Impaired metabolic health over-time and high abdominal fat are prospectively associated with high-sensitivity C-reactive protein in children: The IDEFICS study

Esther M. González-Gil1,2,3 | Luis A. Moreno1,3,4,5 | Annunziata Nappo6 | Javier Santabárbara7 | Maike Wolters8 | Paola Russo6 | Stefaan De Henauw9 | Toomas Veidebaum10 | Denes Molnar11 | Monica Hunsberger12 | Arno Fraterman13 | Licia Iacoviello14,15 | Michael Tornaritis16 | Wolfgang Ahrens8,17 | Silvia Bel-Serrat1,18

1GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
2Department of Biochemistry and Molecular Biology II, Instituto de Nutrición y Tecnología de los Alimentos, Center of Biomedical Research (CIBM), Universidad de Granada, Granada, Spain
3Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain
4Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
5Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
6Institute of Food Sciences, National Research Council, Avellino, Italy
7Department of Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
8Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
9Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
10Center of Health and Behavioral Science, National Institute for Health Development, Tallinn, Estonia
11Department of Pediatrics, Medical School, University of Pécs, Pécs, Hungary
12Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
13Laboratoriumsdizin Dortmund, Eberhard & Partner, Dortmund, Germany
14Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
15Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy
16Research and Education Institute of Child Health, Strovolos, Cyprus
17Institute of Statistics, Bremen University, Bremen, Germany
18National Nutrition Surveillance Centre, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland

Correspondence
Luis A. Moreno Aznar, GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain.
Email: lmoreno@unizar.es

Funding information
Ministerio de Ciencia e Innovación, Grant/Award Number: FJCI-2017-34967; Sixth Framework Programme, Grant/Award Number: 016181 (FOOD)

Summary
Background: Metabolic risk and inflammatory state have an early life onset and are associated with future diseases.
Objectives: To assess the association between metabolic syndrome (MetS) and metabolic health with high-sensitive C-reactive protein (hsCRP), cross-sectionally and longitudinally, in children.

Received: 23 February 2021 Revised: 10 April 2021 Accepted: 26 April 2021
DOI: 10.1111/ijpo.12817
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Pediatric Obesity published by John Wiley & Sons Ltd on behalf of World Obesity Federation.
Methods: 2913 European children (2-10 years) from eight countries from the IDEFICS study were investigated. Data were collected at baseline and 2 years later (follow-up). A MetS z-score was computed with waist circumference (WC), insulin resistance index, blood pressure, high-density lipoprotein cholesterol and triglycerides. Metabolically unhealthy (MU) status was assessed. Multi-level linear and logistic regressions were performed.

Results: Among the MetS markers, WC was more consistently associated with hsCRP cross-sectional and prospectively. Baseline MetS score was significantly associated with greater risk of high hsCRP at follow-up and with prevalence and incidence of hsCRP. Those children who became MU overtime were significantly (P < .05) associated with future higher levels of hsCRP, independently of weight status at baseline.

Conclusions: Transition over time to a MU state was associated with higher levels of hsCRP at follow-up, independent of weight status at baseline. Screening of metabolic factors and routine measurement of WC are needed to prevent inflammatory status and related chronic diseases in children.

Keywords: abdominal fat, children, Europe, inflammation, metabolic health, metabolic syndrome

