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Abstract

Although the hepatitis E virus represents an uprising threat to the global community

by representing the commonest cause of an acute viral hepatitis worldwide, its life

cycle is grossly understudied. Albeit HEV is a non-enveloped virus, its progeny is

released as quasi-enveloped virions. Thus, the responsible accessory protein pORF3

gained rising attention in the past years. It mediates viral release via the exosomal

route by targeting the viral capsid to the endosomal system, more precisely to multi-

vesicular bodies. As this is followed by quasi-envelopment, pORF3 may in terms rep-

resent a substitute to a conventional envelope protein. This feature proofs to be

rather unique with respect to other enteric viruses, although the protein's role in the

viral life cycle seems to reach far beyond simply maintaining release of progeny

viruses. How pORF3 affects viral morphogenesis, how it mediates efficient viral

release and how it supports viral spread is summarised in this microreview. With this,

we aim to shed light on functions of pORF3 to gain further insights in still enigmatic

aspects of the HEV life cycle.

Take Aways

• HEV is released as exosome via multivesicular bodies

• Viral pORF3 mediates release via endosomal complexes required for transport

• pORF3 modulates various cellular processes in infected cells

• Elucidation of pORF3-related processes imply novel clinical strategies

K E YWORD S
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1 | THE HEPATITIS E VIRUS – GENOMIC
ORGANISATION

The hepatitis E virus (HEV) is the sole member of the genus

Orthohepevirus in the Hepeviridae family. It represents a non-enveloped,

positive-sense, single-stranded RNA virus with a genome being 7.2–

7.4 kb in size (Tam et al., 1991). Three open reading frames (ORFs) are

encoded by all genotypes, yet only HEV genotype 1 carries a fourth ORF

(Nair et al., 2016). Proteins encoded by ORF1 and ORF4 are initially

translated from the genome and mediate genomic replication (Koonin

et al., 1992). Whether pORF1 is proteolytically cleaved or acts as single

polyprotein remains elusive, yet both the full-length protein and sepa-

rately expressed subunits display functionality (Parvez, 2017). During this

process, an antisense RNA is synthesised (Nanda, Panda, Durgapal, &

Jameel, 1994) serving as template for both the viral genome and a 2.2 kb

bicistronic subgenomic RNA comprising ORF2 and ORF3 (Graff, Torian,
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Nguyen, & Emerson, 2006). The positive-sense transcripts are 50-capped

and 30-polyadenylated (Kabrane-Lazizi, Meng, Purcell, & Emerson, 1999).

Following the cap-structure lies a 50-UTR, whereas a 30-UTR precedes

the genomically encoded polyadenylation. Both UTRs found in the geno-

mic RNA carry regulatory RNA secondary structures or cis-responsive

elements (CREs). A third CRE is found within the region separating ORF1

and the overlapping ORF2/3 (Ju et al., 2020). This CRE-mediated separa-

tion of the viral genome potentially serves regulatory purposes for initial-

izing and terminating subgenomic RNA synthesis and therefore impacts

translation of the proteins encoded by ORF2 (pORF2) and ORF3

(pORF3) (Ding et al., 2018) (Figure 1a). These in turn are the drivers of

viral morphogenesis and release.

F IGURE 1 Legend on next page.
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2 | HEV – SHOULD WE CARE?

The Hepeviridae family comprises eight genotypes within the spe-

cies Orthohepevirus A (Smith et al., 2014). While genotypes 1 and

2 are restricted to humans, genotypes 3, 4 and 7 display zoonotic

potential (Doceul, Bagdassarian, Demange, & Pavio, 2016;

