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A B S T R A C T   

Agricultural intensification decreased land cover complexity by converting small complex arable field geometries 
into large and simple structures which then were managed uniformly. These changes have led to a variety of 
negative environmental effects and influence ecosystem services. We present a novel small-scale and site-specific 
cropping system which splits a large field into small homogeneous sub-fields called ‘patches’ grouped in different 
yield potentials. A detailed workflow is presented to generate new spatially arranged patches with special focus 
on preprocessing and filtering of multi-year yield data, the variation in patch sizes and the adaptation of 
maximum working width to use available conventional farm equipment and permanent traffic lanes. The 
reduction of variance by the used cluster algorithm depends on the within-field heterogeneity. The patch size, the 
number of growing seasons (GS) used for clustering and the parallel shift of the patch structure along the per-
manent traffic lane resulted in a change in relative variance. Independent cross validation showed an increased 
performance of the classification algorithm with increasing number of GS used for clustering. The applied cluster 
analysis resulted in robust field segregation according to different yield potential zones and provides an inno-
vative method for a novel cropping system.   

1. Introduction 

In recent decades, agriculture has intensified through the cultivation 
of fewer crop species, narrower crop rotations, and the steadily 
increasing use of fertilizers and plant protection products (Landis 2017). 
The use of larger and more powerful agricultural machinery, as well as 
the creation of large fields through farmland designs, led to a continuous 
higher productivity per unit area (Wik et al., 2008). 

However, this intensification also created numerous problems: loss 
of insect diversity (Hallmann et al., 2017) and bird diversity (Donal 
et al., 2001), soil degradation due to wind and water erosion (Govers 
et al., 2017), soil compaction (van Ouwerkerk and Soane, 1994), habitat 
fragmentation and reduction of semi-natural habitats (Tscharntke et al., 
2005). These impacts on agroecosystems can be explained mainly by the 
conversion from small-scale traditional to modern intensive agricultural 

production with increased field sizes in simplified landscapes and thus 
increased landscape homogeneity (Landis, 2017; Tscharntke et al., 
2005). Agriculture is one of the most important factors shaping and 
changing the landscape, and in the past has often strongly modified the 
mosaic of crop area and natural and semi-natural habitats in key crop- 
producing areas (Haan et al., 2021). As a result, the compositional 
(amount of different habitat types) and configurational (spatial 
arrangement of individual habitat) heterogeneity of the landscape have 
been reduced. 

Precision agriculture is a reaction to heterogeneous field conditions 
in space and time and thus implies variable application of inputs. To 
maximize local yield, resources are allocated according to the site 
variability and crop requirements of the field. This makes it necessary to 
divide the field into appropriate management zones. A strong focus is 
currently being placed on variable application of inputs such as site- 
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specific nitrogen management (Mittermayer et al., 2021), variable 
seeding rate (da Silva et al., 2021), variable seeding depth (Coronel 
et al., 2020) and irrigation (Fontanet et al., 2020). Precision agriculture 
has increased resource efficiency and thus farmers net returns by shift-
ing from a uniform application of inputs to a variable application. This 
variety of management strategies that have been developed focus on 
within-field inputs but have rarely been adapted to the best fitting land 
use for these respective zones. Previous concepts like site-specific con-
servation agriculture have been proposed, where certain crops or 
naturel habitats should only be grown in those zones within a field that 
are best suited for them (Basso, 2003). The question about the optimal 
size or shape of the zones, the variables used for management zone 
delineation or its implementation with conventional farm equipment, 
remains unsolved. Recent approaches of spot-farming (Wegener et al., 
2019) , pixel cropping (Ditzler and Driessen, 2022) or patch cropping 
(Grahmann et al., 2021) conceptually address this demand to design 
sustainable cropping systems of the future. However, for the successful 
implementation of new cropping system designs, their possible benefits 
on ecosystem services and biodiversity need to be considered. 

