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Abstract

Background: The first wave of pandemic influenza A(H1N1)2009 (pH1N1) reached New South Wales (NSW), Australia in May
2009, and led to high rates of influenza-related hospital admission of infants and young to middle-aged adults, but no
increase in influenza-related or all-cause mortality.

Methodology/Principal Findings: To assess the population rate of pH1N1 infection in NSW residents, pH1N1-specific
haemagglutination inhibition (HI) antibody prevalence was measured in specimens collected opportunistically before
(2007–2008; 474 specimens) and after (August–September 2009; 1247 specimens) the 2009 winter, and before the
introduction of the pH1N1 monovalent vaccine. Age- and geographically-weighted population changes in seroprevalence
were calculated. HI antibodies against four recent seasonal influenza A viruses were measured to assess cross-reactions. Pre-
and post-pandemic pH1N1 seroprevalences were 12.8%, and 28.4%, respectively, with an estimated overall infection rate of
15.6%. pH1N1 antibody prevalence increased significantly - 20.6% overall - in people born since 1944 (26.9% in those born
between 1975 and 1997) but not in those born in or before 1944. People born before 1925 had a significantly higher pH1N1
seroprevalence than any other age-group, and against any seasonal influenza A virus. Sydney residents had a significantly
greater change in prevalence of antibodies against pH1N1 than other NSW residents (19.3% vs 9.6%).

Conclusions/Significance: Based on increases in the pH1N1 antibody prevalence before and after the first pandemic wave,
16% of NSW residents were infected by pH1N1 in 2009; the highest infection rates (27%) were among adolescents and
young adults. Past exposure to the antigenically similar influenza A/H1N1(1918) is the likely basis for a very high prevalence
(49%) of prepandemic cross-reacting pH1N1 antibody and sparing from pH1N1 infection among people over 85 years.
Unless pre-season vaccine uptake is high, there are likely to be at least moderate rates including some life-threatening cases
of pH1N1 infection among young people during subsequent winters.
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Introduction

The first wave of infection due to pandemic influenza A (H1N1)

2009 - pH1N1 - in Australia began in May, 2009 [1]. There was

debate as to whether pH1N1 infections were significantly more

prevalent or severe than during an ‘‘average’’ influenza season [2].

Most clinical infections were apparently mild and predominantly

affected school children and young adults. Increased numbers of

laboratory-confirmed and notified cases, compared with average

influenza seasons, could be partly explained by much greater levels

of public awareness, medical consultation and laboratory testing

[3]. Despite a disease profile generally similar to that of seasonal

influenza, pH1N1 infections led to unusually high rates of hospital

and intensive care unit (ICU) admissions of relatively young

patients with influenza-related illness. ICU admissions for viral

pneumonitis were 15 times higher than in previous years and

highest in the 25–49 year age-group; 93% of ICU patients were

under 65 years [4]. In New South Wales (NSW), the most

populous Australian state, syndromic surveillance of emergency

department presentations showed unusually high rates of febrile

respiratory illness during the 2009 winter but there was neither an

increase in deaths attributable to influenza or pneumonia, nor in

overall mortality [3].

It is difficult to estimate the true rates of pH1N1 infection or

differences between geographic areas and age-groups from limited

epidemiological data, but information about population preva-
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lence of infection and immunity is needed to inform vaccine

distribution policy and planning for subsequent waves of pH1N1

infection. Serosurveys are used extensively to supplement

laboratory notification, hospitalisation and mortality data for

many vaccine preventable diseases [5].

The aim of this study was to determine the prevalence of

subtype-specific influenza A pH1N1 haemagglutination inhibition

(HI) antibodies in a broadly-based sample of children and adult

residents of NSW, before and after the first pandemic wave, using

opportunistically collected plasma or serum specimens.

Methods

Specimens
Clinical chemistry laboratories in NSW were asked to provide

serum or lithium heparin-treated plasma specimens which had

been submitted for diagnostic testing in August or September,

2009 and would otherwise have been discarded. This period was

3–11 weeks after the first epidemic wave peaked in NSW and

before the monovalent pH1N1 vaccine became available. The

sample size was calculated to provide power to detect a difference

in seroprevalence of 10–15% between age groups with a worst

case 95% confidence interval of 67%. We aimed to test

approximately equal numbers of specimens from NSW residents

in each of seven age-groups (children: preschool 0–4 years,

primary school 5–11 years, secondary school 12–17 years; and

adults: 18–34, 35–64 and 65–85 years and 85 years and older),

providing a total sample size of ,1200 specimens. Specimens

which represented both urban and rural NSW populations were

retrieved using postcode of residence. Specimens were given a

unique identifying code and then de-identified; only the sex, age or

date of birth and patient postcode were recorded.

