function of k =
0, . . . K , L̄k and A.

4. Using all subject-intervals records, estimate β̂L2 by fitting a parametric model
with dependent variable A and independent variables a specified function of k =
0, . . . K , L̄k−1,L D,k and A, ensuring that the models used to fit β̂L1 and β̂L2 are
compatible. Notice that this step is redundant if we can define a Lk partition such
that L D,k = ∅, k = 0, . . . K , which implies that AD partial isolation holds.

5. For subject i , attach a weight to line k with predicted outcome probabilities derived
from the parametric models indexed by parameters β̂D, β̂L1, β̂L2 and β̂C to esti-
mate Ŵ1,i,k(β̂1) = Ŵi,D,k(β̂D)Ŵi,L D ,k(β̂L1, β̂L2)Ŵi,C,k(β̂C ).
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6. Compute an estimate of Pr(Y aY ,aD,c̄=0
K+1 ) from

1∑n
j=1 I (A j = aY )

n∑

i=1

K∑

k=0

Ŵ1,i,k(β̂1)Yi,k+1(1 − Yi,k)(1 − Di,k+1)I (Ai = aY ).

An estimator based on (22) could be derived analogously, where step (1) we would fit
a model with Yk+1 as dependent variable, in step (4) we would fit a model where we
replace L D,k with LY ,k , and we finally compute an estimate of Pr(Y aY ,aD ,c̄=0

K+1 ) from

1∑n
j=1 I (A j = aD)

n∑

i=1

K∑

k=0

Ŵ2,i,k(β̂1)Yi,k+1(1 − Yi,k)(1 − Di,k+1)I (Ai = aD).

F Proof of sensitivity analysis

This section includes a proof of the estimating equation for the sensitivity analysis in
Sect. 7.3.

Proof The following equality holds by definition of tk(l̄k, aY ),

Pr(Y aY ,aD=0,c̄=0
k+1 = 1 | Y aY ,aD=0,c̄=0

k = DaY ,aD=0,c̄=0
k+1 = 0, L̄aY ,aD=0,c̄=0

k = l̄k)
(53)

= tk(l̄k, aY ) + Pr(Y aY ,aD=1,c̄=0
k+1 = 1 | Y aY ,aD=1,c̄=0

k = DaY ,aD=1,c̄=0
k+1 = 0,

L̄aY ,aD=1,c̄=0
k = l̄k). (54)

While (38) of Lemma 1 is violated in our setting where dismissible component con-
dition (14) is violated, note that (39)–(41) of Lemma 1 holds and that Lemma 2 holds
regardless of violations of the dismissible component conditions. Thus, following
analogous steps as in the proof of Theorem 1, we use (28)–(33), (35)–(37), as well as
(54) instead of (34), to obtain the following identification formula for settings where
aY �= aD ,

Pr(Y aY ,aD ,c̄=0
k+1 = 1)

=
∑

l̄K

[ K∑

s=0

(−1)aD tk(l̄k, aY ) + Pr(Ys+1 = 1 | Cs+1 = Ds+1 = Ys = 0,

L̄s = l̄s, A = aY )

s∏

j=0

{
Pr(D j+1 = 0 | C j+1 = D j = Y j = 0, L̄ j = l̄ j , A = aD)

× [(−1)aD tk(l̄k, aY ) + Pr(Y j = 0 | C j = D j = Y j−1 = 0,

L̄ j−1 = l̄ j−1, A = aY )]
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× f (LY , j = lY , j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, L D, j = lD, j , A = aY )

× f (L D, j = lD, j | C j = Y j = D j = 0, L̄ j−1 = l̄ j−1, A = aD)
}]

,

and a weighted representation of this identification formula is analogous to identi-
fication formula (22), where Ŵ2,s is replaced by W †

Y ,s , which can be shown by an
argument that is analogous to the proof in Appendix D. ��

References

Aalen O, Johansen S (1978) An empirical transition matrix for non-homogeneous Markov chains based on
censored observations. Scand J Stat 141–150

Aalen O, Stensrud MJ, Didelez V, Daniel R, Røysland K, Strohmaier S (2019) Time-dependent mediators
in survival analysis: modeling direct and indirect effects with the additive hazards model. Biom J

Avin C, Shpitser I, Pearl J (2005) Identifiability of path-specific effects
Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J (2018) Dou-

ble/debiased machine learning for treatment and structural parameters. Econom J 21(1):C1–C68,
01

Cui Y, Tchetgen Tchetgen EJ (2019) Bias-aware model selection for machine learning of doubly robust
functionals. arXiv preprint arXiv:1911.02029

Didelez V (2018) Defining causal mediation with a longitudinal mediator and a survival outcome. Lifetime
Data Anal 1–18

Hernán MA (2010) The hazards of hazard ratios. Epidemiology (Cambridge, MA) 21(1):13
Hernan MA, Robins JM (2018) Causal inference. CRC Boca Raton, FL
Martinussen T, Vansteelandt S, Andersen PK (2020) Subtleties in the interpretation of hazard contrasts.