When large fields are heterogeneous in their soil characteristics or 
topography, it is more likely that yields in a field result extremely var-
iable, especially under unstable and unfavorable climatic conditions. 
Profit mapping analyses showed that up to 14% of a field are causing 
costs due to its low yield potential and about 50% of the total area 
remained below the expected minimum revenues (Capmourteres et al., 
2018). Hotspot analyses of total cropland area in Iowa, USA have shown 
that about 5% of the total area represents highly unprofitable land. 
Planting perennial plants in these unprofitable sub-areas would reduce 
establishment costs and increase the profitability for the farmer 
(Brandes et al., 2016). These analyses showed that land use changes 
within single management zones can be profitable for the farmer. There 
is an increasing demand to use the unproductive parts of arable land for 
different purposes. To reduce the farmers environmental impact and 
enhance ecosystem service and economic benefits, several authors pro-
pose to combine alternative species or perennial crops in the unpro-
ductive sub-areas within fields and annual crops in the more productive 
sub-areas (Basso, 2021; Khanna et al., 2021). 

In this study, new field arrangements based on management zones 
are investigated. These zones are defined as small-structured field units 
with homogeneous site characteristics and hereinafter named ‘patches’. 
Patches differ in crop performance and are therefore managed differ-
entially within one field. Patch cropping aims to cultivate individual 
small patches with crops and crop rotations that are best suited for these 
patches. Smaller field sizes were reported to increase pollinators (Gari-
baldi et al., 2016), improve natural pest regulation (Baillod et al., 2017) 
and enhance biodiversity (Šálek et al., 2018). The division into smaller 
units with differences in land management practice will lead to signifi-
cantly smaller field sizes and new field shapes that replace large uniform 
and sole cropped fields. Incorporating this new cropping system design 
to fields within landscape–scales will result in changes in landscape 
structures with increasing compositional as well as configurational 
heterogeneity. 

The aim of this study is to present a step by step procedure to detect 
less productive land with low yield potential for site adapted manage-
ment and decreasing field sizes. Therefore, the objectives are to 1) apply 
the concept of patch cropping, a new field design approach to provide 
solutions for small-scale and site-specific farming, to 2) describe an 
automated workflow in the programming language Python for the di-
vision of fields into areas with different yield potentials based on multi- 
annual yield maps and to 3) analyze the effects of the individual patch 
size and the number of growing season (GS) used for the patch gener-
ation on the clustering success. The focus in this study is drawn on the 

implementation with today’s technology which takes into account 
maximum working widths, permanent traffic lanes and simple geome-
tries that can be processed by conventional agricultural machinery. 

2. Materials and methods 

2.1. Patch clustering 

2.1.1. Patch generation 
Patches of the same yield potential consist of a variable number of N 

subpatches. Subpatches are rectangular polygons with a defined edge 
length. The edge length corresponds to a multiple of the maximum 
working width. In order to generate patches that can be managed pre-
cisely by the farmer and correspond to the permanent traffic lanes the 
farmer has used so far, the maximum working width and the georefer-
enced permanent traffic lane was used. The maximum working width is 
required, as the subpatch width can only be a multiple of this working 
width. The crop protection sprayer is usually the widest agricultural 
machinery with a size of 10 to 36 m. In this study, the maximum working 
width was 36 m. Secondly, the farmer’s permanent traffic lanes are 
required. This lane is a simple line string consisting of a geographic 
starting point (A) and an end point (B) in each field and is used for the 
defined permanent lanes in controlled traffic farming. To generate 
subpatches which are aligned parallel to any permanent controlled 
traffic lane, each subpatch is defined by its corners C{i,j}, C{i+1,j},C{i,j+1}

and C{i+1,j+1} for all i, j ∈ N. Each corner C{i,j} is calculated using the 
equation: 

C{i,j} = A+ d*i*V{1} + d*j*V{2} +W (1) 

where d is the edge length of subpatches and V{1} is a vector with the 
same direction as the traffic lane AB but a normalized length of one, 
hence it is calculated by the equation: 

V{1} =
A − B
|A − B|

(2) 

The vector V{2} is orthogonal to V{1} with the same length calculated 
with the equation: 

V{2} = V{1}*
(

0 1
1 0

)

(3) 

Since the traffic lane indicates the track on which the tractor drives, 
the subpatch structure must be shifted by half of the maximum working 
width to match with the equipment width (Fig. 1). 