INTRODUCTION

Metabolic syndrome (MetS) is a cluster of several cardio-metabolic risk factors such as central or total adiposity, hyperglycaemia, dyslipidaemia and elevated blood pressure, and it has been associated with inflammation in the carotid arteries. The inflammatory mechanisms induce endothelial dysfunction and increase adhesion molecule expression, playing a key role in the onset, development and settlement of the lesion. Among all the inflammatory biomarkers, high-sensitivity C-reactive protein (hsCRP) is widely used in epidemiological studies, and it has been related to carotid intima-media thickness (cIMT) even in children. Noteworthy, adults with MetS are more likely to have elevated concentrations of inflammation markers. In this sense, it has been suggested that both MetS and an inflammatory state could coexist as they seem to be triggered by similar factors, particularly by adipose tissue. For that reason, there is no consensus in the literature regarding the direction of the association given that it seems to be found in both ways, that is, MetS as the cause of inflammation and vice versa. Previous studies have shown that the presence of MetS in childhood has been related to the risk of cardio-metabolic disorders later in life and with subclinical atherosclerosis in children. Additionally, those with MetS in childhood showed higher risk of having high cIMT and diabetes mellitus type 2 (T2DM) as adults. Thus, MetS in childhood can predict adverse levels of cardiovascular risk factors in the future, and this could be due to its association with inflammation. Recently, it has been suggested that MetS is better identified by a continuous score which has shown associations with insulin resistance, inflammation, endothelial damage and cardiovascular diseases (CVD). In 2014, Ahrens et al proposed a definition for MetS, that has been recommended for children, following the approach by Eisenman. The use of metabolic scores or composite metabolic definitions seems to be a better measure of cardiovascular health in children than single risk factors. While the use of definitions to compute a continuous score seems to have higher sensibility and give a better insight, applying a dichotomous measure could be useful for clinical purposes and have more practical implications.

In addition, previous literature has suggested that subjects with overweight/obesity could present a metabolically healthy (MH) status, a definition usually based on markers of MetS. Thus, metabolic health could be to some extent independent of obesity degree. In addition, previous findings showed that poor metabolic health was associated with inflammatory status and endothelial dysfunction already in adolescence. However, there is a lack of previous literature available on this association in children.

To our knowledge, there are no prospective studies carried out in children from eight European countries assessing the longitudinal association between several metabolic risk indicators, metabolic health status and inflammation at such young age. Thus, the main aim of this study is to prospectively investigate the link between MetS and its components and metabolic health status with hsCRP as a marker for inflammation in a sample of European children.

METHODS

2.1 Study population

The IDEFICS study is a multicentre population-based prospective cohort study performed in eight European countries: Belgium,
The definition presented by Ahrens et al18 was based on three previous definitions: the definition by Cook25 the International Diabetes Federation (IDF)26 and the definition by Viner.27 These definitions consider as components of the MetS: (a) excess adiposity,28 (b) systolic (SBP) and/or diastolic (DBP) blood pressure,29 (c) triglycerides and HDL,30 and (d) fasting blood glucose and/or insulin.31 However, they partly use cut-offs for adults and weigh the single components of the MetS disproportionally. The definition of Ahrens et al18 overcomes these limitations in that it takes into account age- and sex-specific (and height-specific for blood pressure) z-scores for each of these components and by ensuring a balanced contribution of the MetS components to the overall score. A z-score standardization to calculate a continuous MetS score was used.18 In addition, the MetS score was dichotomized to identify those children at risk of MetS. Children were divided in two categories: at risk of MetS (≥90th percentile of MetS score) vs not at risk (<90th percentile of MetS score) as previously done.32

2.5 | Metabolically unhealthy status definition

Children were classified as metabolically healthy (MH) or metabolically unhealthy (MU) according to the IDF definition of metabolic syndrome for young populations.26 The IDF definition includes the following criteria: WC, blood pressure, triglycerides, HDL-c and fasting glucose. MU status was considered when at least one of these criteria was fulfilled excluding WC, which was not included in the definition for metabolic health. The MH or MU status of each child at either baseline or follow-up was computed as a new four-category variable called prospective MH/MU: (a) children being MH at both baseline and follow-up, (b) children who were MU at baseline but became MH at follow-up, (d) children who were MH at baseline and that became MU at follow-up and (e) children being MU at both baseline and follow-up.