To estimate the level of pre-existing antibodies to pH1N1, we

also tested stored sera from NSW residents which had been

submitted for non-influenza serological testing during 2007 and

2008. The sample size for prepandemic sera was determined

largely by availability but we aimed to test approximately 50 in

each age-group.

The specimens used for testing had been submitted for

diagnostic testing and would otherwise have been discarded.

Consistent with longstanding practice in the performance of

national serosurveys, informed consent was not obtained from

subjects for the use of their specimens in this study. However, all

specimens were deidentified before testing and only the age or date

of birth and address postcode were recorded. This study, including

the waiver of informed consent, was approved by the Sydney West

Area Health Service Human Research Ethics Committee.

Antigens
The antigen used for HI testing was a gamma-irradiated

preparation of influenza A/California/07/2009 (pH1N1) virus,

provided by the WHO Collaborating Centre for Reference and

Research on Influenza, Melbourne, Australia. Antigens derived

from four recent seasonal influenza A viruses – Brisbane/59/

2007/H1N1, New Caledonia/20/1999/H1N1, Brisbane/10/

2007/H3N2, and Wisconsin/67/2005/H3N2 - were used to

determine levels of antibody to these viruses in the same

specimens.

Haemagglutination inhibition (HI) assay
A pH1N1 subtype-specific HI assay was developed using

established methods. As initial evaluation demonstrated that

lithium heparin used as anticoagulant did not significantly affect

antibody titres in plasma (compared with serum) whereas EDTA

plasma specimens gave less consistent results, only lithium

heparin-treated plasma and serum specimens were used.

Briefly, specimens were diluted 1/5 in Vibrio cholerae receptor

destroying enzyme and incubated overnight at 37uC to remove

inhibitors, then diluted 1/2 in citrate and heat inactivated at 56uC.

Serial doubling dilutions (and appropriate controls) were reacted

with antigens in 96-well V-bottom microtitre trays for 1 hour at

room temperature before a 1% v/v suspension of human group O

red blood cells was added. After 1–2 hours (or when the cell

control had fully haemagglutinated), endpoints were read by two

independent operators as the last dilution showing complete

inhibition of haemagglutination. Titres of $40 were determined to

be ‘‘positive’’ for the purpose of this serosurvey.

Statistical analysis
Geometric mean titres (GMTs) were calculated by assigning a

titre of 5 to specimens in which no HI antibody was detected

(titre,10). Seroprevalence of pH1N1 antibodies was calculated as

the percentage with antibody titres$40, after weighting for age,

sex and geographic region.

The post-pandemic sample size was designed with a dispropor-

tionately greater representation of very young and very old persons

and with broad coverage of all geographic areas of NSW by using

postcode as a stratification variable. As postcodes in NSW are not

grouped geographically, there was some disproportionate repre-

sentation by region. The initial design of the sample required

design weights to be calculated to account for the non-uniform

probability of selection between age and postcode strata.

In order to compensate for under- and over-sampling from

sections of the NSW population, post-stratification weights for

both the pre- and post-pandemic samples were also created to

balance the sample by five-year age group and by geographic

region [6]. Post-stratification weights were calculated using raking

since the number of cases in each post-stratification cell was small

[7,8,9]. Geographic regions were defined using 2006 Australia

Standard Geographic Classification of the Australian Bureau of

Statistics (ABS) [10]. Statistical Subdivisions within Sydney and

Statistical Divisions outside Sydney were used to define the

regions. Socioeconomic status was assigned based on the postcode

of residence and therefore indicates the socioeconomic status of

area of residence not the individual. Socioeconomic status was

classified using the Index of Relative Socioeconomic Disadvantage

from the Socio-Economic Indexes for Areas (SEIFA) developed by

the ABS [11].