This shift can be described as an additional offset to each corner in 
the direction W calculated by the equation: 

W = V{2}*
w
2

(4) 

where w is the working width. Without the offset W, the edges of 
individual subpatches would be identical to the farmer’s permanent 
traffic lane, preventing optimal management and causing field border 
overrun by farm equipment. The subpatch corners C{i,j}, C{i+1,j},C{i,j+1}

and C{i+1,j+1} are used to create individual subpatch polygons. 

2.1.2. Clustering analysis 
Fuzzy C-means algorithm is an unsupervised clustering method 

which forms cluster centers in an iterative procedure based on the dis-
tance between input data (Bezdek, 1981). The clustering method mini-
mizes the within-group sum of square errors and assigns each subpatch 
to a continuous class membership value from zero to one for every 
cluster center (fuzzy partition). If subpatches were clustered into two 
groups (cluster center A and cluster center B), the fuzzy partition will 
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contain two continuous class membership values for each subpatch. 
Subpatches with a low class membership value for cluster center A only 
belong to this cluster to a low degree. Subpatches with a high class 
membership value for cluster center A, belong to a high degree to the 
cluster center A. To divide the field into two groups (cluster group class 1 
and cluster group classs 2), a hard constraint must be set to assign the 
membership of every subpatch to one of the two groups. To defuzzy our 
fuzzy partition, we used the ‘max membership method’ with a threshold 
of 0.5 (Ross, 2010). If the class membership value for cluster center A for 
a subpatch is greater than 0.5, this subpatch is assigned to cluster group 
class 1, but if the value is < 0.5, it is assigned to cluster group class 2. 

Cluster analyses were carried out with Fuzzy C-means algorithm 
implemented in the Scikit-Fuzzy package. Before clustering, the mean 
and the variance of all data points per subpatch were calculated. When 
using several variables at the same time to cluster field heterogeneity 
(soil nutrients, elevation, apparent electrical conductivity, etc.), it is 
necessary to consider the weighting of the individual data layers, as the 
influence on the yield potential varies depending on the variable (Khosla 
et al., 2010). For the selection and weighting of the input variables, user 
experience and expert guidance should be used. Since this study is 
focusing only on yield data, yield data from several GS were weighted 
equally. 

Fig. 1. Permanent traffic lane (red line) and maximum working width (36 m). When creating the patch structures, the subpatch borders must be moved parallel to 
the lane by halving the maximum working width © Marco Donat/ZALF. 

Fig. 2. Workflow of the automated data preprocessing, outlier removal, interpolation and subpatch clustering.  

M. Donat et al.                                                                                                                                                                                                                                  



Computers and Electronics in Agriculture 197 (2022) 106894

4

2.2. Workflow 

Fig. 2 provides an aggregated workflow of the development pipeline 
for the patch generation. This workflow is written in Python program-
ming language. Python is an open source general purpose programming 
language with a diverse ecosystem and a strong increase of a wide va-
riety of libraries which offers almost infinite possibilities in the field of 
data science. The open source programming language R is widely used 
within the scientific community since it has powerful tools for statistical 
computing. Analysis of spatial data and geostatistical modelling can be 
done by a wide range of packages which evolved in the last three de-
cades. Both programming languages were combined within this auto-
mated workflow. 

We used Anaconda Distribution (Anaconda Navigator 1.10.0) for 
package management and Jupyter Notebook (Version 6.1.4) as an 
interactive development environment. 