Sridhar, Teng, Chiu, Lau, & Woo, 2017). Thus, transmission not

only occurs via contaminated sewage or blood-products (Colson

et al., 2007; Viswanathan, 2013), but also via contaminated meat

(Harrison & DiCaprio, 2018). HEV represents the commonest

cause of an acute viral hepatitis worldwide. As of 2005, there are

over 20 million newly registered cases per year, resulting in 3 mil-

lion symptomatic cases and 70,000 related fatalities (Rein, Ste-

vens, Theaker, Wittenborn, & Wiersma, 2012). However, these

numbers have risen up until today, suggesting an even higher

death toll (P. Li et al., 2020). Herein, mortality rates range from

0.1 to 4% in healthy adults to up to ~30% in pregnant women

(Jilani et al., 2007). Increased mortality in the latter is due to the

fulminant course the disease can take in pregnant women

infected with genotype 1 or 2 (Gouilly et al., 2018). Immuno-

suppressed patients represent a further risk group for they often

develop a chronic hepatitis upon infection with genotype 3 or

4 (Kamar et al., 2008). This further links the course of disease to

the geographical spread, as zoonotic genotypes majorly reside in

industrialised nations, yet human-only genotypes are endemic

predominantly in emergent nations (Aggarwal, 2011). As per

disease-prevention, a vaccine is only approved in China (S.-W. Li

et al., 2015), and treatment options are limited. Here, PEGylated

interferon alpha (Kamar, Abravanel, et al., 2010) and majorly riba-

virin (Kamar, Rostaing, et al., 2010) are used, yet both cause

severe adverse effects (Manns, Wedemeyer, & Cornberg, 2006;

Yang et al., 2010), and the latter may confer drug resistance due

to viral mutation (Debing et al., 2014). In essence, HEV represents

a pathogen being on the rise from a global perspective. There is a

tremendous lack in disease prevention and management due to a

lack of understanding the viral life cycle. Thus, elucidating the

release and spread of progeny viruses is of central interest.

3 | THE VIRAL CAPSID

The viral capsid protein is represented by pORF2 and is 660 amino

acids (aa) in length. It can be separated into three domains: (a) an

aminoterminal (N-terminal) shell domain (S), (b) a middle domain

(M) and a carboxyterminal (C-terminal) protrusion domain (P) (Yamashita

et al., 2009). Further, the full-length protein carries a signal peptide

(Figure 1b), which thereby renders localization to the endoplasmic

reticulum (ER). Therein, pORF2 is glycosylated at two asparagine

residues being part of consensus N-X-S/T motifs (Ankavay et al.,

;2019). While a study implied that this post-translational modifica-

tion may fulfil virion-related roles (Graff et al., 2008), a more recent

study pointed out that there in fact exist three different forms of

the capsid protein. While the glycosylated forms are secreted as

dimers only, the unglycosylated form is responsible for forming the

viral capsid. Reason for a lack in glycosylation may either be found

by translation via a downstream shifted start-codon or by an

N-terminal cleavage, which is yet to be clarified in more detail

(Montpellier et al., 2018; Yin et al., 2018). Assembly of the capsid

structure is mediated by spontaneous homodimerisation within the

P-domains near the C-terminal end (Xu, Behloul, Wen, Zhang, &

Meng, 2016) and subsequent oligomerisation (T.-C. Li et al.,

2005). During this process, 50-end-dependent RNA-binding and

encapsidation is mediated via an N-terminal, positively charged

stretch within the S-domain (Surjit, Jameel, & Lal, 2004) (Figure 1c).

While the site of RNA encapsidation requires further elucidation, an

involvement of the ER and the cis- and trans-Golgi-network was

suggested in bringing components into close proximity of each other

(Nagashima, Takahashi, et al., 2014; Surjit, Jameel, & Lal, 2007). As a

result, an icosahedral capsid structure is formed, which likely reflects a

T = 3 symmetry for RNA-loaded particles (Xing et al., 2010). These

F IGURE 1 HEV pORF3 mediates essential processes during viral release. The 50-capped and 30-polyadenylated viral genome comprises three
ORFs, which are flanked by stem-loop structures forming CREs. ORF2 and ORF3 are contained within a similarly modified bicistronic subgenomic
RNA (a). ORF2 encodes the capsid protein pORF2 containing an SP in its full form, yet no SP if either an alternate start-codon is used or N-
terminal cleavage occurs. ORF3 encodes a virion-related regulatory protein pORF3 (b). The SP-containing form of pORF2 is imported into the ER
and is therein glycosylated and dimerizes. Subsequently, glycosylated pORF2 dimers shuttle from ER through the Golgi apparatus and are
secreted. In contrast, the non-glycosylated pORF2 dimerizes and binds the viral genome at the 50-end. The interaction is stabilised via a positively
charged stretch within pORF2 and leads to RNA encapsidation (c). pORF3 in turn represents either an integral membrane protein or a peripheral
membrane protein being palmitoylated at a cysteine-rich region. pORF3 then locates to MVBs where it interacts with TSG101 via a PxxP motif.
This subsequently leads to translocation of pORF3 to the ESCRT machinery (d). Subsequently, HEV nucleocapsids interact with phosphorylated
pORF3 at the surface of MVBs, which triggers invagination as ILVs and therefore viral quasi-envelopment (e). HEV-loaded MVBs then shuttle to

