FHIR RDF Data Transformation and Validation Framework and Clinical Knowledge Graphs: Towards Explainable AI in Healthcare Part II: Expose OMOP data sets as FHIR-compliant Clinical Knowledge Graphs

Guohui Xiao

KRDB Research Centre for Knowledge and Data Free University of Bozen-Bolzano, Italy

> Ontopic S.r.l. Bolzano, Italy

unibz

ON TOP IU

13th International SWAT4HCLS Conference Semantic Web Applications and Tools for Health Care and Life Sciences 10 January 2022 – Online

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Outline					

- 1 Ontology-Based Data Integration
- 2 The VKG Framework
- 3 The Ontop System
- 4 FHIR-Ontop-OMOP
- 5 Demo
- 6 Conclusions

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Outline					

1 Ontology-Based Data Integration

- **2** The VKG Framework
- **3** The Ontop System
- 4 FHIR-Ontop-OMOP
- **5** Demo

6 Conclusions

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Data integ	gration				

Databases are great!

They let us manage efficiently huge amounts of data ...

... assuming you have put all data into your schema.

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Data integra	tion				

Databases are great! They let us manage efficiently huge amounts of data ...

... assuming you have put all data into your schema.

However, the reality is much more complicated and heterogeneous:

- Data sets were created independently.
- Data are often stored across different sources.
- Data sources are controlled by different people / organizations.

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Data integra	tion				

Databases are great! They let us manage efficiently huge amounts of data ...

... assuming you have put all data into your schema.

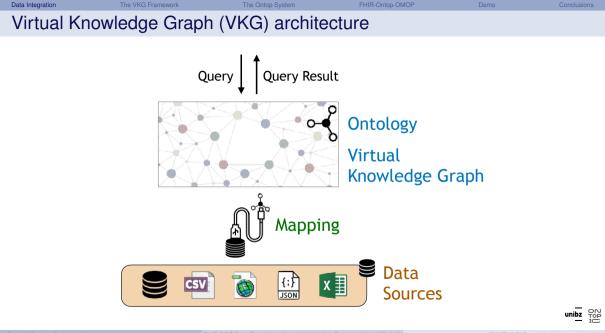
However, the reality is much more complicated and heterogeneous:

- Data sets were created independently.
- Data are often stored across different sources.
- Data sources are controlled by different people / organizations.

Goal of data integration

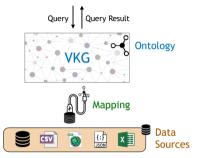
To put together different data sources, created for different purposes, and controlled by different people, making them accessible in a uniform way.

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Why hete	rogeneity?				

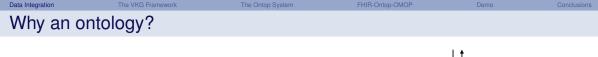

- Data model heterogeneity: Relational data, graph data, xml, json, csv, text files, ...
- **System heterogeneity**: Even when systems adopt the same data model, they are not always fully compatible.
- Schema heterogeneity: Different people see things differently, and design schemas differently!
- Data-level heterogeneity: e.g., 'IBM' vs. 'Int. Business Machines' vs. 'International Business Machines'.

We combine three key ideas:

- **1** Use a global (or integrated) schema and **map the data sources to the global schema**.
- Adopt a very flexible data model for the global schema
 Knowledge Graph whose vocabulary is expressed in an ontology.
- S Exploit virtualization, i.e., the KG is not materialized, but kept virtual.


ON

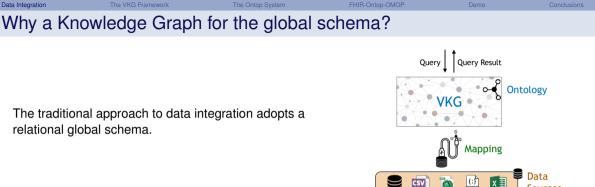
(3/36)



Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Why an on	ntology?				

An ontology is a structured formal representation of concepts and their relationships that are relevant for the domain of interest.

An ontology is a structured formal representation of concepts and their relationships that are relevant for the domain of interest.



- It defines a vocabulary of terms to denote classes and properties that are familiar to the user.
- It extends the data in the sources with background knowledge about the domain of interest, and this knowledge is machine processable.
- One can make use of custom-built domain ontologies.
- In addition, one can rely on standard ontologies, which are available for many domains.

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Why a Kr	nowledge Graph f	or the global	schema?		

The traditional approach to data integration adopts a relational global schema.

A Knowledge Graph, instead:

- Does not require to commit early on to a specific structure.
- Can better accommodate heterogeneity.
- Can better deal with missing / incomplete information.
- Does not require complex restructuring operations to accommodate new information or new data sources.


Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Why mappi	ngs?				

The traditional approach to data integration relies on mediators, which are specified through complex code.

The traditional approach to data integration relies on mediators, which are specified through complex code.

Mappings, instead:

- Provide a declarative specification, and not code.
- Are easier to understand, and hence to design and to maintain.
- Support an incremental approach to integration.
- Are machine processable, hence can be used for query optimization.

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Why virtua	lization?				

Materialized data integration relies on extract-transform-load (ETL) operations, to load data from the sources into an integrated data store / data warehouse / materialized KG.

Materialized data integration relies on extract-transform-load (ETL) operations, to load data from the sources into an integrated data store / data warehouse / materialized KG.

Ontology VKG Ontology Mapping E I Data Sources

In the virtual approach, instead:

- The data stays in the sources and is only accessed at query time.
- No need to construct a large and potentially costly materialized data store and keep it up-to-date.
- Hence the data is always fresh wrt the latest updates at the sources.
- One can rely on the existing data infrastructure and expertise.
- There is better support for an incremental approach to integration.

ON

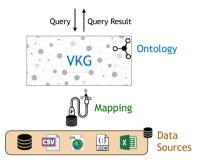
Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Outline					

1 Ontology-Based Data Integration

2 The VKG Framework

3 The Ontop System

4 FHIR-Ontop-OMOP

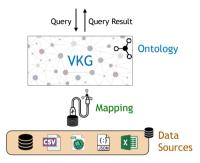

5 Demo

6 Conclusions

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Compone	ents of the VKG	framework			

We consider now the main components that make up the VKG framework, and the languages used to specify them.