2.3. Site description and data sampling 

In this study, multi-year yield maps from an agricultural farm in 
Brandenburg 60 km east from Berlin were used. Yield data were 
collected using a yield monitoring system CLASS Quantimeter (CLAAS, 

Harsewinkel, Germany) mounted on a CLAAS 580 from GS 2010 to 
2013 and since GS 2014 on a CLAAS Lexion 770 TT combine harvester 
(CLAAS, Harsewinkel, Germany). A total number of 12 different fields 
(field_a to field_l) with different numbers of available yield maps was 
tested (Fig. 3). Yield maps of 7 GS were available for field_a, 8 GS for 
field_b, 9 GS for field_c, 8 GS for field_d, 4 GS for field_e, 7 GS for field_f, 7 
GS for fielg_g, 8 GS for field_h, 7 GS for field_i, 8 GS for field_j, 8 GS for 
field_k and 9 GS for field_l. The fields have a total size of 383 ha with a 
mean size of 31.9 ha. For the results and description of the presented 
method, one exemplary field was chosen (field_d). Field_d has a size of 
44.5 ha, is cultivated conventionally and yield maps are available for a 
total of 8 GS. The crop rotation for field_d consisted of rapeseed (Brassica 
napus L.) in 2012, 2015, 2018 and winter rye (Secale cereale L.) in 2010, 
2011, 2013, 2014, 2016, 2017, 2019. Harvesting was performed by 2 
combine harvester at a time in all GS except 2013. Due to data incom-
pleteness, the GS 2012 and 2014 were excluded from the data analysis of 
field_d. The heterogeneous terrain of this agricultural landscape consists 
mainly of strongly sandy glacial till from ground moraine material and 
sandy, predominantly fine-grained, partly fine silty deposits caused by 
meltwater from the Southernmost Weichselian ice margin at the Bran-
denburg stadium. The long-term average annual temperature at this site 
is 9.6 ◦C with an average annual precipitation of 581 mm. 

2.4. Input data 

Yield maps were provided as vector based spatial data sets (ESRI- 
Shape file) and were converted in a geodataframe with Geopandas in 
Python. Each data point contains information about the Global Navi-
gation Satellite System position, yield, grain moisture, working width 
and operating speed. The coordinate reference system was converted 
into Universal Transverse Mercator coordinate system (33rd meridian 
strip system northern hemisphere). 

When large fields are managed uniformly, harvesting usually takes 
place with two or more combine harvesters in order to increase effi-
ciency. Due to possible errors caused by different calibrated sensors of 
the combined harvesters, data sets from one GS were analyzed sepa-
rately. However, this is only possible if harvest followed a regular 
pattern and the distances between the rows of a single harvester do not 
become too large (Fig. 4). Rows are defined as yield data points gener-
ated within a combine harvester path through the stand during har-
vesting. Yield maps were examined for completeness, as yield maps 
covering only parts of the field lead to erroneous interpolation. Incom-
plete yield maps or yield maps in which the spacing between individual 
tracks of one harvester was greater than three rows were not considered 
for the analysis. 

2.5. Data preprocessing 

Working with yield data from combine harvesters requires a cleaning 
procedure before processing because of erroneous data points like 
header width error, end-of-row-error and extreme yield values (Sudduth 
et al., 2012). The removal of data points near field edges is an important 
step to remove the end-of-row erroneous data points. The buffer area 
around the field has to be larger than the maximum working width and 
was set to 40 m. 

The next processing step was the calculation of the yield to standard 
moisture content since every data point contains a measured yield with a 
particular grain moisture content. Yield data with standard moisture 
content xsi was calculated at 10 %, independent of the crop species with 
the following equation: 

xsi = xi*
(100 − MCi)

(100 − MCs)
(5) 

with xi is the yield of data element i, MCi is the initial moisture 
content of xi [%] and MCs is the standard moisture content of 10 %. Data 
points with a moisture content or a yield value of <1 were removed as 
this is considered implausible from a plants ́ physiological perspective. 

