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1  |   INTRODUCTION

The most frequently reported histology of all pri-
mary brain and other central nervous system tumors is 

meningioma and comprises 37.6% with an average annual 
incidence rate of 8.58 patients per 100,000 population [1].

Contrast-enhanced structural magnetic resonance 
imaging (MRI) is routinely used in meningioma patients 
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Abstract

Anatomical cross-sectional imaging methods such as contrast-enhanced MRI 

and CT are the standard for the delineation, treatment planning, and follow-up 

of patients with meningioma. Besides, advanced neuroimaging is increasingly 

used to non-invasively provide detailed insights into the molecular and meta-

bolic features of meningiomas. These techniques are usually based on MRI, 

e.g., perfusion-weighted imaging, diffusion-weighted imaging, MR spectros-

copy, and positron emission tomography. Furthermore, artificial intelligence 

methods such as radiomics offer the potential to extract quantitative imaging 

features from routinely acquired anatomical MRI and CT scans and advanced 

imaging techniques. This allows the linking of imaging phenotypes to meningi-

oma characteristics, e.g., the molecular-genetic profile. Here, we review several 

diagnostic applications and future directions of these advanced neuroimag-

ing techniques, including radiomics in preclinical models and patients with 

meningioma.
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for defining the tumor extent, treatment planning, and 
follow-up after treatment, especially for the diagnosis of 
tumor recurrence. Additionally, computed tomography 
(CT) allows, besides identifying calcifications for differ-
ential diagnosis, the diagnosis of osseous involvement of 
the adjacent skull bone [2, 3], which is of particular value 
for meningioma delineation and treatment-decisions. 
While structural MRI is exceptional in providing in-
formation on both the central nervous system anatomy 
and meningiomas, advanced neuroimaging techniques 
offer the ability to yield additional information regard-
ing tumor biology at both the functional and molecular 
levels. In neurooncology, these techniques are usually 
based on MRI, e.g., perfusion-weighted imaging (PWI), 
diffusion-weighted imaging (DWI), MR spectroscopy 
(MRS), and positron emission tomography (PET).

Moreover, artificial intelligence offers the potential 
to extract additional imaging features from routinely 
acquired MRI, CT, and advanced imaging techniques. 
Importantly, these features quantify image characteris-
tics that are beyond human perception. In combination 
with clinical parameters or molecular markers, mathe-
matical or machine learning models can be developed for 
an improved assessment of prognosis or the non-invasive 
prediction of molecular-genetic alterations. The devel-
opment of these models based on quantitative features 
computed from medical images is called radiomics [4–
7] and allows linking imaging phenotypes to a tumor's 
molecular-genetic profile, a field commonly referred to 
as radiogenomics. The latter is also of particular interest 
because efforts are currently ongoing to incorporate mo-
lecular profiling into the diagnostic work-up to improve 
the characterization of meningiomas, e.g., in terms of 
prediction of the biological behavior [8].

Furthermore, deep learning-based radiomics uses 
artificial neural networks that automatically extract 
high-dimensional features from the images at different 
abstraction levels. As a result, characteristic image pat-
terns are autonomously identified, learned, and used for 
classification [9].

Here, we review several diagnostic applications and 
future directions of these advanced neuroimaging tech-
niques, including radiomics in preclinical models and 
patients with meningioma.

2  |   N EUROIM AGING OF  
PRECLIN ICA L 
M EN INGIOM A MODELS

Various meningioma animal models were successfully 
established during the last years to study the mecha-
nisms of tumor initiation and progression and the ef-
ficacy and toxicity of novel treatment approaches [10, 
11]. Ideally, not only the presence and exact location 
of the tumor growth can be visualized, but also the 
rate of tumor growth can be quantified in longitudinal 

measurements before or after treatment. Thus, slowing 
down tumor growth or even tumor regression following 
treatment may become detectable in individual animals. 
An essential prerequisite for such longitudinal tumor im-
aging is a non-invasive nature of the imaging modality 
that allows examinations of even weakened animals (e.g., 
due to treatment side effects). Currently, mice are mainly 
used as animal models, and therefore imaging modali-
ties with a high spatial resolution are required to depict 
a meningioma as a total nude mouse brain has only a 
volume of about 450 mm3. Additionally, to detect patho-
logical relevant changes in meningioma growth, imaging 
with submillimeter range resolution is crucial to evaluate 
putative cancer treatment effects.

There are basically two options to distinguish the me-
ningioma from surrounding healthy tissue under in vivo 
conditions. First, already existing structural changes 
related to the tumor growth can be visualized. Second, 
tumor cells can be labeled either intrinsically (i.e., tumor 
cells express a detectable marker) or extrinsically (i.e., an 
external applied detectable marker specifically binds to 
tumor cells). Besides others, frequently used non-invasive 
imaging modalities are bioluminescence imaging, MRI, 
and PET.