Differences in weighted proportions were tested using the Rao-

Scott Chi-square test. Confidence intervals for differences in

proportions between the pre-pandemic and post-pandemic

samples were estimated using bootstrapping with 10,000 replica-

tions [12]. Odds ratios were calculated using weighted bivariate

logistic regression. SAS version 9.1.3 (SAS Institute Inc., Cary,

NC) was used for all weighting and statistical analysis.

Results

Pre- and post-pandemic seroprevalence by birth cohort/
age-group

A total of 474 ‘‘pre-pandemic’’ specimens collected in 2007–

2008 were tested. Antibodies were detected at titres of $40 in only

one of 53 from children born in 1998 or later. Overall, 12.8% of

patients had pre-existing pH1N1 antibody at titres$40. Differ-

ences in pre-pandemic prevalence of pH1N1 antibody titres$40

across the five youngest birth-cohorts (born after 1944), were not

statistically significant but the pre-pandemic prevalence was

H1N1(2009)Serosurvey,Australia
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significantly higher in the 1925–44 birth cohort and higher again

in those born before 1925 (Table 1).

A total of 1247 ‘‘post-pandemic’’ specimens collected in August

and September 2009 were tested. The overall prevalence of

pH1N1 antibody titres$40 in the NSW population, after the first

wave of pH1N1 infection, was 28.4% (females 29.0%, males

27.7%; difference not significant). Post-pandemic seroprevalence

was highest in those born in the periods 1975–1991 (40.1%),

1992–1997 (40.0%) and pre 1925 (49.4%; Table 1).

The overall increase in seroprevalence between pre- and post-

pandemic periods was 15.6% and differences were statistically

significant in birth cohorts after 1944 (those aged less than 65

years; 20.6% change overall), and greatest in the 1992–1997 (aged

12–17; 34.5% change) and 1975–1991 (aged 18–34; 24.3%

change) birth cohorts. The increase did not reach statistical

significance in the 0–4 and 5–11 age-groups, separately, but when

these two groups were combined the increase, from 1.6% (95% CI

0.0–4.7) to 13.7% (95% CI 9.9–17.6); difference 12.1% (p = 0.006,

Rao-Scott Chi squared test) was highly significant. Apparent

decreases in seroprevalence in the 1925–44 and pre-1925 birth

cohorts (65–85 and $85 year age-groups) were not statistically

significant (Table 1, Figure 1).

Geographic and socioeconomic differences in pH1N1
seroprevalence

Seroprevalence of pH1N1 antibodies in pre- and post-pandemic

specimens were compared between the Sydney region (estimated

resident population 4.5 million) and the rest of NSW (population

2.6 million, spread over a very large geographic area; Table 2).

There was no significant difference in seroprevalence between

regions in pre-pandemic specimens, but the difference in pH1N1

seroprevalence between pre- and post-pandemic specimens was

significantly higher in Sydney than in the rest of NSW (19.3% vs

9.6%, Table 2).

Results were also analysed by accessibility/remoteness index of

Australia (ARIA+) categories. Seroprevalence was highest (30.2%)

in the most accessible (urban) region, but differences by

accessibility classification were not significant (p = 0.30). Finally,

seroprevalence was compared across socioeconomic indices for

areas (SEIFA) quintiles, based on postcode of residence.

Seroprevalence varied from 25.5% to 33.3% by socioeconomic

status, but differences were not statistically significant (p = 0.58).

Levels of antibodies to pH1N1 and other recent seasonal
influenza A viruses

In addition to pH1N1 antibody, subtype/strain-specific HI

antibodies against four recent seasonal influenza A virus antigens

were measured in postpandemic specimens. The highest sero-

prevalences (at titres$40) for different viruses were in different

age-groups/birth cohorts: 5–11 (1998–2004) and 12–17 year olds

(1992–1997) for Brisbane/59/2007/H1; 5–11 (1998–2004), 12–17

(1992–1997) and 18–34 year olds (1975–1991) for New Caledo-

nia/20/1999/H1; 12–17 (1992–1997) for Wisconsin/67/2005/

H3 and 5–11 (1998–2004) for Brisbane10/2007/H3. There were

significant differences in seroprevalence and GMTs across age

groups for each of the five viruses (Table 3).