The yield monitoring system converts the measured crop volume 
flow into yield [Mg/ha]. The calculation is only correct if the entire 

Fig. 3. Spatial arrangements and dimensions. A) Spatial distribution of field_a to field_l and B) Spatial arrangement and its relationship among different definitions.  
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header width is used. Although the header part-width can be measured 
during the harvesting process, the division into 6 header part-widths is 
too imprecise. Hence, data points with part widths were removed. 
Abrupt speed changes increase yield monitoring errors compared to 
constant speed of the combined harvester (Arslan and Colvin, 2002). 
Therefore, for all data points the speed changes to the previous 
measured data point were calculated and the data points with a speed 
change greater than 2 km/h were removed. 

2.6. Outlier removal 

Global outlier are data points of yield values that lie outside of the 
general pattern of the distribution of all yield data points. Removing 
these extreme values is important, as they might lie outside the range of 
optimal yield monitor performance or could depict harvesting artifacts 
and thus affect the analysis. At the same time, removed data elements 
can also be valid data (Córdoba et al., 2016; Simbahan et al., 2004). This 
is not intentional, because the objective of outlier removal is to remove 
isolated erroneous data elements outside the true yield distribution. 
However, to ensure comparability to filtering techniques of other au-
thors, we have used a commonly used criterion. To detect and remove 
global outliers, a Z-score Zi for each data element was calculated by the 
equation: 

Zi =
Xi − X

σ (6) 

with Xi is the yield value of data point i, X is the mean and σ is the 
standard deviation. This expresses Zi as a deviation from the mean, 
relative to the standard deviation. Data points with yield values plus 
minus 3 times the standard deviation were removed (Simbahan et al., 
2004; Vega et al., 2019). 

Spatial outlier are data points of yield values which significantly 
differ from the yield values of their neighboring data points. For spatial 
outlier detection, we used the local indicator of spatial association 
(LISA) which indicates the significance of the spatial clustering of equal 
values around the observed points (Anselin, 1995). A relatively large 
neighborhood of a radius of 40 m around each data point was selected to 
be checked (Vega et al., 2019). The advantage of a large neighbourhood 
definition is that data elements from several neighboring rows are 
included. This is especially important if more than one combine 
harvester was used in the same field. 

In our workflow, all local neighbors had to be identified for each data 
element by creating a spatial weights matrix using SciPy KDTree calcu-
lation. Weigths Wij were generated using data points within the radius 

around the data point of interest with weights of 1 and data points 
outside the radius with weights of 0. Then, for each data point the locale 
Moran‘s Index was calculated using the equation integrated in PySAL 
(Rey and Anselin, 2010): 

Ii =
Xi − X

σ2

∑n

j,j∕=i

[
Wij

(
Xj − X

)]
(7) 

Xi is the value of the element of interest, X‾ is the average of all el-
ements X with a sample number of n, Xj is the value of all elements with 
restriction j ∕= i and σ2 is the variance of all elements X. To identify local 
outliers, a conditional permutation approach was used to calculate 
empirical reference distribution which is required to apply statistics 
testing the null hypothesis. After standardization of the local Moran‘s 
Index, the significance level was tested based on the reference distri-
butions with a pseudo p-value ≤ 0.05 (95% confidence level) (Anselin, 
2019). Spatial outliers have significant negative high Local Moran‘s 
Index values. These data points were identified and removed from the 
dataset. Before interpolation, the yield values were standardized to 
relative yield values for the comparison between different crop species 
(Shannon et al., 2020) using the following equation: 

Xrel =
Xi

X
× 100% (8)  

2.7. Interpolation 

For the production of area-covering yield maps, interpolation 
methods were applied to estimate the yield at a specific point on a 
regular grid between various yield points. The distance between the 
regular grid points distributed on the field was set to 10 m. Firstly, an 
experimental semivariogram was created for all yield maps and different 
theoretical variograms were fitted. Ordinary kriging was used to inter-
polate yield data on a regular grid. A spherical and exponential vario-
gram model was fitted and the sum of squared errors (SSErr) was 
calculated. The model with the lowest SSErr was used for final kriging. 
Variogram calculations, fitting of a spherical and exponential variogram 
model and final predictions were done with the package gstat in the 
statistical software R. To execute the R-script within the Python envi-
ronment for automated analyses, the module subprocess was used. The 
interpolated relative yields of all GS are merged with the created sub-
patch structure. Since there may remain subpatches that have only a 
small number of yield points due to complex field geometries, a 
threshold of 30% of available data points of a completely filled subpatch 
was set. Thus, only subpatches that had more than 30% of data points 