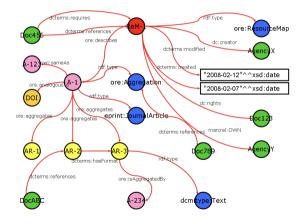
In defining such languages, we need to consider the **tradeoff between expressive power and efficiency**, where the key point is efficiency with respect to the data.



Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Componen	ts of the VKG	framework			

We consider now the main components that make up the VKG framework, and the languages used to specify them.

In defining such languages, we need to consider the **tradeoff between expressive power and efficiency**, where the key point is efficiency with respect to the data.


The W3C has standardized languages that are suitable for VKGs:

- 1 Knowledge graph: expressed in RDF
- Ontology O: expressed in OWL 2 QL
- 3 Mapping *M*: expressed in **R2RML**
- Query: expressed in SPARQL

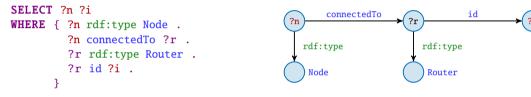
[W3C Rec. 2014] (v1.1) [W3C Rec. 2012] [W3C Rec. 2012] [W3C Rec. 2013] (v1.1)

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
RDF – Da	ata is represente	ed as a graph			

The graph consists of a set of subject-predicate-object triples:

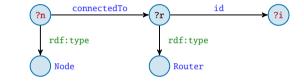
Object property: <A-1> ore:describes <ReM-1> .

Data property: <ReM-1> :created "2008-02-07" .


Class membership: <ReM-1> rdf:type ore:ResourceMap .

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
SPARQL	query language				
 Is the s 	standard query language	for RDF data.	[W3C Rec. 2008, 2013]		

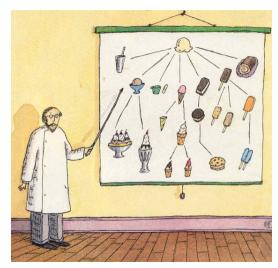
Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
SPARQL	query language				


- Is the standard query language for RDF data. [W3C Rec. 2008, 2013]
- Core query mechanism is based on graph matching.

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
SPARQL	query language				

- Is the standard query language for RDF data. [W3C Rec. 2008, 2013]
- Core query mechanism is based on graph matching.

Additional language features (SPARQL 1.1):


- UNION: matches one of alternative graph patterns
- OPTIONAL: produces a match even when part of the pattern is missing
- complex FILTER conditions
- GROUP BY, to express aggregations
- MINUS, to remove possible solutions
- property paths (regular expressions)

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
What is a	n ontology?				

 An ontology conceptualizes a domain of interest in terms of concepts/classes, (binary) relations, and their properties.

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
What is a	n ontology?				


- An ontology conceptualizes a domain of interest in terms of concepts/classes, (binary) relations, and their properties.
- It typically organizes the concepts in a hierarchical structure.

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
What is a	n ontology?				

- An ontology conceptualizes a domain of interest in terms of concepts/classes, (binary) relations, and their properties.
- It typically organizes the concepts in a hierarchical structure.
- Ontologies are often represented as graphs.

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
What is a	n ontology?				

- An ontology conceptualizes a domain of interest in terms of concepts/classes, (binary) relations, and their properties.
- It typically organizes the concepts in a hierarchical structure.
- Ontologies are often represented as graphs.
- However, an ontology is actually a logical theory, expressed in a suitable fragment of first-order logic

```
\forall x. \operatorname{Pressure}(x) \rightarrow \operatorname{Measurement}(x)
\forall x. \operatorname{Porositv}(x) \rightarrow \operatorname{Measurement}(x)
\forall x. \text{Permeability}(x) \rightarrow \text{Measurement}(x)
\forall x. Temperature(x) \rightarrow Measurement(x)
\forall x. \operatorname{Pressure}(x) \rightarrow \neg \operatorname{Porositv}(x) \land \neg \operatorname{Permeabilitv}(x) \land \neg \operatorname{Temperature}(x)
\forall x. \text{Porosity}(x) \rightarrow \neg \text{Permeability}(x) \land \neg \text{Temperature}(x)
\forall x. Permeability(x) \rightarrow \neg Temperature(x)
\forall x. HydrostaticPressure(x) \rightarrow Pressure(x)
\forall x. \text{FormationPressure}(x) \rightarrow \text{Pressure}(x)
\forall x. \mathsf{PorePressure}(x) \rightarrow \mathsf{Pressure}(x)
\forall x. HvdrostaticPressure(x) \rightarrow \neg FormationPressure(x) \land \neg PorePressure(x)
\forall x. Formation Pressure(x) \rightarrow \neg Pore Pressure(x)
\forall x, y, hasFormationPressure(x, y) \rightarrow Wellbore(x) \land FormationPressure(y)
\forall x, y.hasDepth(x, y) \rightarrowFormationPressure(x) \landDepth(y)
\forall x. Formation Pressure(x) \rightarrow \exists y. has Depth(x, y)
\forall x, y, hasFormationPressure(x, y) \rightarrow hasMeasurement(x, y)
\forall x, y, \text{completionDate}(x, y) \rightarrow \text{Wellbore}(x) \land xsd:dateTime(y)
\forall x. \text{Wellbore}(x) \rightarrow (\sharp \{y \mid \text{completionDate}_{wb}(x, y)\} \le 1)
\forall x, y. wellboreTrack<sub>wb</sub>(x, y) \rightarrow Wellbore(x) \land xsd:string(y)
\forall x. \text{Wellbore}(x) \rightarrow (\#\{y \mid \text{wellboreTrack}_{wb}(x, y)\} \le 1)
\forall x, y, hasCoreSample(x, y) \rightarrow Core(x) \land CoreSample(y)
\forall x. CoreSample(x) \rightarrow \exists y. hasCoreSample(y, x) \land Core(y)
```

TOP

Data megration	The VKG Flamework	The Ontop System	FHIR-OIII0P-OMOF	Demo	Conclusions
What is a	n ontology?				
 An ont 	ology conceptualizes a		Pressure 💷 Measureme		

- domain of interest in terms of concepts/classes, (binary) relations, and their properties.
- It typically organizes the concepts in a hierarchical structure.