2.1  |  Bioluminescence imaging

The labeling of tumor cells with an easily detectable 
marker, such as different luciferases (i.e., firefly lucif-
erase, marine Renilla luciferase, or Oplophorus lucif-
erase), is an intriguing approach to identify the location 
and putative spreading of the meningioma over time in 
individual animals [12]. Because luciferase expression is 
cell-specific, the bioluminescence signal indicates the 
presence and location of meningioma cells. An aug-
mented signal intensity relates to an increased number 
of cells that express the respective marker and thus indi-
cates tumor growth. Besides, bioluminescence provides 
information on tumor cell viability. Luciferases only 
produce light in the presence of the substrates luciferin 
or coelenterazine, which have to be applied before imag-
ing, and of intracellular adenosine triphosphate, oxygen, 
and Mg2+. Thus, light is only generated in living cells [13, 
14]. This also means that dead tumor cells, infiltrating 
host cells, and tumor cell debris do not contribute to the 
bioluminescence signal [15]. Thus, the total tumor size 
does not necessarily relate to the measured biolumines-
cence signal. Nevertheless, one should keep in mind that 
artificial expression of luciferase may itself affect the im-
mune response toward these cells, which may eventually 
result in reduced growth of these reporter-labeled cells 
[16–18].

So far, human immortal IOMM-Lee cells (intraos-
seous malignant meningioma-derived cell line) were 
transfected with firefly luciferase. As early as 3  days 
after implantation at the skull base, bioluminescence 
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imaging successfully detected the tumor, and, subse-
quently, signals increased nearly exponentially until day 
18 [19]. Although imaging was highly sensitive, the exact 
location and extent of the meningioma had to be verified 
by subsequent histological analysis. In a similar study, 
another human immortal cell line (CH-157-MN), as well 
as IOMM-Lee cells, was implanted at the skull base or 
at the cerebral convexity of 3-week-old immunodeficient 
mice. Bioluminescence signals were measured biweekly 
starting 1 week after implantation [20]. According to the 
measured bioluminescence signals, almost logarithmic 
tumor growth was detected until day 17–18.

In addition to human immortal cell lines, mouse 
neonatal arachnoidal cells with inactivated Nf2 and 
Cdkn2ab genes were injected at the craniocervical junc-
tion in immunocompetent 6-week-old mice. These cells, 
which were also co-transfected with a luciferase reporter 
gene, developed to higher-grade meningioma. In these 
mice, bioluminescence imaging could detect growing tu-
mors at the skull base or convexity of 3-month-old mice 
[21].

In general, bioluminescence imaging provides an im-
proved approximation of the actual tumor burden, but 
only limited information about the tumor's exact spatial 
distribution. Therefore, it has to be considered to trans-
fect meningioma tumor cells with a secreted luciferase 
and, for tumor growth monitoring, a corresponding 
blood luciferase reporter gene assay is necessary [22]. 

This approach is an inexpensive, rapid, nevertheless it 
is a sensitive method to measure tumor growth and re-
sponse to various treatments.

2.2  |  Magnetic resonance imaging

So far, MRI has the highest spatial resolution (up to 
25 µm2 in-plane) for soft tissue in vivo imaging. Therefore, 
several anatomical MRI studies were performed to delin-
eate and quantify the volume of meningiomas. The first 
study was published in 2003 using a 1.5 T clinical MRI 
system. In that study, xenografts containing IOMM-
Lee cells were implanted at the skull base of mice. T1-
weighted MRI could detect the developing tumor after 
14 days. These images already had an in-plane resolution 
of about 100 × 100 µm, but a slice thickness of 1.5 mm 
hampered an accurate volume determination [23]. With 
the advent of ultra-high field MRI animal systems, spa-
tial resolution increased considerably. The use of 9.4 T 
animal scanners combined with cryo-coils allows scan-
ning with an in-plane spatial resolution of 50 × 50 µm, 
and a slice thickness of 250 µm.

In most cases, T2-weighted images were sufficient to 
distinguish the meningioma from the surrounding nor-
mal brain tissue (Figure 1). Up to now, various xeno- and 
allografts were visualized and quantified by anatomical 
MRI. For example, the impact of micro-RNA 145 on 

F I G U R E  1   T2-weighted anatomical MR images visualize the location and size of a meningioma either at skull base (A) or at the cerebral 
convexity (B) of the mouse brain. In-plane resolution of 52 × 52 µm (field of view, 20 × 20 mm; imaging matrix, 384 × 384) allows for a clear 
separation of the meningioma (red arrows) from the surrounding tissue. Green arrows indicate the site for implanting the meningioma cells 
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IOMM-Lee cell growth at the cortical curvature was de-
termined by T2-weighted MRI [24]. Similarly, an inhib-
itory effect of temsirolimus, regorafenib, and sorafenib 
on IOMM-Lee cells growth at the cortical curvature 
could be verified by serial T2-weighted measurements 
[25, 26]. Furthermore, the growth of KLF4K40Q trans-
fected IOMM-Lee cells at the convexity and skull base 
could also be followed and quantified by T2-weighted 
MRI [27]. A similar imaging approach was also used to 
follow the slowly growing KT21 meningioma cells at the 
convexity [28].