2.6 | Biochemical analysis

Children were asked to participate in fasting blood collection after an overnight fast. The hsCRP concentrations were measured in a central laboratory with a high-sensitivity assay using latex-enhanced nephelometry (BN2-Nephelometer, Siemens, Deerfield, Illinois), and the lower limit of detection of the assay was 0.02 mg/dL. Children with concentrations of 10 mg/dL and above were excluded because they could be undergoing an inflammatory process and our findings could be biased. Assessment of glucose, HDL and TG was performed on site by a Cholestech LDX (Cholestech, Hayward, California). Insulin was measured with a luminescence immunoassay (AUTO-GA Immulite 2000, Germany). Finally, the HOMA-IR index was calculated. A complete description of blood sampling and analytical procedures has been published previously.33
logistic regression analysis included age, sex and parental educational attainment classified according to the International Standard Classification of Education (ISCED). The levels of the multi-level logistic regressions performed in this study were control/intervention and country. The binary level (control/intervention) was used for the adjustment of potential effects of an embedded community- and setting-oriented intervention program in the IDEFICS study. Two models were analysed: model 1 included all previously listed variables and model 2 included the addition of body mass index (BMI).

Separate multi-level linear regression analyses were carried out to examine the associations of the MetS score and its components at baseline with hsCRP at follow-up and changes of hsCRP between baseline and follow-up. Changes in hsCRP were computed as the difference between follow-up minus baseline (T1-T0). Analyses were adjusted for potential confounders including age at baseline, sex, ISCED level, hsCRP levels at baseline and z-BMI at baseline. Control/intervention and country were entered as random intercepts. Multi-level logistic regression analyses were conducted to investigate the association between components of the MetS and MetS score at baseline and being at risk of high hsCRP at follow-up (prevalence) and becoming at high risk of hsCRP at follow-up (incidence). Incident cases included children that had low-medium concentration hsCRP levels at baseline but had high hsCRP levels at follow-up, and, therefore, those children with high hsCRP levels at baseline (prevalent children) were excluded from these analyses. Analyses were performed using Stata/IC (version 16.1). Collinearity was assessed for all the models investigated. No collinearity among variables was found. Statistical significance was set at $P < .05$.

RESULTS

Mean values of biochemical parameters under study are shown in Table S1 by categories of hsCRP at both T0 and T1. At both time points, baseline (T0) and follow-up (T1) significantly higher ($P < .05$) mean values were found for BMI, SBP, DBP, WC, TG, HOMA-IR, mean arterial pressure, insulin and the MetS score in those children with higher hsCRP when compared with those with lower concentrations of hsCRP. In addition, lower mean values were found for HDL at baseline and follow-up in those children with the highest levels of hsCRP.

The cross-sectional associations between the components of the MetS score and the categories of hsCRP are shown in Table S2. The association was significant ($P < .001$) at baseline and follow-up for WC (OR = 1.065, 95% CI: 1.034-1.097 at T0; OR = 1.045, 95% CI: 1.016-1.075 at T1) and HDL (OR = 0.980, 95% CI: 0.974-0.987 at T0; OR = 0.983, 95% CI: 0.976-0.990 at T1) at baseline and follow-up, while the associations between TG and MetS score with hsCRP categories were significant only at T1 (OR = 1.004, 95% CI: 1.001-1.007 and OR = 1.070, 95% CI: 1.018-1.125, respectively).

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>hsCRP T1a</th>
<th>ΔhsCRPb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>95% CI</td>
</tr>
<tr>
<td>Waist circumference T0</td>
<td>0.05</td>
<td>0.04-0.06</td>
</tr>
<tr>
<td>Systolic blood pressure T0</td>
<td>0.005</td>
<td>0.001-0.010</td>
</tr>
<tr>
<td>Diastolic blood pressure T0</td>
<td>0.008</td>
<td>0.003-0.015</td>
</tr>
<tr>
<td>HDL cholesterol T0</td>
<td>0.000</td>
<td>-0.003-0.003</td>
</tr>
<tr>
<td>Triglycerides T0</td>
<td>0.002</td>
<td>0.000-0.004</td>
</tr>
<tr>
<td>HOMA-IR T0</td>
<td>0.05</td>
<td>-0.000-0.09</td>
</tr>
<tr>
<td>MetS score T0</td>
<td>0.06</td>
<td>0.04-0.08</td>
</tr>
</tbody>
</table>

