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ABSTRACT We report the sequences of two West Nile virus (WNV) strains (lineages 1
and 2) developed by the Paul-Ehrlich-Institut as reference materials. The materials are
calibrated against the 1t World Health Organization WNV RNA International Standard
and are intended for use in nucleic acid technology assays supporting transfusion safety.

est Nile virus (WNV) is a Flavivirus (family Flaviviridae) transmitted by Culex mos-

quitoes and causing infections in birds, horses, and humans (1). First isolated
from a Ugandan patient in 1937 (2), WNV subsequently spread within Africa, Asia, the
Middle East, North America, and Europe (3). Typically, WNV infections are asymptom-
atic; however, some individuals develop West Nile fever and occasionally neuroinvasive
disease (4). With the expansion of WNV in Europe, including Germany (5), transmission
by blood transfusion is a concern, and implementation of nucleic acid amplification
technique (NAT)-based donor screening is necessary once human cases become
endemic and for travelers returning from affected areas (6). To support testing by
transfusion services and NAT assay developers, reference materials were prepared by
the Paul-Ehrlich-Institut for WNV lineages 1 (NY99; flamingo) and 2 (Héja; goshawk),
reflecting circulating European clades (7, 8). The isolates were passaged once in Vero
E6 cells and heat-inactivated as previously described (9); no infectivity was detected
following heat inactivation. Heat-inactivated stocks were diluted in human plasma, dis-
pensed into vials, and lyophilized; batches of reference material prepared from NY99
and Héja were designated 13299/19 and 13300/19, respectively. RNA was extracted
using the ExiPrep Dx viral RNA kit (Bioneer Corp., Daejeon, Republic of Korea) (10).
Libraries were prepared using a modified version of the “not not so random priming”
method (11). Following cDNA synthesis, barcoded Illumina libraries were prepared by
PCR amplification using NEBNext Ultra Il master mix (New England Biolabs, Frankfurt,
Germany); amplicons were recovered and sequenced using a MiSeq instrument with
the paired-end (2 x 300-bp) setting as previously described (12).

Majority consensus sequences were generated from the processed and mapped
reads based on the reference sequences (13); default parameters were applied unless
otherwise stated. The sequencing statistics are shown in Table 1. Fastp v0.20.0 (14) was
used for quality trimming and adapter removal. After quality control, the reads were
mapped using BWA-MEM v0.7.12-r1039 (15). Host-derived sequences (Chlorocebus
sabeus; GenBank accession number GCA_000409795.2) were removed by specifying
the minimum seed length (-k 31). Unmapped reads were extracted using SAMtools
v1.7 (16) and bamtofastq v2.17.0 (17) and subsequently mapped to the WNV reference
genomes submitted under GenBank accession numbers AF196835.2 (lineage 1) or
DQ116961.1 (lineage 2). Host-free alignments were deduplicated using MarkDuplicates
in the Picard toolkit (http://broadinstitute.github.io/picard) and left-aligned using
LeftAlignindels in GATK v4.0 (18) Variant calling was performed using LoFreq v2.1.3 (19).
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TABLE 1 West Nile Virus NY99 and Héja sequencing statistics

Data for isolate:

Parameter® NY99 Héja
GenBank accession no. MZ605381 MZ605382
BioProject accession no. PRINA759393 PRINA759393
WNYV lineage 1 2
PEI reference material code no.? 13299/19 13300/19
Length (bp) 11,025 11,028
Potency 6.25 log,, IU/ml 5.88log;, IU/ml
No. of reads
Raw reads 2,624,302 3,084,270
After QC 2,530,266 2,979,944
After removal of host sequences 461,663 447,665
Total length of reads (bp) 94,234,259 89,678,647
Avg read length (bp) 204 200
No. of mapped reads 350,568 351,140
Proportion mapped
% of raw reads 13.4 11.4
% of QC reads 13.9 11.8
% of reads after removal of host sequences 75.9 78.4
Mean depth of coverage (x) 6,522 6,497

2QC, quality control.
bPEl, Paul-Ehrlich-Institut.

The sequence determined for isolate NY99 was 11,025 bp long, with seven nucleotide
changes (all synonymous) compared to the prototype (AF196835.2). The Héja isolate,
11,028 bp long, is closely related to viruses isolated from goshawks in Central Europe,
confirming its position within the Central European lineage 2 clade. Héja showed 27 nu-
cleotide differences to DQ116961.1 (>99% identity), resulting in 6 amino acid changes
(3 nonsynonymous). The Héja virus has not always been adequately detected in external
quality assessment programs (8); therefore, knowledge of the sequence is important for

improving assays to ensure detection of similar viruses going forward.

Both reference materials are calibrated against the World Health Organization International
Standard for WNV for NAT-based assays (20) and are considered “secondary standards” (21).

Data availability. The sequences of strains NY99 and Héja reported here have been
deposited in GenBank under the accession numbers MZ605381 and MZ605382, respec-
tively. The sequencing read data have been deposited in the NCBI SRA under accession
number PRINA759393. The reference materials are available from the Paul-Ehrlich-

Institut (www.pei.de).
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