In meningiomas, the contrast in T1-weighted im-
ages is increased by the intravenous application 
of a gadolinium-based contrast agent (Figure 2). 
Corresponding histology confirmed widespread vas-
cularization and, often, hemorrhage in the tumor [29]. 
In combination with bioluminescence imaging at the 
craniocervical junction, contrast-enhanced MRI visual-
ized meningioma developed from mouse neonatal arach-
noidal cells with an inactivated Nf2 as well as Cdkn2ab 
gene [21]. Besides detecting xeno- or allografts, contrast-
enhanced T1-weighted MRI allows exposing abnormal 
meningeal proliferations in mice deficient in Nf2 and p16 
[30]. These spontaneously developing meningiomas were 
subsequently verified by histology.

In summary, high-resolution MRI is well suited to 
localize and quantify meningiomas that develop from 
various cell lines (Figure 3). The main advantage of 
high-resolution MRI is the possibility to precisely delin-
eate the tumor and visualize possible invasions in bone 
or even perforations through the skull base. Notably, a 
combination of different modalities may also increase 
the informative value. All imaging methods mentioned 
here can be used for longitudinal studies. In parallel, they 
can be used to localize and quantify the tumor size, e.g., 
MRI, or verify tumor cell viability, e.g., bioluminescence 
imaging. On the other hand, infrastructure and running 
costs for MRI are more extensive and expensive than 
bioluminescence imaging. Nevertheless, MRI offers the 
possibility to perform different imaging sequences (e.g., 
T1 with or without contrast agent, T2) during one im-
aging session. Furthermore, current developments in 
MRI nanoimaging agents, which are highly versatile for 
on-demand covalent conjugation of various moieties, in-
cluding proteins [31], may further increase the contrast 
for meningioma in MR images.

2.3  |  Positron emission tomography

Meningioma cells are known to highly express somato-
statin receptors (SSTR), predominantly the SSTR sub-
type 2 [32]. Consequently, somatostatin receptor ligands, 
such as 68Ga-DOTA-Tyr3-octreotide (DOTATOC), 
68Ga-DOTA-l-Nal3-octreotide (DOTANOC), or 68Ga-
DOTA-D-Phe1-Tyr3-octreotate (DOTATATE) that have  
high affinity to the SSTR2, were labeled with the 

positron-emitting nuclide 68Ga and used to define the 
meningioma extent, particularly for treatment planning 
in patients with meningioma [33].

Currently, the number of animal studies in mice that 
use SSTR PET ligands is small. Soto-Montenegro and 
colleagues evaluated a subcutaneous human meningi-
oma CH-157MN xenograft using the latter mentioned 
68Ga-labeled SSTR analogs. Of these, 68Ga-DOTATATE 
had the best tumor-to-muscle uptake ratio, indicating 
that this tracer seems to be the best option for detecting 
meningiomas [34].

A further DOTATATE PET study evaluated sub-
cutaneously implanted human CH-157MN meningi-
oma xenografts serially after inoculation. On day 20, 
the DOTATATE PET scan revealed a reduced tumoral 
tracer binding compared with earlier scans at days 7 and 
13, assuming that this reflects necrotic areas within the 
tumor [35]. Although it has undisputable potential for 
research applications, PET studies using SSTR ligands 
have limitations, particularly for mouse imaging. First, 
the spatial resolution of preclinical PET is inherently 
limited by physical principles and usually in the range of 
0.7–1 mm. Second, signal detection in tiny regions can be 
easily contaminated by surrounding regions, hampering 
tracer binding quantification. Third, the use of SSTR 
PET to quantify tumor growth over time requires a sta-
ble expression of somatostatin receptors during early 
and late stages.

3  |   USE OF A DVA NCED 
M RI A N D PET IN PATIENTS 
W ITH M EN INGIOM A

Contrast-enhanced anatomical MRI is exceptional in 
providing detailed structural information of the central 
nervous system anatomy and brain neoplasms, although 
its specificity is comparatively poor [36–40]. Advanced 
MR techniques, including PWI techniques such as dy-
namic contrast-enhanced (DCE) or dynamic susceptibil-
ity contrast (DSC) PWI and arterial spin labeling (ASL), 
apparent diffusion coefficients (ADC) obtained by DWI, 
and proton MRS [41–43], yield additional information 
regarding tumor biology, especially at the molecular, 
physiological, and functional levels.