the PM in a Rab27-dependent manner once there are low intracellular cholesterol concentrations. High concentrations of the lipid induce
lysosomal degradation of the viral cargo. Upon MVB-PM fusion, quasi-enveloped viral particles are released (f). These viral particles maintain their
quasi envelope within the bloodstream of infected patients (g). Just upon entry into the biliary duct, bile acids lead to removal of the quasi-
envelope and expose the nucleocapsid. Subsequently, shedding of viral particles takes place via stool (h). AAA, polyadenylation; C-rich region,
cysteine-rich region; CRE, cis-responsive element; EE, early endosome; eHEV, quasi-enveloped HEV virions; Endolys, endolysosome; ER,
endoplasmic reticulum; LE/MVB, late endosome/multivesicular body; Lys, lysosome; nHEV, non-envelope HEV virions; ORF, open reading frame;
p-serine70, phosphorylated serine-residue at position 70; pORF, protein encoded by ORF; PSAP, PSAP motif; SP, signal peptide
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virions can be detected in stool samples acquired from infected

patients, which display a size of ~27 nm (Balayan et al., 1983).

4 | THE ROLE OF pORF3 IN VIRIONS

Despite HEV virions appearing as non-enveloped in stool samples

with a distinctive size, further studies described the presence of larger

particles in cell culture supernatants and blood samples. Here, HEV

particles were characterised with a size of ~40 nm ranging up to

120 nm (Montpellier et al., 2018; Nagashima, Jirintai, et al., 2014).

Along with changes in size went changes in particle density, which

range from ~1.07 to 1.15 g/ml in case of blood- and cell culture-

derived particles to ~1.21–1.28 g/ml for stool-derived virions. This

change is reasoned by these particles carrying a lipid envelope sur-

rounding the capsid structure (Emerson et al., 2010; Qi et al., 2015;

Takahashi et al., 2010). This primed investigations regarding the char-

acterisation of the two forms of virions: non-enveloped HEV (nHEV)

and quasi-enveloped HEV (eHEV). A central role of the viral protein

pORF3 became apparent herein, which seems to be dispensable for

the entirety of viral life cycle except for viral egress (Emerson

et al., 2010; Emerson, Nguyen, Torian, & Purcell, 2006; Yamada

et al., 2009). The protein is ~113 aa in size and resides within the viral

quasi-envelope (Takahashi et al., 2008; Takahashi et al., 2016). The

exact cause for pORF3 being membrane-associated may either be

caused by a predicted transmembrane domain (TMD) (Ding

et al., 2017) or via palmitoylation at an N-terminal cysteine-rich region

(Gouttenoire et al., 2018), which is yet to be clarified. As further modi-

fication, a phosphorylation by host-kinases cyclin-dependent kinase

1 (CDK1) or mitogen-activated protein kinases (MAPKs) at a serine

residue on position 70 was described (Zafrullah, Ozdener, Panda, &

Jameel, 1997). This directly lies within a region located between aa

57–80, which is described to be crucial for interaction with non-

glycosylated pORF2 and thereby rendering a phosphorylation-

dependent interaction between pORF3 and nHEV (Tyagi, Korkaya,

Zafrullah, Jameel, & Lal, 2002) (Figure 1e). Although following spatio-

temporal relationships remain elusive in large parts, a microtubule

association of pORF3 mediated via its N-terminal hydrophobic

domains (Kannan, Fan, Patel, Bossis, & Zhang, 2009; Zafrullah

et al., 1997) may potentially serve purposes of trafficking the capsid

to its destination or mediating contact to downstream organelles. In

effect, the covering of capsids with pORF3 primes endosomal

targeting, which is followed by viral quasi-envelopment.

5 | ENVELOPMENT AND VIRAL EGRESS

Central key players within the endosomal system are multivesicular

bodies (MVBs). These represent a specified subset of late endosomes,

which are characterised by a distinct set of proteins, lipids and accu-

mulated intralumenal vesicles (ILVs). The build-up and sorting into

ILVs hereby determines the fate of bound cargo with respect to deg-

radation, subcellular translocation or secretion. ILVs are formed by the

MVB membrane-resident endosomal sorting complexes required for

transport (ESCRT), which are responsible for cargo recognition and

sorting (ESCRT-0 and -I), cargo condensation (ESCRT-II) and budding

of vesicles from the MVB surface into the lumen (ESCRT-III)

(Rodriguez-Furlan, Minina, & Hicks, 2019). For HEV, MVBs and the

ESCRT machinery are essential for particle quasi-envelopment, which

is initiated by pORF3-mediating interaction with the host-factor

tumour susceptibility gene 101 (TSG101) (Nagashima, Takahashi,

Jirintai, Tanaka, Yamada, et al., 2011). The latter is an MVB-resident

protein and part of ESCRT-I, thus being involved in cargo- recognition

and sorting (Sundquist et al., 2004). An interaction between HEV and

this host factor is dependent on a viral late-domain located in pORF3

upstream of the pORF2 interacting domain, where in human patho-

genic species of HEV a classical PSAP motif can be found at position

96–99 close to the C-terminus (Emerson et al., 2010) (Figure 1d).