Note: *Statistically significant results: p-value <.05.

aAdjusted for sex, age at T0, hsCRP at T0, z-BMI at T0, ISCED and level variables: control/intervention area and country.

bChanges in MetS variables and hsCRP calculated as T1 (follow-up) minus T0 (baseline).
Table 1 shows the associations between MetS component variables at T0 with hsCRP at T1 and changes in hsCRP (T1-T0). Positive associations were observed for WC ($\beta = 0.05$, 95% CI = 0.04-0.06), SBP ($\beta = 0.005$, 95% CI = 0.001-0.010), DBP ($\beta = 0.008$, 95% CI = 0.003-0.015), TG ($\beta = 0.002$, 95% CI = 0.000-0.004) and MetS score ($\beta = 0.06$, 95% CI = 0.04-0.08). MetS component variables and delta values of hs-CRP were positively associated, that is, SBP ($\beta = 0.08$, 95% CI = 0.02-0.14), DBP ($\beta = 0.012$, 95% CI = 0.05-0.20) and MetS score ($\beta = 0.23$, 95% CI = 0.01-0.45). As an example, this means that a one-unit increase in MetS score was associated with a 0.23-unit higher delta hsCRP.

The prevalence and incidence of having high values of hsCRP according to each metabolic factor and MetS score at T0 are shown in Table 2. Children with higher baseline WC (OR = 1.12, 95% CI = 1.09-1.14), SBP (OR = 1.01, 95% CI = 1.00-1.02), DBP (OR = 1.02, 95% CI = 1.01-1.04), triglycerides (OR = 1.00, 95% CI = 1.00-1.01) and MetS score (OR = 1.14, 95% CI = 1.09-1.19) had higher odds of becoming at high risk of hsCRP at T1 (incidence).

Table 3 shows the multi-level logistic regression between being at risk of MetS and categories of hsCRP cross-sectionally and prospectively. Those at risk of MetS had higher odds of being in the highest level of CRP at each measurement time, T0 and T1 ($P < 0.01$). The odds decreased when the z-BMI was entered into the model, but associations remained significant. Regarding the prospective association between being at risk of MetS at baseline and the odds of being in the highest level of hsCRP at follow-up, both models were significant (OR = 4.95, 95% CI = 3.765-6.508, and OR = 2.47, 95% CI = 1.829-3.342) when entering z-BMI.

Finally, Table 4 shows the longitudinal associations between baseline metabolic health (MU status) and changes of metabolic health over time with hsCRP at T1 and changes of hsCRP (T1-T0). These analyses are shown for all participants and stratified by weight status, that is, normal weight and children with overweight/obesity. In all participants, we found positive and significant associations...
between those that became MU over time (MH T0 and MU T1) or were already MU at baseline and remained MU over time (MU T0 and MU T1) and hsCRP at T1 (P < .001). The same was found for those with MU status at baseline and follow-up and the change of hsCRP (P = .028). Regarding MU status in normal weight participants and hsCRP at T1, we found positive and significant associations between those whose metabolic health (MH T0 and MU T1) worsened over time or were MU at baseline and at follow-up (MU T0 and MU T1) and hsCRP at T1 (P < .001 and P = .049, respectively). Finally, we found a significant and positive association between those children with overweight and obesity that became MU over time (MH T0 and MU T1) with hsCRP at T1 (P = .035). Likewise, a positive and significant association was found for those with overweight/obesity that were MU at both baseline and follow-up and changes (T1-T0) of hsCRP (P = .019).

4 | DISCUSSION

The main findings of this multicentre study with European children were the prospective positive associations between metabolic state and hsCRP. The continuous MetS score together with being at risk of MetS at baseline was associated with high levels of hsCRP at follow-up. Also, the impairment of metabolic health over time in childhood was associated with higher concentrations of hsCRP 2 years later, independently of the obesity status. These results suggest that the
metabolic definitions evaluated may be useful when assessing the association between metabolic risk and hsCRP in paediatric populations. Finally, among the metabolic factors investigated, WC seemed to be the MetS component that exerted a major effect on current and future hsCRP already in childhood. These associations were found even when controlling for BMI suggesting the major role of abdominal fat in these associations.