The proportions of specimens with HI antibody titres$40

against seasonal influenza A subtypes were compared for

specimens with pH1N1 antibody titres$40 vs ,40 (Table 4).

There was no significant relationship between the presence or

absence of pH1N1 antibody and that of any seasonal influenza A

virus antibody, except that samples in which pH1N1 antibody was

detected were less likely to have Brisbane/59/2007/H3 antibody

than pH1N1 antibody negative samples; this difference was just

statistically significant (odds ratio 1.8; p = 0.05).

Discussion

During the southern hemisphere winter of 2009, in Australia,

the pH1N1 epidemic period lasted about 18 weeks in all [1,3].

However, there were considerable variations in rates of spread,

numbers of laboratory-confirmed cases, timing of epidemic peaks

and rates of hospital and ICU admission between and within

different States and major cities [1,3,4]. Most cases apparently

occurred in school-aged children and were mild and generally not

laboratory-confirmed. Hospital admission rates were highest in the

Table 1. Comparison of prevalence of haemagglutination inhibition assay titres$40 against influenza A California/07/2009
(pH1N1) collected in pre- and post-pandemic periods, New South Wales, Australia, by year of birth cohort.

Year of birth cohort Prepandemic (2007–8) Postpandemic (August–September 2009)

Population change
in seroprevalence
(95% CI2)

Tested Titre$40 GMT
Weighted percent1

(95% CI) Tested Titre$40 GMT
Weighted
percent1(95% CI)

2005 or after 20 0 5.2 0.0% 207 36 9.6 15.6% (9.9–21.4) 15.6% (10.5–22.4)3

1998–2004 33 1 5.3 2.6% (0.0–7.6) 170 27 9.9 12.4% (7.3–17.5) 9.8% (0.0–15.9)3

1992–1997 47 6 5.9 5.5% (0.6– 10.4) 176 73 22.9 40.0% (31.0– 49.1) 34.5% (24.0–44.7)3

1975–1991 95 12 8.9 15.8% (5.5– 26.0) 229 91 23.0 40.1% (32.7– 47.5) 24.3% (9.6–35.5)3

1945–1974 143 9 8.2 6.7% (1.2– 12.2) 231 62 15.4 26.3% (19.8– 32.7) 19.6% (10.1–27.5)3

1925–1944 71 26 15.2 33.5% (20.2– 46.8) 171 37 16.9 19.9% (12.9– 26.9) 213.4% (230.2–+0.3)

Pre 1925 65 39 33.1 62.3% (49.4–75.2) 63 31 31.8 49.4% (34.5–64.2) 212.9% (232.9–+6.7)

Total sample 474 93 8.6 12.8%(8.9–16.6) 1247 357 16.7 28.4% (25.0–31.7) 15.6% (10.2–20.4)

CI = confidence interval.
Notes:
1Weighted by age and geographic region.
2Bootstrap bias-corrected and accelerated confidence intervals.
3Statistically significantly (p,0.05).
doi:10.1371/journal.pone.0012562.t001
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0–4 year and 50–59 year age-groups, but lower than for an

average influenza season among adults over 60 years [3]. Around

one third of patients admitted to ICU with pH1N1 influenza-

related illness had no underlying risk factors, most required

mechanical ventilation and at least 14% died [4].

In view of these unusual features, estimates of true infection rates in

different age-groups and geographic areas are needed to inform

immunisation policy and planning for the predicted second wave of

infection. Clinical and epidemiological data alone are inadequate,

since mild or asymptomatic infections were not recorded and the

clinical presentation and rates vary in different age groups.

Laboratory diagnostic strategies also varied across States and at

different times within the pandemic period. Although pH1N1 was the

most common influenza virus detected, seasonal influenza A/H3N2

and A/H1N1 (and other respiratory viruses) were circulating at the

same time, at least early in the pandemic [13]. A seroprevalence

survey, encompassing all age-groups and geographic areas, is a timely

and practicable source of more comprehensive data.