Fig. 4. Two combined harvesters in operation during the harvest of one GS with a regular pattern. Data sets for one GS should be processed individually due to 
possible calibration errors. 
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within the subpatch polygon were considered in the subsequent anal-
ysis. To visualize the interannual variability of relative yields, we used 
the technique of Blackmore (2000) to calculate the standard deviation 
(σ) and generated a ‘classified management map’ to identify spatial and 
temporal yield trends. Interpolated standardized yield data points will 
be higher yielding if the mean yield (µ) of all GS ≥ 100, lower yielding if 
µ < 100 and unstable if the σ greater than 30. 

2.7.1. Georeferenced output 
The generated output consists of georeferenced rectangular poly-

gons, which are orientated towards the permanent traffic lanes. The 
group mean has to be determined for the final assignment of cluster 
group classes. In the case of two groups, the group with the lower group 
mean is attributed to the group with lower average normalized yields. 
The output is a polygon ESRI shapefile and thus corresponds to a stan-
dard vector-based spatial data format. 

2.8. Evaluation of clustering 

2.8.1. Cross-validation 
To evaluate the proposed method, the Leave-One-Out-Cross Valida-

tion (LOOCV) procedure (Thorp et al., 2007) was applied. For this 
purpose, independent data sets were used which were not included in 
the cluster group creation to determine the cluster predictive perfor-
mance expressed in root mean squared error of prediction (RMSEP) 
calculated by the equation: 

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1(Ymi,j − Ysi− j)
2

n

√

(9) 

Here, Ymi is the mean standardized yield of the respective subpatch 
from the GS used for LOOCV in the i cluster group and the j GS and YSi-j is 
the mean standardized yield of the i cluster group with all GS except the j 
GS. 

Since temporal yield variability is largely due to weather variability, 
we assume that the performance of the predictive power should improve 
with an increasing number of GS. This depends mainly on the available 
water for plant growth, assuming equal management and optimal supply 
of micro- and macronutrients. Therefore, the performance of the pro-
posed cluster method was tested with a different number of yield maps 
from different GS as well as different combinations of GS. Several sub 
datasets were created for every field starting with two GS to n GS with n 
being the total number of all GS for one field. For each individual 
dataset, the LOOCV procedure was performed and the corresponding 
RMSEP was calculated. The possible combinations depend on the 
number of available GS for each individual field. Since there are 
different numbers of GS per field, the number of possibilities can be 
calculated using the binomial coefficient: 

(
n
k ) =

n!
k!(n − k)!

(10) 

Here, n corresponds to the number of all GS and k to the number of 
GS used for clustering. The number of possible combinations for the 

LOOCV can be seen in the Pascal’s triangle in Table 1 and therefore 
specifies the number of sub datasets required to perform the LOOCV 
procedure. If yield maps from four GS were available for one field (e.g. 
fild_e), a total of 14 sub datasets was created. From these 14 sub datasets, 
four datasets were used for the calculation of the RMSEP to evaluate the 
performance when only one GS was used for clustering. Six datasets out 
of these 14 sub datasets were used to calculate the RMSEP to evaluate 
two GS used for clustering. Another four datasets from that 14 sub 
datasets were used to calculate the RMSEP to evaluate three GS used for 
clustering (Table 1). The RMSEPs of the combinations having the same 
number of GS used for clustering were averaged. 