Effectively, this leads to a recruitment of capsid structures to the site

of ESCRT-mediated formation of ILVs. As a consequence, viral capsids

enter MVBs as ILVs, which then leads to endosomal shuttling towards

the plasma membrane (PM) in a Ras-related protein 27a (Rab27a)-

dependent manner (Nagashima et al., 2017) (Figure 1f). Efficient shut-

tling and escape from endosomal-lysosomal fusion herein seem to be

dependent on cholesterol. Specifically, high cholesterol levels shift the

equilibrium of the endosomal flux towards degradative processes, yet

withdrawal of cholesterol favours successful release (Glitscher

et al., 2021). Ultimately, viral release is achieved by HEV-containing

MVBs fusing with the PM. Predominantly, this is suggested to take

place at the apical interface of polarised hepatocytes (Capelli

et al., 2019), which may be reasoned by pORF3 being found predomi-

nantly at the apical interface of polarised cells. This in turn may highlight

its role in efficiently mediating release towards the biliary duct to guar-

antee viral shedding. As virions ultimately are released via MVBs, the

viral quasi-envelope comprises host factors such as ALG-2-interacting

Protein X (ALIX), vacuolar protein sorting-associated protein 4A

(Vps4A), Vps4B, trans-Golgi network integral membrane protein

2 (TGOLN2) or tetraspanins, which are characteristic markers for classi-

cal exosomes (Nagashima, Takahashi, et al., 2014; Nagashima

et al., 2017; Primadharsini et al., 2020) alongside carrying exosome-

specific lipids (Chapuy-Regaud et al., 2017) while circulating in the

bloodstream (Figure 1g). Just upon entry into the biliary duct,

the virions are believed to lose their membranous shell due to the pres-

ence of detergents within the bile, which goes along with a tenfold

increase in infectivity (Yin, Ambardekar, Lu, & Feng, 2016) and viral

shedding into the stool (Figure 1h). This route of egress represents the

major mechanism of viral release for HEV, which is highlighted by inter-

ference with endosomal/exosomal maturation or pORF3 functionality

leading to a loss in productive progeny formation (Anang et al., 2018;

Kenney, Wentworth, Heffron, & Meng, 2015; Nagashima, Takahashi,

Jirintai, Tanaka, Nishizawa, et al., 2011; Nagashima, Jirintai, et al., 2014;

Tanggis et al., 2018). Notably, the importance of pORF3 for this process

and its role for subsequent particle production seems to be conserved

over different hosts and species of HEV, although alternate late-domain

sequences may be in place (Kenney et al., 2012; Primadharsini

et al., 2020). Thus, the exosomal release and acquisition of a quasi-
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envelope around the otherwise non-enveloped virions of HEV is

entirely dependent on pORF3.

6 | pORF3 MAKING THE DIFFERENCE

Various different viruses were described to use MVBs and the ESCRT

machinery during their viral life cycle or for release of viral by-

products. Among these are other hepatotropic viruses such as the

hepatitis B virus (HBV) (Hoffmann et al., 2013; B. Jiang, Himmelsbach,

Ren, Boller, & Hildt, 2015; Lambert, Döring, & Prange, 2007), the hep-

atitis C virus (HCV) (Elgner et al., 2016; Masciopinto et al., 2004) or

the hepatitis A virus (HAV) (Feng et al., 2013). What makes both HAV

and HEV unique in comparison to HBV and HCV is that both normally

form non-enveloped virions as they encode no envelope proteins.