In our sample, 14.1% of the children were considered at risk of MetS at T1 according to the cut-off proposed by Ahrens, when MetS score was ≥90th percentile, while 56.6% of the children were not at risk for MetS at baseline or follow-up (data not shown). Noteworthy, it is difficult to estimate the prevalence of MetS in children as there are no consensus regarding its definition. In a sample of Spanish children, prevalence ranged from 7.6% to 30.8% depending on the definition used. This could be partly explained by the previous lack of reference values for youth. However, the MetS definition based on the data of the IDEFICS study has been considered an appropriate option in children.

In adults, it has been observed that those with MetS are at increased risk of cardiovascular disease while cardiovascular risk factors in early life may induce alterations in arteries and development of atherosclerosis. However, few studies have examined the link between paediatric MetS and future cardiovascular disease or its precursors. A 25 years follow-up study observed that MetS in childhood, combined with changes in age-specific BMI percentile, predicted cardiovascular events later in life. In addition, a study from Magnussen et al found that a dichotomous definition of MetS in youth could predict adult MetS, high cIMT and T2DM in early to middle adulthood. In the present study, we have found that baseline values of MetS score were associated with higher hsCRP after 2 years and that those who increased the MetS score were more likely to become at high risk of hsCRP 2 years later. The continuous score is considered useful as it takes into account the cumulative impact of the risk as it gradually increases across individuals, whereas dichotomous definitions can lead to misclassification or underestimation of the extent of variation. In the present study, the MetS score was associated with the future prevalence and incidence of hsCRP, which supports its clinical use. Also, using the dichotomized MetS, we found longitudinal associations with hsCRP, suggesting that those at risk of MetS in early childhood have higher odds of high hsCRP later on. The probabilities decreased when adding z-BMI in the analysis suggesting an association with BMI, but they were still high and significant.

Furthermore, in our study, we found associations between the individual markers of MetS and hsCRP. Similar results have been observed previously in adolescents. In a previous study carried out in children, where cIMT was measured, hsCRP was associated with subclinical atherosclerosis in children with MetS. This highlights the need for screening metabolic markers during childhood to prevent the early stages of atherosclerosis. In our study, among the components of MetS, WC and HDL cholesterol were those that increased the probabilities of hsCRP at both measurement times. Accumulation of fat mass in the abdominal area increases the risk of having elevated hsCRP and other metabolic complications, including atherosclerosis. A proposed mechanism of the adverse effect of MetS on health seems to be mainly triggered by an excess of visceral fat. The adipose tissue mass leads to an increased turnover of free fatty acids (FFAs) and to changes in the secretion of pro-inflammatory adipokines. This secretion of hormones and adipocytokines, such as leptin, adiponectin, resistin, MCP-1, among others, as well as a variety of interleukins together with TNF-α, enhances the development and/or the progression of chronic diseases, including chronic inflammation.

In our sample, 14.1% of the children were considered at risk of MetS at T1 according to the cut-off proposed by Ahrens, when MetS score was ≥90th percentile, while 56.6% of the children were not at risk for MetS at baseline or follow-up (data not shown). Noteworthy, it is difficult to estimate the prevalence of MetS in children as there are no consensus regarding its definition. In a sample of Spanish children, prevalence ranged from 7.6% to 30.8% depending on the definition used. This could be partly explained by the previous lack of reference values for youth. However, the MetS definition based on the data of the IDEFICS study has been considered an appropriate option in children.