- Ontologies are often represented as graphs.
- However, an ontology is actually a logical theory, expressed in a suitable fragment of first-order logic, or better, in description logics.

Permeability
Measurement Pressure $\Box \neg$ Porosity $\Box \neg$ Permeability $\Box \neg$ Temperature Porosity $\Box \neg$ Permeability $\Box \neg$ Temperature Permeability

¬Temperature HvdrostaticPressure □ Pressure FormationPressure

Pressure PorePressure □ Pressure HvdrostaticPressure □ ¬FormationPressure □ ¬PorePressure FormationPressure
□ ¬PorePressure ∃hasFormationPressure⁻ □ FormationPressure ∃hasDepth ⊏ FormationPressure ∃hasDepth⁻ □ Depth hasFormationPressure ⊏ hasMeasurement $\exists completion Date_{wb} \sqsubseteq Wellbore$ ∃completionDate_{wb} ⊑ xsd:dateTime Wellbore \sqsubseteq (≤ 1 completionDate_{wb}) $\exists wellboreTrack_{wb} \sqsubseteq Wellbore$

The OWL 2 QL ontology language	Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
	The OWL	2 QL ontology I	anguage			

- OWL 2 QL is one of the three standard sub-languages of the very expressive standard ontology language OWL 2. [W3C Rec. 2012]
- It is considered a lightweight ontology language:
 - controlled expressive power
 - efficient inference
- Optimized for accessing large amounts of data
 - Queries over the ontology can be rewritten into SQL queries over the underlying relational database (First-order rewritability).
 - Logical consistency of ontology and data can also be checked by executing SQL queries over the underlying database.

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Construct	s of OWL2QL				

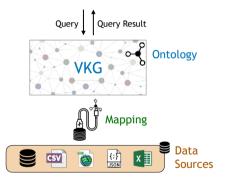
In an OWL 2 QL ontology, one can express knowledge about the classes and properties in the domain of interest by means of various types of assertions.

- Subclass assertions
- Class disjointness
- Domain of a property
- Range of a property
- Subproperty assertions
- Inverse properties
- Mandatory participation to a property

Router rdfs:subClassOf NetworkNode NetworkNode owl:disjointWith User connectedTo rdfs:domain User connectedTo rdfs:range NetworkNode sendsTo rdfs:subPropertyOf connectedTo accesses owl:inverseOf isAccessedBy

... owl:someValuesFrom ...

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Use of ma	appings				


In the VKG framework, the mapping encodes how the data in the sources should be used to create the Virtual Knowledge Graph, which is formulated in the vocabulary of the ontology.

In the VKG framework, the mapping encodes how the data in the sources should be used to create the Virtual Knowledge Graph, which is formulated in the vocabulary of the ontology.

VKG defined from the mapping and the data.

- Queries are answered with respect to the ontology and the data of the VKG.
- The data of the VKG is not materialized (it is virtual!).
- Instead, the information in the ontology and the mapping is used to translate queries over the ontology into queries formulated over the sources.

Note: The graph is **always up to date** wrt the data sources.

ON

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Mapping la	anguage				

The **mapping** consists of a set of assertions of the form

SQL Query ↔ Class membership assertion SQL Query ↔ Property membership assertion

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Mapping	language				

The **mapping** consists of a set of assertions of the form

SQL Query ↔ Class membership assertion SQL Query ↔ Property membership assertion

Intuition behind the mapping

The answers returned by the SQL Query in the left-hand side are used to create the objects (and values) that populate the Class / Property in the right-hand side.

Note: The mapping contains also a mechanism to transform values retrieved from the database into objects of the VKG (thus solving the so-called impedance mismatch).

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Mapping I	anguage – Exa	mple			

Ontology O:

:actsIn rdfs:domain :MovieActor .
:actsIn rdfs:range :Movie .
:title rdfs:domain :Movie .
:title rdfs:range xsd:string .

Database \mathcal{D} :

MOVIE				
mcode	mtitle	myear	type	
5118	The Matrix	1999	m	
8234	Altered Carbon	2018	s	
2281	Blade Runner	1982	m	

ACTOR					
pcode	acode	aname	•••		
5118	438	K. Reeves			
5118	572	C.A. Moss			
2281	271	H. Ford			

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Mapping lang	guage – Exam	ple			

Ontology O:

:actsIn rdfs:domain :MovieActor .
:actsIn rdfs:range :Movie .
:title rdfs:domain :Movie .
:title rdfs:range xsd:string .

Database \mathcal{D} :

	MOVIE	2		
mcode	mtitle	myear	type	
5118	The Matrix	1999	m	
8234	Altered Carbon	2018	s	
2281	Blade Runner	1982	m	

	AC	TOR	
pcode	acode	aname	•••
5118	438	K. Reeves	
5118	572	C.A. Moss	
2281	271	H. Ford	

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Mapping la	nguage – Exan	nple			

Ontology O:

```
:actsIn rdfs:domain :MovieActor .
:actsIn rdfs:range :Movie .
:title rdfs:domain :Movie .
:title rdfs:range xsd:string .
```

Database \mathcal{D} :

	MOVIE	2		
mcode	mtitle	myear	type	
5118	The Matrix	1999	m	
8234	Altered Carbon	2018	s	
2281	Blade Runner	1982	m	

	AC	TOR	
pcode	acode	aname	•••
5118	438	K. Reeves	
5118	572	C.A. Moss	
2281	271	H. Ford	

The mapping \mathcal{M} applied to database \mathcal{D} generates the (virtual) knowledge graph $\mathcal{V} = \mathcal{M}(\mathcal{D})$:

```
:m/5118 rdf:type :Movie . :m/5118 :title "The Matrix" .
:m/2281 rdf:type :Movie . :m/2281 :title "Blade Runner" .
:a/438 :actsIn :m/5118 . :a/572 :actsIn :m/5118 . :a/271 :actsIn :m/2281 .
```

Query answering in VKGs

In VKGs, we want to answer queries formulated over the ontology, by using the data provided by the data sources through the mapping.