Lifetime Data Anal 26(4):833–855
Pearl J (2009) Causality. Cambridge University Press, Cambridge
Richardson TS, Robins JM (2013) Single world intervention graphs (swigs): a unification of the counterfac-

tual and graphical approaches to causality. Center for the Statistics and the Social Sciences , University
of Washington Series, Working Paper 128(30):2013

Ridker PM, PradhanA,MacFadyen JG, Libby P, GlynnRJ (2012) Cardiovascular benefits and diabetes risks
of statin therapy in primary prevention: an analysis from the jupiter trial. The Lancet 380(9841):565–
571

Robins JM (1986) A new approach to causal inference in mortality studies with a sustained exposure
period—application to control of the healthy worker survivor effect. Math Model 7(9–12):1393–1512

Robins JM (2016) Direct and indirect effects. Presentation at the UK causal inference conference in London
Robins JM, Greenland S (1992) Identifiability and exchangeability for direct and indirect effects. Epidemi-

ology 143–155
Robins JM, Richardson TS (2010) Alternative graphical causal models and the identification of direct

effects, pp 103–158
Robins JM, Rotnitzky A, Zhao LP (1994) Estimation of regression coefficients when some regressors are

not always observed. J Am Stat Assoc 89(427):846–866
Robins JM, Li L, Rajarshi M, Eric T, van der Vaart A et al (2017) Minimax estimation of a functional on a

structured high-dimensional model. Ann Stat 45(5):1951–1987
Robins JM, Richardson TS, Shpitser I (2020) An interventionist approach to mediation analysis. arXiv

preprint arXiv:2008.06019
SattarN, PreissD,MurrayHM,WelshP,BuckleyBM,deCraenAJM,Seshasai SRK,McMurray JJ, Freeman

DJ, Wouter Jukema J et al (2010) Statins and risk of incident diabetes: a collaborative meta-analysis
of randomised statin trials. The Lancet 375(9716):735–742

Shpitser I (2013) Counterfactual graphical models for longitudinal mediation analysis with unobserved
confounding. Cogn Sci 37(6):1011–1035

Shpitser I, Richardson TS, Robins JM (2020) Multivariate counterfactual systems and causal graphical
models. arXiv preprint arXiv:2008.06017

123

http://arxiv.org/abs/1911.02029
http://arxiv.org/abs/2008.06019
http://arxiv.org/abs/2008.06017


A generalized theory of separable effects in… 631

SPRINT Research Group (2015) A randomized trial of intensive versus standard blood-pressure control. N
Engl J Med 373(22):2103–2116

Stensrud MJ, Hernán MA (2020) Why test for proportional hazards? Jama 323(14):1401–1402
Stensrud MJ, Young JG, Didelez V, Robins JM, Hernán MA (2020) Separable effects for causal inference

in the presence of competing events. J Am Stat Assoc 1–23
Tchetgen Tchetgen EJ (2013) Inverse odds ratio-weighted estimation for causal mediation analysis. Stat

Med 32(26):4567–4580
Tchetgen Tchetgen EJ (2014) Identification and estimation of survivor average causal effects. Stat Med

33(21):3601–3628
Turo R, Smolski M, Esler R, Kujawa ML, Bromage SJ, Oakley N, Adeyoju A, Brown SCW, Brough R,

Sinclair A et al (2014) Diethylstilboestrol for the treatment of prostate cancer: past, present and future.
Scand J Urol 48(1):4–14

Van der Laan MJ, Rose S (2018) Targeted learning in data science. Springer, Berlin
Verma T, Pearl J (1991) Equivalence and synthesis of causal models. UCLA, Computer Science Department
Williamson JD, Supiano MA, Applegate WB, Berlowitz DR, Campbell RC, Chertow GM, Fine LJ, Haley

WE, Hawfield AT, Ix JH et al (2016) Intensive vs standard blood pressure control and cardiovascular
disease outcomes in adults aged le 75 years: a randomized clinical trial. Jama 315(24):2673–2682

Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernán MA (2020) A causal framework for classical
statistical estimands in failure-time settings with competing events. Stat Med 39(8):1199–1236

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A generalized theory of separable effects in competing event settings
	Abstract
	1 Introduction
	2 Observed data structure
	3 The total treatment effect on the event of interest
	4 Generalized decomposition assumption and separable effects
	5 Isolation conditions and interpretation of separable effects
	5.1 Full isolation
	5.2 AY partial isolation
	5.3 AD partial isolation
	5.4 No isolation
	5.5 Zk partition

	6 Identification of separable effects
	6.1 Relation between isolation and dismissible component conditions
	6.2 The g-formula for separable effects
	6.3 The g-formula in the presence of censoring

	7 Estimation of separable effects and data example
	7.1 Simplified estimators under assumptions on Lk
	7.2 Data example: blood pressure therapy and acute kidney injury
	7.3 Sensitivity analysis

	8 Discussion
	Acknowledgements
	Appendices
	A Modified treatment assumption
	B Proof of identifiability
	C Zk partition and the dismissible component conditions
	D Proof of weighted representation of (20)
	E Estimation algorithms
	F Proof of sensitivity analysis
	References