Conventionally, non-enveloped viruses were believed to be released

F IGURE 2 Manifold roles of HEV pORF3 open various questions and applications. (a) Which form of pORF3, the palmitoylated or the non-

modified, is predominantly found associated with the ESCRT machinery remains elusive. Further host–protein interactions and related cellular
processes require clarification. (b) The MT association of pORF3 may influence endosomal maturation and trafficking. (c) Channel activity
mediated via pORF3 oligomerization potentially leads to altered functions of mitochondria and other organelles. This is turn would influence the
viral life cycle. (d) As pORF3 is partially exposed on the surface of eHEV, an alternate receptor may be in place for viral entry. (e) Diagnostic tools
targeting pORF3 may help to determine viral titers in blood samples. (f) The presence of pORF3 on eHEV may proof useful as a strategy for a
therapeutic vaccine targeting the viral spread within an organism. EE, early endosome; eHEV, quasi-enveloped HEV virions; LE/MVB, late
endosome/multivesicular body; Mito, mitochondrion; MT, microtubule; pORF, protein encoded by ORF; ROS, reactive oxygen species
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strictly via entering a lytic cycle, which in fact was proven untrue and

gained increasing interest in the past decade especially for enteric

viruses (Owusu, Quaye, Passalacqua, & Wobus, 2021). With respect

to this, HAV and HEV have adapted strikingly similar mechanisms cor-

roborating the exosomal route of egress (Feng, Hirai-Yuki,

McKnight, & Lemon, 2014). Nonetheless, while HAV enters MVBs

directly via its capsid (González-L�opez et al., 2018; W. Jiang

et al., 2020), HEV differs insofar as that it dedicated a separate protein

for this purpose: pORF3. Due to its membrane localization and inter-

action with the capsid structure, it features aspects of classical enve-

lope proteins. In this context, the question whether pORF3 represents

an integral or a peripheral membrane protein, as suggested via abroga-

tion of palmitoylation (Gouttenoire et al., 2018), needs to be

addressed in more detail. Further, the mechanism compromised by

pORF3 presents rather reminiscent of the Gag p6-protein of human

immunodeficiency virus (HIV), which similarly targets TSG101 via a

PxxP-motif (Garrus et al., 2001) and of HBV making use of the host-

factor α-taxilin (TXLNA) to initiate TSG101-interaction (Hoffmann

et al., 2013). Thus, analysing further host–pathogen interaction poten-

tially being hijacked by HEV may proof useful for additional under-

standing (Figure 2a,b). Alongside this direct interaction with the

exosomal pathway, regulatory roles of pORF3 herein require further

attention. Evidently, the viral protein modulates mitochondrial pro-

cesses (Moin, Panteva, & Jameel, 2007; Tian et al., 2019), possibly via

acting as ion channel (Ding et al., 2017). In how far these mechanisms

contribute to beneficial viral release, for example, via induction of ele-

vated levels of reactive oxygen species, as described for HCV

(Medvedev et al., 2017), presents an issue worth elucidating

(Figure 2c). Additionally, pORF3 is described to interfere with cellular

host defences such as the inducibility as well as the effectors of inter-

feron signalling (Dong et al., 2012; He et al., 2016; Lei et al., 2018).

This in turn further helps the viral infection to be efficiently

established. Conclusively, HEV pORF3 may in terms be regarded as

an alternate envelope protein of a quasi-enveloped virus, which is par-

tially presented on the surface of eHEV (Qi et al., 2015; Takahashi

et al., 2008; Takahashi et al., 2010). In this context, a potential role of

pORF3 in viral entry needs to be clarified in more detail, as different

routes of viral entry are described for eHEV and nHEV (Yin

et al., 2016) (Figure 2d). Knowledge gathered herein will also serve

purposes of pinpointing risks of extrahepatic manifestations. From a

clinical point of view, the incorporation of pORF3 into eHEV virions

also raises questions with respect to diagnostics and disease preven-

tion. First, establishment of ELISA-based assays recognising pORF3

may proof useful to determine actual viral loads in infected patients

(Figure 2e). Problems in current assays targeting pORF2 are both

shielding of antigens via the quasi-envelope and secretion of pORF2

dimers, which may deteriorate readouts depending on the question

being addressed. Further, pORF3 may as well be used as a target for

therapeutic vaccinations in addition to the pORF2-based vaccine as

experimentally implemented before, for example, in chicken (Syed

et al., 2017). As such, it may inactivate eHEV once the virus is in circu-

lation and may in this context be superior to the current

pORF2-based vaccine (Figure 2f). In summary, HEV pORF3 represents

a small yet central viral protein being of utmost importance for the

viral life cycle. As such, it regulates fundamental cellular processes via

various different modes of action. Especially its involvement in the

unconventional viral egress makes it a target worth being studied,

which may help to overcome current gaps in knowledge about HEV

and the related lack in options for disease management.
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