• The ontology contains **domain knowledge** that can be used to enrich answers.

Example: Suppose that our data contains LJ-2025 among the Printers, and that the ontology states that each Printer is a NetworkDevice. If we ask for all NetworkDevices, we should return also LJ 2025, considering both the data and the knowledge in the ontology.

• The **mapping** encodes the information of how to translate a query over the ontology into a query over the **database**.

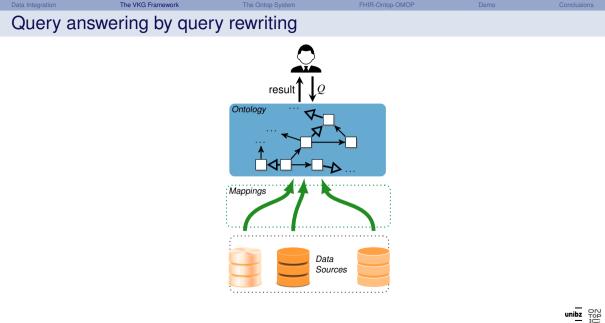
A VKG query answering engine has to take into account all these types of information.

TOP

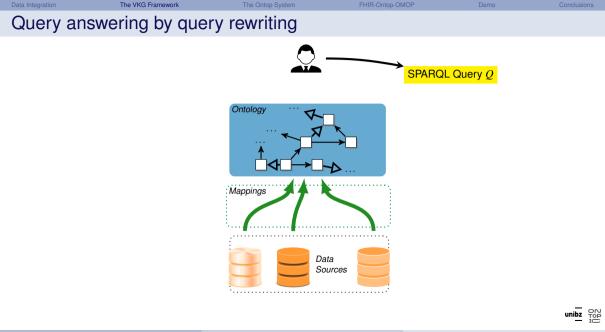
Query answering in VKGs

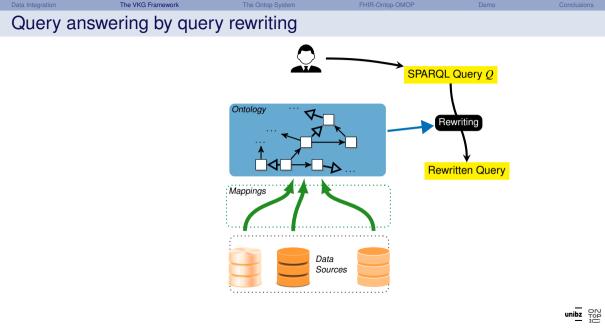
In VKGs, we want to answer queries formulated over the ontology, by using the data provided by the data sources through the mapping.

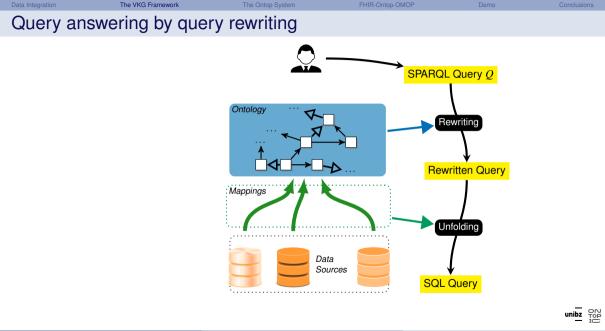
• The ontology contains domain knowledge that can be used to enrich answers.

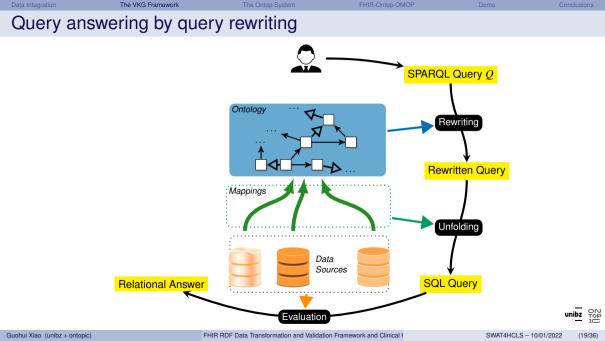

Example: Suppose that our data contains LJ-2025 among the Printers, and that the ontology states that each Printer is a NetworkDevice. If we ask for all NetworkDevices, we should return also LJ 2025, considering both the data and the knowledge in the ontology.

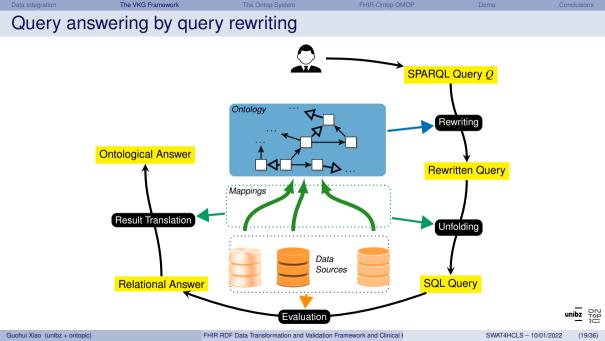
• The **mapping** encodes the information of how to translate a query over the ontology into a query over the **database**.

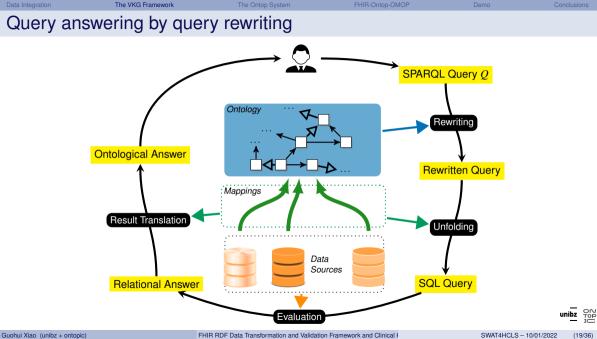

A VKG query answering engine has to take into account all these types of information.