PWI is a non-invasive MRI technique to measure 
blood flow quantitatively. In Neuro-Oncology, the pa-
rameter relative cerebral blood volume is frequently as-
sessed. Most commonly, a gadolinium-based contrast 
agent is used to assess tissue perfusion. DSC MRI uses 
the passage of the contrast agent to cause local mag-
netic field distortion (susceptibility effect) in the vicinity 
of the vessels resulting in a signal drop in T2- or T2*-
weighted MRI. DCE MRI is based on shortening of 
the T1-relaxation time causing a signal increase in T1-
weighted MRI. ASL is another PWI method which does 
not require a contrast agent. Here, endogenous water 
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molecules in blood vessels are magnetically labeled by 
applying a specific radiofrequency pulse. Passage of 
these labeled molecules through the tissue of interest 
leads to a reduction of signal intensity in proportion to 
the perfusion.

DWI is based on the measurement of Brownian mo-
tion of water molecules to generate an image contrast. 
DWI contrast uses two opposing gradient pulses; the 
first one induces a phase shift in water molecules, leading 
to a signal reduction. Subsequently, a second opposed 

gradient pulse is applied, which rephases the water mol-
ecules in the region of interest, leading to a recovery of 
the water signal.

Proton MRS is a non-invasive method to detect se-
lected water-soluble metabolites in vivo. By the applica-
tion of external magnetic fields, every metabolite has its 
characteristic magnetic field signature resulting in slightly 
different resonance frequencies with differential signals. 
These signal differences are used in MRS to identify the 
metabolites of interest.

F I G U R E  2   Meningiomas (red arrows) 
at the cerebral convexity of the mouse 
brain delineated using T2-weighted 
MRI (A) and a subsequently obtained 
T1-weighted MRI after intravenous 
application of a gadolinium-based contrast 
agent (B)

F I G U R E  3   High-resolution MR 
imaging of meningioma in Swiss nude mice 
derived from different cell lines carrying 
either deletion of NF2 (A) or a mutation 
in AKT1 (B), KLF4 (C), or SMO (D). 
Red arrows indicate the location of the 
meningiomas
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4  |   MOST RELEVA NT 
CLIN ICA L APPLICATIONS FOR 
A DVA NCED M RI

4.1  |  Differential diagnosis

A wide variety of neoplastic and inflammatory diseases 
have a propensity for the dura mater or subdural space's 
involvement and may mimic meningioma. For example, 
dural-based brain metastases, lymphomas, tumors of 
the solitary fibrous tumor spectrum (previously referred 
to as hemangiopericytomas) (Figure 4), as well as sar-
coidosis and tuberculosis, may exhibit a meningioma-
like appearance [44, 45]. Furthermore, depending on the 
meningioma size, the distinction between an intraaxial 
and extraaxial origin may be difficult [46].

Perfusion MRI may differentiate between menin-
gioma and dural metastases from different entities, es-
pecially breast cancer and colorectal carcinoma [47]. 
The cerebral blood volume in these brain metastases 
entities seems to be significantly lower than in menin-
giomas. By contrast, brain metastases from renal cell 
carcinoma or melanoma may also have elevated blood 
volumes, thereby hampering differential diagnosis of 
meningioma [48–50]. Using proton MRS, metabolic pro-
file characterization may add valuable information for 

the differentiation between meningiomas and brain me-
tastases [51, 52]. A considerable number of meningiomas 
exhibit a relatively high choline peak at 3.2 parts per mil-
lion and an inverted doublet alanin peak centered at 1.45 
parts per million [52, 53].

4.2  |  Meningioma grading

In patients with newly diagnosed meningioma, various 
imaging features derived from preoperative anatomical 
MRI (e.g., heterogenous contrast enhancement, perifo-
cal edema, presence of a brain–tumor interface) may be 
associated with an atypical meningioma of the WHO 
grade II or a WHO grade III anaplastic meningioma 
[54]. Furthermore, perfusion MRI metrics seem to be of 
value to differentiate between WHO grade I and grade II 
or III meningioma. A study suggested that the cerebral 
blood volume accurately reflects vascular endothelial 
growth receptor expression and tumor grade in men-
ingiomas and helps identify patients with WHO grade 
II or III meningioma [55]. Another study observed that 
perfusion patterns in cerebral blood flow maps derived 
from ASL are also of value for meningioma grading [56]. 
In that study, a heterogenous hyperperfusion or a lack 

F I G U R E  4   MRI scans and corresponding histopathological images with hematoxylin and eosin staining of two patients diagnosed with a 
hemangiopericytoma (A) and a meningioma (B). The similar appearance on conventional MRI makes a reliable differential diagnosis difficult. 
Here, the preoperative extraction of quantitative image features using radiomics provided additional diagnostic information to improve 
differential diagnosis. Modified from Wei et al. [103], under the terms of the Creative Common Attributions License (CC-BY, version 4.0) 
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of hyperperfusion was significantly associated with the 
presence of a high-grade meningioma (i.e., WHO grade 
II or III).