Influenza A serosurveillance is complicated by cross-reactions

between different influenza A subtypes, variable and often

relatively short-lived influenza antibody responses, repeated

previous infections and the technical challenges of HI and viral

neutralization assays [14]. We have shown previously [5] that,

despite some theoretical disadvantages, the opportunistic sampling

strategy used in this study can produce results comparable with

those from randomly collected samples (which also have

disadvantages) for serosurveillance of many vaccine-preventable

diseases. To improve representativeness of this sampling strategy,

we employed an age- and geographically-based sampling frame for

the post-pandemic sera, and adopted post-stratification sampling

weights to achieve better representation of the NSW population

structure. This serosurvey is the first reported from the southern

hemisphere, where the pH1N1 epidemic coincided with the usual

winter influenza and respiratory virus season. The results

confirmed many of the epidemiological features of this outbreak

as shown by notification and hospitalisation data.

Genomic and proteomic studies show that pH1N1 is most like

the North American swine A/H1N1 and pandemic A/

H1N1(1918) viruses and distinct from recent seasonal A/H1N1

and other 20th century pandemic influenza A viruses [15,16,17].

Host-specific genomic signatures of pH1N1, which are mainly

swine-like, show a high level of identity with influenza A/

H1N1(1918). Since the beginning of the 2009 pandemic, some

mutations have occurred in functional viral genes, which may

Figure 1. Prevalence of antibody to pandemic influenza A (H1N1) 2009. Data are percentages of subjects with H1N1 haemagglutinating
antibody titres$40, in pre- and post-pandemic samples, from New South Wales residents by age group.
doi:10.1371/journal.pone.0012562.g001

Table 2. Comparison of prevalence of pH1N1 antibody titres$40 in specimens collected in pre- and post-pandemic periods from
residents of Sydney and the rest of NSW.

Region Pre-pandemic (2007–8) Post-pandemic (2009)
Change in seroprevalence
(95% CI)1 p-value2

Tested Titre$40 GMT Percent (95% CI) Tested Titre$40 GMT Percent (95% CI)

Sydney 300 61 8.3 11.7 (7.1–16.3) 826 249 17.7 31.0 (26.6–35.5) 19.3% (12.3–25.3) 0.0001

Rest of NSW 174 32 9.0 14.5 (7.7–21.4) 421 108 15.2 24.1 (19.1–29.1) 9.6% (0.0–17.2) 0.0438

Total 474 93 8.6 12.8 (8.9–16.6) 1247 357 16.7 28.4 (25.0–31.7) 15.6% (10.2–20.4) 0.0001

Notes.
1Bootstrap bias-corrected and accelerated confidence intervals.
2Rao-Scott Chi-square test. Numbers are weighted by age and region.
doi:10.1371/journal.pone.0012562.t002
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reflect adaptation to humans and/or changes in virulence, but

there is no evidence of antigenic change [17].

Similarities between pH1N1 and influenza A/H1N1(1918) have

been reflected in a number of surveys of sera collected before the

2009 pandemic [16,18,19]. Few, if any, children and fewer than

10% of young adults had cross-reacting pH1N1 neutralising

antibody at titres$40 whereas at least one third of adults aged

.65 years had significant titres. While seasonal influenza

vaccination produced many-fold increases in GMT of seasonal

A/H1N1 antibodies it resulted in a modest, two-fold increase in

GMT of cross-reactive pH1N1 antibody in young adults and none

in children or adults $60 years [18,19]. These results are

consistent with other evidence that pH1N1 and seasonal A/

H1N1 are antigenically different, but suggest that, nevertheless,

seasonal H1N1 vaccination may boost low levels of pre-existing,

cross-reactive pH1N1 antibody.

This is supported by the results of a serosurvey in an

unvaccinated population in southern China, in which no cross-

reacting pH1N1 antibody was detected in prepandemic sera in

subjects aged $60 years, in a largely unimmunised population;

pH1N1 antibody levels did not increase after administration of

seasonal influenza vaccine. The authors suggested that the

presence of cross-reactive pH1N1 antibody in western populations

could be due to repeated seasonal influenza vaccination, rather

than exposure to older, seasonal H1N1 influenza viruses [19], as

suggested previously [20].

The significantly higher proportions of subjects over 85 years

with cross-reacting antibodies in pre-pandemic specimens in our

study, are consistent with results of recent studies from England

and Finland [21,22]. In England, the proportion of samples with

cross-reacting HI antibodies with titres$1:32 ranged from 1?8% in

children aged 0–4 years to 31?3% in adults aged 80 years or older.