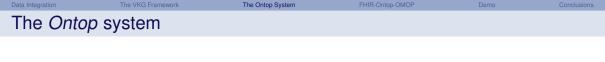

Query answering by query rewriting


DN TOP




Guohui Xiao (unibz + ontopic)



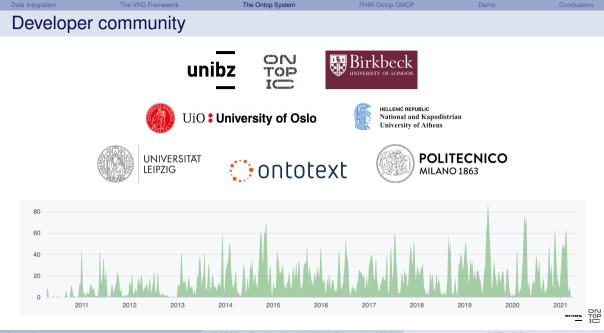

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Outline					

1 Ontology-Based Data Integration

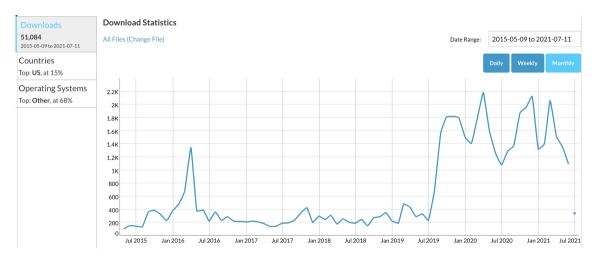
- **2** The VKG Framework
- 3 The Ontop System
- 4 FHIR-Ontop-OMOP

5 Demo

6 Conclusions


https://ontop-vkg.org/

- State-of-the-art VKG system.
- Addresses the key challenges in query answering of scalability and performance.
- Compliant with all relevant Semantic Web standards: RDF, RDFS, OWL 2 QL, R2RML, SPARQL, and GeoSPARQL.
- Supports all major relational DBMSs:


Oracle, DB2, MS SQL Server, Postgres, MySQL, Teiid, Dremio, Denodo, etc.

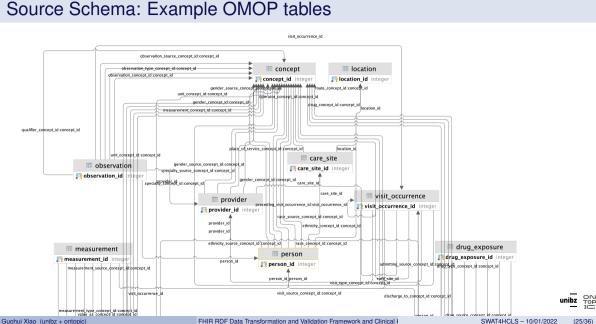
• Open-source and released under Apache 2 license.

ON

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Ontop dov	vnloads				

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Outline					

- 1 Ontology-Based Data Integration
- **2** The VKG Framework
- **3** The Ontop System
- 4 FHIR-Ontop-OMOP
- 5 Demo


6 Conclusions

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
OMOP Co	ommon Data M	odel			

- OMOP Common Data Model. https://ohdsi.github.io/CommonDataModel/.
- The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is an open community data standard, designed to standardize the structure and content of observational data and to enable efficient analyses that can produce reliable evidence.

Data Integration	The VKG Framewor	rk The Ontop System		FHIR-Ontop-OM	OP	Demo		Conclusio	ons
OMOP	CDM v5.4								
	OMOP CDM v5.4 ×								
							×		
$\leftarrow \rightarrow$	C 🍵 ohdsi.github.io/CommonData	aModel/cdm54.html				∆ ☆	* 👳 E		
	🞽 OMOP Common Data Model	🖀 Background 🗸 🔲 Conventions 🗸	CDM Versions 🗸	🛨 Proposals 👻	? How to 🗸	🙁 Support 👻			
	Clinical Data Tables	OMOP CDM v5.4	4						
	PERSON	Below is the specification document for t	he OMOP Common Data	a Model, v5.4. This is	the latest vers	ion of the OMOP CDM. Each			
	OBSERVATION_PERIOD	table is represented with a high-level des							
	VISIT_OCCURRENCE	discussion of each field in each table, any key, foreign key, etc). Should you have qu							
	VISIT_DETAIL	Looking to send us a pull request for a bu				- PoBer			
	CONDITION_OCCURRENCE	Clinical Data Tables	0	-					
	DRUG_EXPOSURE		•						
	PROCEDURE_OCCURRENCE	PERSON							
	DEVICE_EXPOSURE	Table Description							
	MEASUREMENT	This table serves as the central identity n		ons in the database.	It contains recor	rds that uniquely identify			
	OBSERVATION	each person or patient, and some demog	raphic information.						
	DEATH	User Guide							
	NOTE	All records in this table are independent	Persons.						
	NOTE_NLP	ETL Conventions							
	SPECIMEN	All Persons in a database needs one reco							
	FACT_RELATIONSHIP	with no Events should have a record non be reconciled, if possible, across the sour						uniba	ON
	Health System Data Tables	equivalent to the content of BIRTH_DAY,	0		ne content or a	C DIGHT_D/HE mast be		unioz	IC
0 1 1 1 1 1		SUID DDS D + T / ···					0 10/01/000		