A multicenter study included around 400  meningi-
oma patients and suggested that also apparent diffusion 
coefficients derived from DWI can differentiate WHO 
grade I meningioma from grade II and III tumors with 
an accuracy of 73% [57]. Additionally, in that study, the 
proliferation marker Ki-67 was significantly correlated 
with ADC derived from DWI. However, it has to be 
pointed out that predominantly older diffusion and per-
fusion MRI studies reported no additional value or dis-
crepant results regarding meningioma grading [58–60].

4.3  |  Meningioma relapse risk stratification

For patient management and treatment decisions, the 
prediction of an early meningioma relapse, i.e., identify-
ing meningioma patients with increased relapse risk is 
of great clinical importance. Notably, an earlier diag-
nosis of meningioma relapse using conventional MR or 
CT imaging may be impeded by specific tumor locations 
(e.g., skull base).

A retrospective study in 144 postoperative meningi-
oma patients showed that DWI-derived ADC provides 
additional information to predict an increased risk for 
meningioma relapse [61]. Besides other factors, patients 
with incomplete resection and low ADC had a signifi-
cantly higher risk of progression or recurrence and 
may benefit from a more aggressive treatment strategy. 
Another study investigated the value of ex vivo ultra-
high-field proton MRS at 11.4 T of resected tumor tis-
sue to predict aggressive biological behavior in 64 WHO 
grade I-III meningioma. The absolute concentrations of 
alanine and creatine, as well as the choline/glutamate 
and glycine/alanine ratios, were associated with an in-
creased probability of rapid meningioma relapse [62]. By 
contrast, in vivo MRS has both limited spectral resolu-
tion and precision, thereby hampering equivalent analy-
ses, especially of alanine and glutamate.

5  |   MOST RELEVA NT CLIN ICA L 
APPLICATIONS FOR PET IM AGING

Several tracers addressing different molecular struc-
tures or pathophysiological pathways in meningioma 
cells are available [33]. Because of the overexpression of 
SSTRs in meningiomas [32, 63, 64], radiolabeled SSTR 
ligands are particularly used to visualize meningioma 
tissue. The SSTR subtype 2 is the most abundant iso-
form with almost 100% expression in meningiomas [32]. 
The most commonly applied SSTR ligands for PET im-
aging in patients with meningioma are DOTATOC and 
DOTATATE. After labeling with 68Ga, these ligands are 

frequently used as tracers for imaging of neuroendocrine 
tumors, which likewise express high levels of SSTR [65]. 
68Ga has a physical half-life of 68  minutes and can be 
produced with a 68Ge/68Ga generator, enabling in-house 
production without an on-site cyclotron. PET ligands 
to SSTR provide high sensitivity with excellent target-
to-background contrast due to low uptake in bone and 
healthy brain tissue [66, 67]. Currently, the number of 
PET examinations in meningioma patients is steadily 
increasing.

The L-amino acid transporter system mediates the 
uptake of radiolabeled amino acids such as [11C-methyl]-
L-methionine (MET) and O-(2-[18F]-fluoroethyl)-L-
tyrosine (FET). Increased uptake is seen in slow-growing 
tumors such as meningiomas [68, 69].

5.1  |  Meningioma detection

Due to a meningioma localization with low contrast 
on MRI or CT, e.g., at the skull base with or without 
osseous involvement of the adjacent skull bone, tumor 
detection and delineation may be complicated if stand-
ard anatomical cross-sectional imaging techniques are 
applied. Furthermore, meningiomas can be obscured 
by calcifications or MRI artifacts. The recent body of 
literature has suggested that SSTR PET adds valuable 
diagnostic information to MRI or CT to overcome these 
issues.

A study compared contrast-enhanced MRI with 
DOTATOC PET in 190 meningioma patients before ra-
diotherapy and reported that all meningiomas were de-
tected by PET, whereas contrast-enhanced MRI detected 
only 90% of these meningiomas. These findings indicate 
that the improved sensitivity for DOTATOC PET may 
identify additional meningiomas even if MRI is negative 
[66] (Figure 5).

DOTATATE PET studies with histological validation 
of imaging findings revealed a more precise tumor ex-
tent delineation than contrast-enhanced MRI [67, 70]. 
Furthermore, in meningiomas with complex growth 
patterns, i.e., involvement of the sagittal or cavernous 
sinus, the orbita, or infiltration of other osseous struc-
tures, PET using DOTATATE and DOTATOC was also 
reported to provide an improved tumor delineation com-
pared with MRI [71–73]. Another study suggested that 
DOTATATE PET helps discriminate optic nerve sheath 
meningiomas from other lesions affecting the optic nerve 
[74]. Similarly, studies using amino acid PET reported an 
improved meningioma delineation compared with MRI 
[68, 75, 76].