The trends were similar in Finland, where 96% of people born

before 1919 (at least 90 years old) had cross-reacting pH1N1

antibodies, compared with 14–77% of those born between 1920

and 1944 and very few of those born since 1944. It is likely that A/

H1N1(1918)-like viruses were the first influenza A viruses to which

many individuals born during or before the 1920s were exposed

and that repeated exposure, subsequently, to seasonal influenza A

viruses and/or vaccines, has boosted immunity to A/H1N1(1918)

and hence cross-reactive immunity to pH1N1. This would account

for the sparing of these age-groups from significant levels of

influenza infection during the current pandemic.

We demonstrated an overall increase in the seroprevalence of

pH1N1 antibodies with titres$40 (corresponding with infection

rates) of nearly 16% in NSW residents following the southern

hemisphere 2009 winter. Increases were restricted to age-groups

less than 65 years, particularly the 12–17 (1992–7 birth cohort)

and 18–34 (1975–91) year age groups with increases of 34.5% and

24.3%, respectively. In a similar study, Miller et al showed

comparable age-related differences in seroprevalence increases in

London and the West Midlands, where infection rates were

Table 3. Proportion with subtype-specific HI antibodies and geometric mean titres against five different influenza A subtypes in
specimens collected in August/September 2009, New South Wales, Australia, by age-group.

Influenza A virus subtype

Year of
birth cohort

No.
tested

California/07
2009/H1 (pH1N1)

Brisbane/59
2007/H1

New Caledonia/20/
1999/H1 Wisconsin/2005/H3

Brisbane/10
2007/H3

Titre$40
n (%) GMT

Titre$40
n (%) GMT

Titre$40
n (%) GMT

Titre$40
n (%) GMT

Titre$

40 n (%) GMT

2005 onwards 207 36 (16) 9.6 17 (7) 7.9 9 (4) 6.5 10 (5) 7.1 10 (4) 6.8

1998–2004 170 27 (12) 9.9 67 (38) 21.3 46 (26) 13.4 27 (17) 9.4 38 (19) 9.7

1992–1997 176 73 (40) 22.9 52 (27) 15.3 29 (16) 10.6 41 (19) 10.8 4 (5) 6.3

1975–1991 229 91 (40) 23.0 38 (18) 12.7 34 (16) 11.2 29 (13) 10.0 6 (4) 7.4

1945–1974 231 62 (26) 15.4 19 (8) 9.1 15 (6) 8.3 16 (6) 8.1 9 (4) 7.8

1925–1944 171 37 (20) 16.9 22 (13) 11.2 18 (9) 9.9 28 (16) 14.0 26 (16) 11.8

Pre 1925 63 31 (49) 31.8 8 (10) 11.3 3 (4) 8.1 12 (16) 15.5 8 (11) 10.3

Total 1247 357 (28) 16.7 223 (15) 11.4 154 (11) 9.6 163 (11) 9.5 101 (7) 8.1

GMT = geometric mean titre.
Differences in prevalence of positive titres (using Chi-squared test for trend) and in GMTs (using ANOVA on ‘‘raw’’ titres) between age-groups are statistically significant
for all five virus antigens (p,0.001).
doi:10.1371/journal.pone.0012562.t003

Table 4. Proportions of specimens with HI antibodies (with titres$40) against four seasonal influenza A viruses in pH1N1 antibody
positive (titre$40) and negative samples.

California/07/2009/H1
(pH1N1) result: Brisbane/59/2007/H1 New Caledonia /20/1999/H1 Wisconsin/2005/H3 Brisbane/10/2007/H3

Negative,40 16.3% 11.1% 11.7% 8.0%

Positive$40 12.4% 11.7% 9.7% 4.5%

OR (95% CI); P value 1.38 (0.88–2.19); 0.16 0.95 (0.59–1.52); 0.82 1.23 (0.74–1.21); 0.42 1.80 (1.00–3.32); 0.05

CI = confidence interval; OR = odds ratio.
doi:10.1371/journal.pone.0012562.t004
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highest, but increases only in children under 15 years in other

areas [21]. In Singapore, seroconversion (or infection) rates in four

adult cohorts were: 29% in military personnel; 13.5% in the

general population; 6.5% in hospital staff and only 1% in long-

term care residents. Older age was associated with reduced

seroconversion rates [23]. In our study, the proportional increase

in seroprevalence (or infection) in the Sydney area (19.3%), was

twice that detected in the rest of NSW (9.6%). In combination with

data from England and Singapore, this indicates – not surprisingly

- that higher infection rates occur in denser populations.