FHIR RDF Data Transformation and Validation Framework and Clinical H

FHIR-Ontop-OMOP

Data Integration

The VKG Framework

he Ontop System

FHIR-Ontop-OMOP

2

Conclusions

Target Schema: FHIR RDF

C A Not Secure hl7.	org/fhir/p	atient.h	itml	Q 🖞 🖈	ΞJ	9
tructure UML XM	L JS	ON	Turtle R3 Diff	All		
Structure						
Name	Flags	Card.	Туре	Description & Constraints		
🚽 Patient	N		DomainResource	Information about an individual or animal receiving health care services		
- 🕥 identifier	Σ	0*	Identifier	Elements defined in Ancestors: id, meta, implicitRules, language, text, contained, extension, modifierExtensio An identifier for this patient	'n	
- D active		01	boolean	Whether this patient's record is in active use		
- 🕦 name	Σ	0*	HumanName	A name associated with the patient		
() telecom	Σ	0*	ContactPoint	A contact detail for the individual		
🛄 gender	Σ	01	code	male female other unknown AdministrativeGender (Required)		
📖 birthDate	Σ	01	date	The date of birth for the individual		
- 🕜 deceased[x]	?!Σ	01		Indicates if the individual is deceased or not		
💷 deceasedBoolean			boolean			
deceasedDateTime			dateTime			
🕥 address	Σ	0*	Address	An address for the individual		
- 🇊 maritalStatus		01	CodeableConcept	Marital (civil) status of a patient MaritalStatus (Extensible)		
- i multipleBirth[x]		01		Whether patient is part of a multiple birth		
unutipleBirthBoolea			boolean			
multipleBirthInteger			integer			
- ()) photo		0*	Attachment	Image of the patient		
- 🛅 contact	I	0*	BackboneElement	A contact party (e.g. guardian, partner, friend) for the patient + Rule: SHALL at least contain a contact's details or a reference to an organization		
- () relationship		0*	CodeableConcept	The kind of relationship Patient Contact Relationship (Extensible)		
- 🕥 name		01	HumanName	A name associated with the contact person		

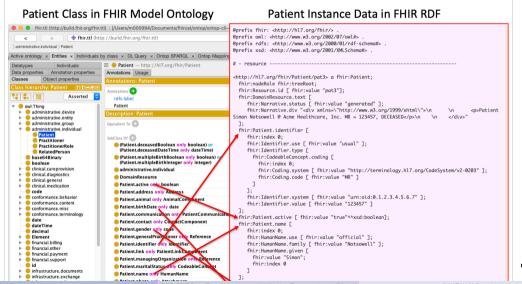
FHIR RDF Data Transformation and Validation Framework and Clinical I

Data Integration

FHIR-Ontop-OMOP

FHIR RDF as Triple Template

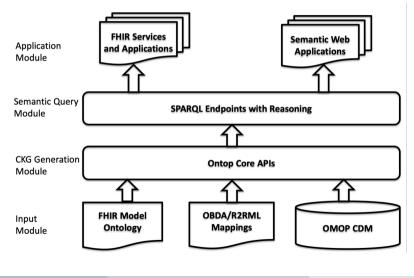
→ C ▲ Not Secure hl7.org/fhir/patient	.html	Q (0 ☆	*	=J (§	2
						5
Structure UML XML JSON	Turtle R3 Diff All					
Turtle Template						
<pre>@prefix fhir: <http: fhir="" hl7.org=""></http:></pre>		?				
[a fhir:Patient;						
fhir:nodeRole fhir:treeRoot; # if	this is the parser root					
# from Resource: .id, .meta, .impl	icitRules, and .language					
	tained, .extension, and .modifierExtension					
	er], ; # 0* An identifier for this patient					
	01 Whether this patient's record is in active use ; # 0* A name associated with the patient					
	t]: # 0* A contact detail for the individual					
fhir:Patient.gender [code]; # 0.						
	01 The date of birth for the individual					
# <u>Patient.deceased[x]</u> : 01 Indic fhir:Patient.deceasedBoolean [b	ates if the individual is deceased or not. One of these	e 2				
fhir:Patient.deceasedDateTime						
	; # 0* An address for the individual					
	bleConcept]; # 01 Marital (civil) status of a patien					
<pre># Patient.multipleBirth[x] : 01 fhir:Patient.multipleBirthBoolea</pre>	Whether patient is part of a multiple birth. One of the	ese Z				
fhir:Patient.multipleBirthIntege						
fhir:Patient.photo [Attachment],						
	ntact party (e.g. guardian, partner, friend) for the pa					
	<pre>p [CodeableConcept], ; # 0* The kind of relation</pre>					
	nName]; # 01 A name associated with the contact pers ontactPoint], ; # 0* A contact detail for the pe					
	ddress]; # 01 Address for the contact person					
fhir:Patient.contact.gender [co	de]; # 01 male female other unknown					
	n [Reference(Organization)]; # 01 Organization that	t is a				
ssociated with the contact	riod]; # 01 The period during which this contact per					
http://www.contact.period_pe	EUIP DDE Data Transformation and				0	۸/۸ [.]


The Ontop System

FHIR-Ontop-OMOP

Demo

Conclusions


FHIR Model Ontology and Instance data in RDF

i

Expose OMOP data sets as FHIR-compliant Clinical Knowledge Graphs

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Example					

Records in OMOP Person Table:

person_id	gender_concept_id	year_of_birth	month_of_birth	day_of_birth	birth_datetime
392776072	8507	2138	7	17	2138-07-17 00:00:00
392776073	8507	2025	4	11	2025-04-11 00:00:00
392776074	8532	2143	5	12	2143-05-12 00:00:00
392776075	8507	2103	2	2	2103-02-02 00:00:00
392776076	8532	2109	6	21	2109-06-21 00:00:00
392776077	8532	2121	5	23	2121-05-23 00:00:00
392776078	8507	2117	11	20	2117-11-20 00:00:00

Clinical Knowledge Graph in FHIR RDF:

```
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX fhir: <http://hl7.org/fhir/>
```

<http://hl7.org/fhir/Patient/392776072>

```
a fhir:Patient ;
fhir:Resource.id [fhir:value "392776072"^^xsd:string ];
fhir:Patient.gender [fhir:value "male"^^xsd:string ];
fhir:Patient.birthDate [fhir:value "2138-07-17"^^xsd:date ].
```

DN TOP

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Dealing w	ith Nested triple	S			
	DF makes extensive us			02776072117	
• E.g. :Pa	atient/392776072 fh	ir:Resource.id	[fhir:value "3	92776072"]	

- FHIR/RDF makes extensive use of "nested" triples
- E.g. :Patient/392776072 fhir:Resource.id [fhir:value "392776072"]
- This two triples: :Patient/392776072> fhir:Resource.id _:1 .
 - _:1 fhir:value "392776072" .