Moreover, PET images can be integrated into MR-
based neuronavigation systems for image-guided neu-
rosurgery, and the additional information in terms of 
tumor extent can be used for the intraoperative guidance 
of resection, e.g., in complex skull base meningiomas.
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5.2  |  Meningioma grading

The uptake of radiolabeled glucose (2-[18F]-fluoro-2-deox
y-D-glucose; FDG) correlates significantly with the WHO 
grade in meningiomas [77, 78], but as a significant limita-
tion, its uptake is not specific for neoplastic tissue and may 
be increased in inflammatory processes [79]. Regarding PET 
ligands to SSTR, DOTATATE binding significantly corre-
lates with tumor growth rates in WHO grade I and II menin-
giomas but is abolished in anaplastic meningiomas [80]. Data 
on the amino acid tracer MET labeled with 11C suggest a cor-
relation with proliferative activity in patients with meningi-
oma [81], but are controversial for non-invasive meningioma 
grading [82, 83]. Furthermore, due to the short half-life of 11C 
of 20 minutes, its use is strictly limited to centers with an on-
site cyclotron. Preliminary findings revealed that static and 
dynamic FET parameters might provide additional infor-
mation for non-invasive grading of meningiomas [69].

5.3  |  Radiotherapy planning

Target definition plays a crucial role in the planning 
of high precision radiotherapy using fractionated 

radiotherapy or radiosurgery. Despite using the bone 
window on CT scans, it is challenging to define the infil-
tration depth in meningiomas with transosseous growth. 
In these cases, PET imaging may prove helpful. For ex-
ample, a DOTATATE PET study focusing on transos-
seous growing meningiomas showed a higher specificity 
than standard MRI (100% vs. 83%) [70].

Using SSTR ligands, an optimized target volume 
delineation for fractionated radiation therapy in WHO 
grade I-III meningiomas could be obtained using 
DOTATOC PET co-registered to CT and MRI [72]. In 
all patients, DOTATOC PET provided additional in-
formation on the meningioma extent for fractionated 
stereotactic radiotherapy planning. These results were 
confirmed by subsequent studies [73, 84–86].

Furthermore, amino acid PET can also be integrated 
into radiation treatment planning [87] and significantly 
influence target volume definition in meningioma pa-
tients. Astner and colleagues demonstrated that in the 
vast majority of patients with skull base meningiomas 
treated with fractionated radiotherapy, MET PET ad-
dition changed the target volumes considerably [68]. In 
that study, MET PET detected additional tumor areas, 
which were not visualized on conventional CT or MRI, 

F I G U R E  5   Postoperative contrast-enhanced MRI and DOTATATE PET/CT of a patient after resection of a WHO grade I meningioma 
show residual tumor located at the left internal carotid artery and a tumor at the tip of the left orbit (A and D). Surprisingly, two additional 
meningiomas were also visible on the DOTATATE PET/CT (E and F), without corresponding contrast enhancement on MRI (B and C) 
(reproduced from Galldiks et al. [33], with permission from Oxford University Press) 
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leading to a target volume enlargement of almost 10%. 
Furthermore, areas without tumor affection could be 
excluded from the radiation field, and eloquent struc-
tures, such as the optic nerves, the chiasm, or the pi-
tuitary gland, could be spared more effectively [68]. 
Subsequently, it has been demonstrated that the addition 
of amino acid PET to CT and MRI helps significantly 
lower the interobserver variability than either modality 
alone [75, 76].

5.4  |  PET during the follow-up of 
meningioma patients

The recent literature has suggested that SSTR PET can 
also help differentiate meningioma relapse from post-
therapeutic reactive changes, including radiotherapy 
[45, 66, 67, 88]. For example, Rachinger and colleagues 
reported a higher specificity for DOTATATE PET com-
pared with standard MRI (74% vs. 65%) [67].

A recent study has suggested that the intraoper-
ative estimation of meningioma extent for resection 
using Simpson grades is inferior compared with 
DOTATATE PET [89]. Although 62.5% of patients 
had a meningioma resection extent according to the 
Simpson grade I or II, DOTATATE PET revealed 
tumor remnants [89].

The initial case series also reported that SSTR PET 
seems to be valuable to detect extracranial metastatic 
meningioma involving the liver, lung, and bone [90–92].

6  |   OTH ER 
IM AGING MODA LITIES

6.1  |  Optical imaging

Besides other techniques, Raman spectroscopy is a pow-
erful optical imaging method which allows to analyze 
the biochemical composition of tissue to differentiate ne-
oplastic from normal tissue. By shining monochromatic 
laser light onto a sample obtained from brain surgery, 
this technique detects scattered light to measure the vi-
brational energy modes of a sample. A small amount 
of the scattered light shifts in energy from the laser fre-
quency because of interactions between the incident 
electromagnetic waves and the vibrational energy levels 
of the molecules in the sample. Plotting the intensity of 
the shifted light against the frequency creates a Raman 
spectrum of the sample.