In adults, it has been observed that those with MetS are at increased risk of cardiovascular disease while cardiovascular risk factors in early life may induce alterations in arteries and development of atherosclerosis. However, few studies have examined the link between paediatric MetS and future cardiovascular disease or its precursors. A 25 years follow-up study observed that MetS in childhood, combined with changes in age-specific BMI percentile, predicted cardiovascular events later in life. In addition, a study from Magnussen et al found that a dichotomous definition of MetS in youth could predict adult MetS, high cIMT and T2DM in early to middle adulthood. In the present study, we have found that baseline values of MetS score were associated with higher hsCRP after 2 years and that those who increased the MetS score were more likely to become at high risk of hsCRP 2 years later. The continuous score is considered useful as it takes into account the cumulative impact of the risk as it gradually increases across individuals, whereas dichotomous definitions can lead to misclassification or underestimation of the extent of variation. In the present study, the MetS score was associated with the future prevalence and incidence of hsCRP, which supports its clinical use. Also, using the dichotomized MetS, we found longitudinal associations with hsCRP, suggesting that those at risk of MetS in early childhood have higher odds of high hsCRP later on. The probabilities decreased when adding z-BMI in the analysis suggesting an association with BMI, but they were still high and significant.

Furthermore, in our study, we found associations between the individual markers of MetS and hsCRP. Similar results have been observed previously in adolescents. In a previous study carried out in children, where cIMT was measured, hsCRP was associated with subclinical atherosclerosis in children with MetS. This highlights the need for screening metabolic markers during childhood to prevent the early stages of atherosclerosis. In our study, among the components of MetS, WC and HDL cholesterol were those that increased the probabilities of hsCRP at both measurement times. Accumulation of fat mass in the abdominal area increases the risk of having elevated hsCRP and other metabolic complications, including atherosclerosis.
the analysis is a further strength as it gives a better insight of long-term associations. Also, the use of the definition of MetS by Ahrens, which has been recommended for widespread use, and considers age- and sex-specific reference values.

To our knowledge, this is the first study that assesses the association between MetS and metabolic health status with hsCRP cross-sectionally and over-time in a relatively large sample of European children. Both MetS and metabolic health definitions were associated with high concentrations of hsCRP which suggests that common mechanisms are involved in the onset of each of these conditions already at early ages. Among all the individual metabolic biomarkers included in this study, WC was the factor more consistently associated with future prevalence and incidence of being at risk of high hsCRP probably due to the major role of abdominal fat tissue in the development of inflammatory status. Overall, either impairment of metabolic health over time or high waist circumference was independently associated with inflammation. These results also highlight the importance of preventing excess weight gain from early ages and effectively treating obesity early in life in order to reduce the risk of transition to a metabolically unhealthy state and incidence of high hsCRP concentrations. Consequently, screening of metabolic factors and routine measurement of WC are needed to prevent inflammatory status and related chronic diseases in children.

ACKNOWLEDGEMENTS
This work was done as part of the IDEFICS study (www.idefics.eu). We gratefully acknowledge the financial support of the European Community within the Sixth RTD Framework Programme Contract No. 016181 (FOOD).

CONFLICT OF INTEREST
The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS
Silvia Bel-Serrat carried out the statistical analysis and drafted the manuscript along with Esther M. González-Gil. Luis A. Moreno, Wolfgang Ahrens, Paola Russo, Stefaan De Henauw, Toomas Veidebaum, Denes Molnar, Michael Tornaritis and Arno Fraterman designed the study, got the funding and supervised the national data collection. Annunziata Nappo, Javier Santabárbara, Malke Wolters, Monica Hunsberger, Luis A. Moreno, Licia Iacoviello and Wolfgang Ahrens revised the manuscript along with Esther M. González-Gil. Luis A. Moreno, Wolfgang Ahrens and gave final approval of the version submitted.

REFERENCES

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: González-Gil EM, Moreno LA, Nappo A, et al. Impaired metabolic health over-time and high abdominal fat are prospectively associated with high-sensitivity C-reactive protein in children: The IDEFICS study. Pediatric Obesity. 2021;16(11):e12817. https://doi.org/10.1111/ijpo.12817