- FHIR/RDF makes extensive use of "nested" triples
- E.g. :Patient/392776072 fhir:Resource.id [fhir:value "392776072"]
- This two triples: :Patient/392776072> fhir:Resource.id _:1 .
 - _:1 fhir:value "392776072" .
- The blank node _:1 should not be used in other places, so better write it like: :Patient/392776072 fhir:Resource.id :Patient/392776072/Resource.id . :Patient/392776072/Resource.id fhir:value "392776072" .

- FHIR/RDF makes extensive use of "nested" triples
- E.g. :Patient/392776072 fhir:Resource.id [fhir:value "392776072"]
- This two triples: :Patient/392776072> fhir:Resource.id _:1 .
 - _:1 fhir:value "392776072" .
- The blank node _:1 should not be used in other places, so better write it like: :Patient/392776072 fhir:Resource.id :Patient/392776072/Resource.id . :Patient/392776072/Resource.id fhir:value "392776072" .
- The target part of the Ontop mapping looks like: :Patient/{person_id} fhir:Resource.id :Patient/{person_id}/Resource.id . :Patient/{person_id}/Resource.id fhir:value "{person_id}" .

- FHIR/RDF makes extensive use of "nested" triples
- E.g. :Patient/392776072 fhir:Resource.id [fhir:value "392776072"]
- This two triples: :Patient/392776072> fhir:Resource.id _:1 .
 - _:1 fhir:value "392776072" .
- The blank node _:1 should not be used in other places, so better write it like: :Patient/392776072 fhir:Resource.id :Patient/392776072/Resource.id . :Patient/392776072/Resource.id fhir:value "392776072" .
- The target part of the Ontop mapping looks like: :Patient/{person_id} fhir:Resource.id :Patient/{person_id}/Resource.id . :Patient/{person_id}/Resource.id fhir:value "{person_id}" .
- This becomes unmanageable with multiple levels

```
fhir:Patient.identifier [
```

fhir:CodeableConcept.coding [

fhir:Coding.system [fhir:value "http://terminology.hl7.org/CodeSystem/

fhir:Coding.code [fhir:value "MR"]]];

fhir:Identifier.system [fhir:value "urn:oid:0.1.2.3.4.5.6.7"];
fhir:Identifier.value [fhir:value "123457"]]:

unibz TOP

The Ontop System

FHIR-Ontop-OMOP

no C

Turtle Template Mapping Language

Key ideas:

- Stay close to Triple Template in FHIR RDF (human-readable)
- Reuse (abuse) R2RML vocabulary as much as possible
- Generate Blank nodes automatically
- Translatable to Ontop Mapping/R2RML

```
[] # measurement -> :Observation
   rr:logicalTable
                         [ rr:salOuery """SELECT * FROM measurement""" ] ;
                         [ rr:template "http://hl7.org/fhir/Observation/{measurement_id}" ] ;
   rr:subjectMap
   rr:predicateObjectMap [ a
                                                             :Observation :
                                                             [ :value [ rr:column "measurement id" ] ] :
                           :Resource.id
                                                             [ :value "final"];
                           •Observation status
                           Observation.code
                                                             [ rr:termTupe rr:IRI ;
                                                               rr:template "http://hl7.org/fhir/CodeableConcept/{measurement_concept_id}" ] ;
                           :Observation.categoru
                                                             [ rr:termTupe rr:IRI :
                                                               rr:template "http://hl7.org/fhir/CodeableConcept/{measurement type concept id}" ] :
                           :Observation.subject
                                                             [ :link [ rr:termTupe rr:IRI :
                                                               rr:template "http://hl7.org/fhir/Patient/{person_id}" ] ];
                                                             [ :link [ rr:termTune rr:IRI :
                            :Observation.encounter
                                                               rr:template "http://hl7.org/fhir/Encounter/{visit_occurrence_id}" ] ]:
                           :Observation.effectiveDateTime
                                                             [ :value [ rr:column "measurement_datetime" ;
                                                                        rr:datatupe xsd:dateTime ] ] ;
                                                             [ :Period.start [ :value [ rr:column "measurement datetime" :
                           :Observation.effectivePeriod
                                                                            rr:datatupe xsd:dateTime 1 1 1 :
                           :Observation.valueCodeableConcept [ rr:termType rr:IRI ;
                                                                                                                                                              rr:template "http://hl7.org/fhir/CodeableConcept/{value_as_concept_id}" ] ;
                           :Observation.valueString
                                                             [ :value [ rr:column "value as number" :
```