Initial studies suggest that Raman spectroscopy has 
a high diagnostic accuracy to differentiate between gli-
oma subtypes, brain metastases, and meningioma [93, 
94]. Another study highlighted the clinical potential 
of this technique for the determination of the menin-
gioma grade, i.e., the differentiation between WHO 
grade I and II [95].

6.2  |  Intraoperative ultrasound including 
elastography

For neurosurgical interventions, intraoperative imaging 
guidance is fundamental to achieve a complete tumor re-
section and to preserve neurological functions. In this 
regard, intraoperative ultrasound is a reliable method 
to obtain real-time information during brain surgery. 
Furthermore, the biomechanical properties of tissues 
correlated to histology, and neuropathological findings 
have also received increased attention in recent years. 
Ultrasonographic elastography imaging is able to evalu-
ate intraoperatively the elastic properties of tissues such 
as tissue hardness to distinguish pathologic and healthy 
areas. An increasing body of literature suggests that 
elastographic ultrasound patterns may help to identify 
different brain tumor types, i.e., gliomas, metastases, 
and meningiomas [96, 97].

7  |   ARTI FICI A L INTELLIGENCE: 
RADIOMICS AND RADIOGENOMICS  
IN PATIENTS W ITH M EN INGIOM A

A subdiscipline of artificial intelligence dealing with the 
computation, identification, and extraction of image fea-
tures for the generation of mathematical models related 
to the research purpose (e.g., to improve diagnostics) is 
termed radiomics. Radiomics is usually applied to rou-
tinely acquired imaging modalities, thereby allowing 
additional data analysis at a low cost. Since radiomics 
features are either mathematically predefined (feature-
based radiomics) or generated from the data by training 
computational models (deep learning-based radiomics), 
the results are more robust, reliable, and reproducible. 
Radiogenomics, a subdiscipline of radiomics, aims to 
correlate radiomics features with molecular mark-
ers, genetic mutations, or chromosomal aberrations. 
Figure 6 shows a representative feature-based radiomics 
workflow.

7.1  |  Differentiation between 
meningiomas and other brain tumors

The differentiation between different brain tumor types 
based on conventional MRI alone is challenging due to 
similar imaging findings such as contrast enhancement 
and perifocal edema (Figure 7). Therefore, artificial in-
telligence and machine learning methods have been used 
to differentiate meningiomas from other brain tumor 
types. The differentiation between meningiomas, glio-
mas, and tumors of the pituitary gland using modified 
local binary pattern feature extraction methods was in-
vestigated by Kaplan and colleagues [98]. Local binary 
patterns describe the texture pattern in neuroimages and 
reflect the correlation among pixels within a local area 
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[99]. In that study, the dataset consisted of more than 
3000  T1-weighted MRI slices from 233 patients. The 
identified local binary patterns differentiated between 
meningiomas, gliomas, and pituitary tumors with an ac-
curacy of 96%.

In addition to structural MRI, Shrot and co-workers 
included perfusion- and diffusion-weighted MRI from 
141 patients differentiate between meningioma, glioblas-
toma, primary central nervous system lymphoma, and 
brain metastases [100]. The final support vector machine 
classifier yielded more than 90% classification accuracy 
for all investigated tumor types. These results are in line 
with results reported in an earlier study using a similar 
methodology [101].

Li et al. aimed at a preoperative distinction of malig-
nant hemangiopericytoma from angiomatous meningi-
oma based on structural MRI and DWI [102]. Clinical 
and textural features were generated, and the perfor-
mance of the radiomics model was compared with the 
rating of three experienced neuroradiologists. A support 
vector machine classifier based on T1-weighted MRI 
revealed the best diagnostic performance with an area 
under the curve (AUC) of 0.90, outperforming the neu-
roradiologists' rating (AUC, 0.73). Similar results could 
be confirmed by a subsequent study [103].

7.2  |  Identification of meningioma subtypes

In clinical routine, the mainstay of brain tumor classi-
fication, including meningiomas, performed by neuro-
pathologists is based on morphological criteria. Notably, 
various meningioma subtypes exhibit only minor mor-
phological variations and may challenge meningioma 
subtyping. To facilitate the neuropathological diagnosis 
of meningothelial, fibroblastic, transitional, or psam-
momatous WHO grade I meningioma, Fatima and col-
leagues [104] developed a hybrid classification technique 
based on radiomics features of these four subtypes. The 
selected features were used to train a neural network 
classifier and yielded an average accuracy of more than 
90%.