In addition to pH1N1-specific antibodies, we also studied the

prevalence, in post-pandemic specimens, of antibodies to four recent

seasonal viruses, including two A/H1N1 and two A/H3N2 strains. In

general the highest seroprevalence rates and GMTs were in the same

young age-groups, in which pH1N1 antibodies were most prevalent,

although there was some variation between strains. However, a major

difference was the relatively high seroprevalence of pH1N1 antibody

compared with the other four recent seasonal influenza A viruses in

those aged over 85 years (and to a lesser extent in the 65–85 year

group). This supports the hypothesis that repeated infection by

seasonal influenza A viruses or vaccination boost responses to the first

influenza A virus to which these older people were exposed when very

young - which is likely to have been A/H1N1(1918)-like viruses -

rather than to more recent seasonal viruses. The proposition that

recent seasonal influenza A virus vaccine can provide modest

protection against pH1N1, despite antigenic differences, has been

suggested previously [20,24,25], but disputed by others [26,27]. Our

observation that there was a small but significant negative association

between the presence of pH1N1 antibodies and seasonal Brisbane/

59/2007A/H3N2 antibodies, in post-pandemic samples, may be a

chance finding but, alternatively, could support this proposition.

In summary, we have shown that the highest rates of infection

were among children over 12 years and young to middle-aged

adults. The elderly were largely spared, confirming clinical and

epidemiological data. As expected, infection rates were higher in

Sydney than in smaller cities and rural areas of NSW. The study

provided evidence of previous exposure to an antigenically similar

influenza A virus in the oldest age-groups (.85 years and 65–85

years). The overall infection rates in NSW indicate that pH1N1

infections are likely to recur with at least moderate frequency in

younger age-groups during the 2010 winter influenza season,

unless there is high pH1N1 immunisation uptake.
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20. Garcia-Garcia L, Valdespino-Gómez JL, Lazcano-Ponce E, Jimenez-Corona A,
Higuera-Iglesias A, et al. (2009) Partial protection of seasonal trivalent

inactivated vaccine against novel pandemic influenza A/H1N1 2009: case-

control study in Mexico City. BMJ 339: b3928.
21. Miller E, Hoschler K, Hardelid P, Andrews N, Zambon M (2010) Incidence of

2009 pandemic influenza A H1N1 infection in England: a cross-sectional
serological study. Lancet 375: 1100–8.

22. Ikonen N, Strengell M, Kinnunen L, Osterlund P, Pirhonen J, et al. (2010) High
frequency of cross-reacting antibodies against 2009 pandemic influenza

A(H1N1) virus among the elderly in Finland. Euro Surveill 15: pii = 19478.

23. Chen MI, Lee VJ, Lim WY, Barr IG, Lin RT, et al. (2010) 2009 influenza
A(H1N1) seroconversion rates and risk factors among distinct adult cohorts in

Singapore. JAMA 303: 1383–1391.
24. Chen H, Wang Y, Liu W, Zhang J, Dong B, et al. (2009) Serologic survey of

pandemic (H1N1) 2009 virus, Guangxi Province, China. Emerging Infectious

Diseases 15: 1849–1850.
25. Echevarria-Zuno S, Mejia-Arangure JM, Mar-Obeso AJ, Grajales-Muniz C,

Robles-Perez E, et al. (2009) Infection and death from influenza A H1N1 virus
in Mexico: a retrospective analysis. Lancet 374: 2072–2079.

26. Janjua NZ, Skowronski DM, Hottes TS, De Serres G, Crowcroft NS, et al.

(2009) Seasonal vaccine and H1N1. Selection bias explains seasonal vaccine’s
protection. BMJ 339: b4972.

27. Janjua NZ, Skowronski DM, Hottes TS, De Serres G, Crowcroft NS, et al.
(2010) Seasonal vaccine effectiveness against pandemic A/H1N1. Lancet 375:

801–802.

H1N1(2009)Serosurvey,Australia

PLoS ONE | www.plosone.org 6 September 2010 | Volume 5 | Issue 9 | e12562