Conclusions

Corresponding Ontop Mapping

mappingId mapping12

target <http://bl7.org/fbir/Dbservation/{measurement_id}> <http://www.w3.org/1999/02/22-rdf-svntax-ns#tyne> <http://bl7.org/fbir/Dbservation> </thtp://hl7.org/fhir/Observation/{measurement_id}> <http://hl7.org/fhir/Resource.id> <http://hl7.org/fhir/Observation/{measurement_id}/Resource.id> . <shttp://hl7.org/fhir/Dbservation/imeasurement id}/Resource.id> <http://hl7.org/fhir/value> "imeasurement id}"^^<http://www.w3.org/2001/XMLSchema#string> c. <http://bl7.org/fbir/Observation/{measurement id}> <http://bl7.org/fbir/Observation.status> <http://bl7.org/fbi .org/fhir/Observation/{measurement id}/Observation.status> . <http://hl7.org/fhir/Observation/{measurement id}/Observation.status> <http://hl7.org/fhir/Observation.status> <http://hl7.org/fhir/Observation.status> <http://hl7.org/fhir/Observation.status> <http://hl7.org/fhir/Observation.status> <http://hl7.org/fhir/Observation.status> <http://hl7.org/fhir/Observati ...org/fhir/value> "final"^^<http://huxw.w3.org/2001/XMLSchema#string> . <http://hl7.org/fhir/Observation/{measurement id}> <http://hl7.org/fhir/Observation .code> <http://hl7.org/fhir/CodeableConcept/{measurement_concept_id}> . <http://hl7.org/fhir/Observation/{measurement_id}> <http://hl7.</pre> .org/fhir/Observation.category> <http://hl7.org/fhir/CodeableConcept/imeasurement_type_concept_id}> . <http://hl7.org/fhir/Observation/imeasurement_id}> </http://hl7.org/fhir/Observation.subject> http://hl7.org/fhir/Observation.subject> </a href="http://hl7"></a href="http://hl7">http://hl7 ...org/fhir/Observation/imeasurement_id}/Observation.subject> <http://hl7.org/fhir/link> <http://hl7.org/fhir/Patient/imeasurement_id}> . <http://hl7.org/fhir/link> <http://hl7.org/fhir/Patient/imeasurement_id}> . .org/fhir/Observation/{measurement_id}> <http://hl7.org/fhir/Observation.encounter> <http://hl7.org/fhir/Observation/{measurement_id}/Observation. .encounter> . <http://hl7.org/fhir/Observation/{measurement id}/Observation.encounter> <http://hl7.org/fhir/link> <http://hl ...org/fhir/Encounter/{visit occurrence id}> . http://hl7.org/fhir/Observation.effectiveDateTime> <http://hl7.org/fhir/Observation/{measurement_id}/Observation.effectiveDateTime> . <http://hl7.org/fhir/Observation/{measurement_id}/Observation.</pre> e.effectiveDateTime> <http://hl7.org/fhir/value> "{measurement datetime}"^^<http://www.w3.org/2001/XMLSchema#dateTime> . <http://hl7.org/fhir/value> "{measurement datetime}"^^<http://www.w3.org/2001/XMLSchema#dateTime> . <http://hl7.org/fhir/value> "{measurement datetime}"^^< ...org/fhir/Observation/{measurement id}> <http://hl7.org/fhir/Observation.effectivePeriod> <http://hl7.org/fhir/Observation/{measurement id}/Observation ffectivePeriod> . ">http://hl7.org/fhir/Period.start> http://hl7 .org/fhir/Observation/{measurement_id}/Observation.effectivePeriod/Period.start> . http://hl7.org/fhir/Observation/fmeasurement_id//Observation ..effectivePeriod/Period.start> <http://hl7.org/fhir/value> "{measurement datetime}"^^<http://www.w3.org/2001/XMLSchema#dateTime> . <http://hl7. .org/fhir/Observation/{measurement_id}> <http://hl7.org/fhir/Observation.valueCodeableConcept> <http://hl7.</pre> . org/fhir/CodeableConcept/{value as concept_id}> . <http://hl7.org/fhir/Observation/{measurement_id}> <http://hl7.org/fhir/Observation.valueString> <http://bl7.org/fhir/Observation/{measurement_id}/Observation.valueString> . <http://bl7.org/fhir/Observation/{measurement_id}/Observation.valueString> <<http://hl7.org/fhir/value> "{value_as_number}"^<<http://www.w3.org/2001/XMLSchema#string> . <http://hl7.org/fhir/0bservation/{measurement_id}> > <http://hl7.org/fhir/Observation.referenceRange> <http://hl7.org/fhir/Observation/{measurement_id}/Observation.referenceRange> . <http://hl7.</pre> ..org/fhir/Observation/fmeasurement_id}/Observation.referenceRange> <http://hl7.org/fhir/Observation.referenceRange.low> <http://hl7.org/f .org/fhir/Observation/{measurement_id}/Observation.referenceRange/Observation.referenceRange.low> . <http://hl7a</pre> .org/fhir/Observation/imeasurement_id}/Observation.referenceRange/Observation.referenceRange.low> <http://hl7.org/fhir/value> "irange low}"^^<http://www . w3.org/2001/XMLSchema#string> . http://hl7.org/fhir/Observation/fmeasurement_id/Observation.referenceRanges e.referenceRange.high> <http://hl7.org/fhir/Observation/{measurement_id}/Observation.referenceRange/Observation.referenceRange.high> , <http://hl7.

,.org/fhir/Observation/{measurement_id}/Observation.referenceRange/Observation.referenceRange.high> <http://hl7.org/fhir/value> 🤉

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
SPARQL E	Endpoint				

SWAT4HCLS - 10/01/2022 (34/36)

unibz 01V TOP IC

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Outline					

- 1 Ontology-Based Data Integration
- **2** The VKG Framework
- **3** The Ontop System
- 4 FHIR-Ontop-OMOP

6 Conclusions

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Demo					

- Setting up the VKG
 - Instruction: https://github.com/fhircat/FHIROntopOMOP
 - Requirement: connection to an OMOP database
- Validation:
 - https://github.com/shexjs/shex.js
 - Example:

shex-validate -x ../patient.shex -d omop.392775850.ttl
-s http://hl7.org/fhir/shape/Patient
-n http://hl7.org/fhir/Patient/392775850

Data Integration	The VKG Framework	The Ontop System	FHIR-Ontop-OMOP	Demo	Conclusions
Outline					

- 1 Ontology-Based Data Integration
- **2** The VKG Framework
- **3** The Ontop System
- 4 FHIR-Ontop-OMOP
- 5 Demo

Conclusions		

- VKGs are by now a mature technology to address the challenges related to data access and integration.
- It has been well-investigated and applied in many different scenarios mostly for the case of relational data sources.
- The technology is general purpose, but the bio-medical domain is very well suited for its application.
- Ontop can be used to bridge OMOP and FHIR/RDF!

Thank you!

- E: xiao@inf.unibz.it
- H:http://www.ghxiao.org/

- Ontop website: https://ontop-vkg.org/
- Github: http://github.com/ontop/ontop/
- Facebook: https://www.facebook.com/obdaontop/
- Twitter: @ontop4obda
- Ontopic website: https://ontopic.ai/