7.3  |  Meningioma grading and 
outcome prediction

For meningioma grading using radiomics features based 
on structural MRI, radiomics models achieved diagnostic 
accuracies between 76% and 93% for the differentiation 
of WHO grade I from WHO grade II or III meningiomas 
[105–109]. The accuracy could be further increased to 

F I G U R E  6   Schematic representation 
of the radiomics workflow. Following 
image acquisition, volumes-of-
interest within tumor subregions (e.g., 
contrast enhancement, T2/FLAIR 
signal hyperintensity) are manually or 
automatically segmented. Most frequently, 
shape, intensity, and textural features 
are calculated. Subsequently, radiomics 
features are combined with clinical data 
(e.g., survival times, neuropathology 
findings), and a mathematical model 
related to the research question can be 
generated. Adapted from Gu et al. [130], 
under the terms of the Creative Common 
Attributions License (CC-BY, version 4.0) 
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97% by integrating advanced MRI techniques such as 
DWI to radiomics models [110–116]. Similarly, several 
studies developed deep learning-based radiomics models 
based on structural MRI for meningioma grading and 
achieved diagnostic accuracies between 80 and 83% [117–
119]. In addition, Banzato and colleagues [120] developed 
a deep learning model based on ADC maps derived from 
DWI that provided a relatively high diagnostic accuracy 
of 94% for meningioma grading.

Importantly, a recent study has evaluated the robust-
ness of radiomics based on structural MRI data from 25 
different scanners acquired using 126 different imaging 
protocols [121]. Despite that heterogeneity, the developed 

deep learning radiomics model yielded a diagnostic ac-
curacy of 74% for meningioma grading, indicating high 
robustness.

The 2016 edition of the WHO Classification of Tumors 
of the Central Nervous System has introduced the crite-
rion of brain invasion to diagnose meningiomas of the 
WHO grade II [122]. Brain invasion is associated with a 
higher rate of tumor relapse and unfavorable prognosis 
[123–126]. Consequently, several studies investigated the 
potential of radiomics for the non-invasive identification 
of brain invasion [127–129]. For example, in more than 
450 patients, Joo and co-workers evaluated structural 
MRI radiomics features calculated from peritumoral 

F I G U R E  7   Representative T2-weighted (A–C) and contrast-enhanced T1-weighted MR images (D-F) of an atypical meningioma (top row), 
a glioblastoma (middle row), and a lung cancer brain metastasis (bottom row). Notably, the similar radiological findings make it difficult to 
differentiate between these three tumor entities. Here, advanced neuroimaging techniques may provide additional diagnostic information to 
improve differential diagnosis. Adapted from Svolos et al. [101], with permission from Elsevier
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edema and brain-to-tumor interface [127]. The final 
model combining the best six radiomics features and 
peritumoral edema volume yielded an AUC of 0.91 to 
identify brain invasion.

Initial studies suggest that prognostic models based 
on clinical parameters and radiologic and radiomic fea-
tures may preoperatively identify meningiomas at risk for 
poor outcomes. For example, Morin et al. used preoper-
ative structural and diffusion-weighted MRI scans from 
303 patients who underwent resection of 314 meningio-
mas (57% WHO grade I, 35% grade II, and 8% grade III) 
to extract 16 radiologic and 172 radiomic features [115]. 
The colleagues observed that both radiologic and radio-
mic predictors of adverse meningioma outcomes were 
significantly associated with molecular markers of ag-
gressive meningioma biology, such as somatic mutation 
burden, DNA methylation status, and FOXM1 expres-
sion. Furthermore, multivariate analyses revealed that 
radiomics features obtained from diffusion-weighted 
MRI were significantly associated with WHO meningi-
oma grades, local failure, and overall survival.

8  |   CONCLUSIONS AND OUTLOOK

Advanced MRI techniques and PET ligands binding 
to SSTR can improve the clinical management of pa-
tients with meningioma. The translation of these im-
aging modalities is also of great interest in the light of 
emerging high-throughput methods such as radiomics. 
Furthermore, the increasing use of hybrid PET/MRI 
systems offers an immense research potential for com-
parative studies under the same (patho-) physiological 
conditions. Besides, the increasing availability of ultra-
high field MRI scanners with higher spatial resolution 
may help develop novel MRI methods in meningiomas 
because almost all MRI contrasts benefit from the im-
proved signal-to-noise ratio. Nevertheless, the imple-
mentation of advanced MRI and PET methods in clinical 
routine requires the validation of neuroimaging findings 
by neuropathology.

Furthermore, various radiomics approaches are 
promising in terms of the improvement of diagnostics in 
patients with meningioma. Importantly, the use of ad-
vanced imaging techniques may even further improve 
radiomics models. This may accelerate the translation of 
decision support systems based on artificial intelligence 
into daily clinical practice.
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