2.8.2. Relative variance 
To evaluate the effectiveness of the proposed clustering method 

depending on subpatch sizes and the number of GS used for clustering, 
the relative variance (RV) was used (Ortega and Santibanez, 2007). The 
RV reflects the proportion of the variances of all GS used, explained by 
different subpatch sizes and clustering algorithm using the equation: 

RV = 1 −
σ2

W

σ2
T

(11) 

Here σ2
W is the variance of the relative yield within cluster groups and 

σ2
T is the total variance without clustering. The clustering process has 

greatly reduced the variance within cluster groups when the RV is close 
to one. The RV was calculated for all possible combinations of available 
fields, subpatch sizes and GS. 

Site heterogeneity can vary greatly within a few meters. Using to-
day’s technology requires certain maximum working widths. If the 
subpatch size is reduced to a edge length of two working widths, the 
within zone homogeneity is higher than a subpatch size of more than 
two working widths. To test this hypothesis, the workflow described 
above was applied with different GS and subpatch sizes. To do so, 
patches were created with varying edge lengths from 12 m to 108 m with 
a stepwise increase of the subpatch edge length by 6 m. 

Although the patches are aligned parallel to the traffic lane and thus 
have a fixed orientation in space, the patches can be shifted along the 
traffic lane. Especially in the case of large patches, it is possible that the 
heterogeneity is not well reflected if the starting point for generating the 
patch structure is always identical by default. In order to test whether 
changes in RV can be observed with identical subpatch sizes but with 
patches shifted parallel to the traffic lane, four different starting co-
ordinates for generating the patch structure were created for all fields 
and all GS. These different starting points resulted from the parallel shift 
along the traffic lane by ¼, ½ and ¾ of the corresponding edge lengths of 
the rectangular subpatches. 

3. Results and discussion 

3.1. Workflow processing 

The number of original data points and removed data points were 
different between GS (Table 2). The mean distance between data points 
within a row was 7.5 m in the GS 2010 to 2013 (harvest with CLAAS 
580) and 3.6 m in the GS 2015 to 2019 (harvest with CLAAS Lexion 770 
TT). A large proportion of the removed data points were within the 
buffer area. The removal of the global outliers had only a small share and 
varied from 0 data points in GS 2010 to 51 in GS 2013. Overall, the 
number of removed data points varied between years. While only 33.9% 
of the data points were removed in GS 2010, 45.1% had to be removed in 
GS 2013. 

During the preprocessing of field_d and GS 2015, about 340 of 548 
raw yield data points with values between 0 and 0.2 Mg/ha were 
removed (Appendix A). The rapeseed yield data points were not nor-
mally distributed and the histogram of 2015 GS showed one peak at 
around 2 Mg/ha and another peak at around 7 Mg/ha. The positive and 

Table 1 
Possibilities of different combinations with different numbers of available yield 
maps from the respective GS.   

GS used for cluster analyses  

1 2 3 4 5 6 7 8 

Yield maps of 8 GS 8 28 56 70 56 28 8  
Yield maps of 7 GS 7 21 35 35 21 7   
Yield maps of 6 GS 6 15 20 15 6    
Yield maps of 5 GS 5 10 10 5     
Yield maps of 4 GS 4 6 4      
Yield maps of 3 GS 3 3       
Yield maps of 2 GS 2         
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significant global Moran index was 0.764 (p < 0.001) for the field_d in 
the GS 2015, implying positive autocorrelation of the yield data points 
(Anselin, 1995). The local Moran analysis performed on all data points 
identified 213 local outliers. The data points are shown in Fig. 5A and 5B 

as orange dots which represent high yield in low yield neighborhood 
(HL) and light blue dots which depict low yield data points in high yield 
neighborhood (LH). The red dots over a large contiguous area are hot 
spots for high yields, the blue dots are hot spots for low yields. The 

Table 2 
Number of original yield data points of field_d per GS and number of removed data points in the respective data cleaning steps.   

GS 2010 GS 2011 GS 2013 GS 2015 GS 2016 GS 2017 GS 2018 GS 2019 

No. Original data points 2648 2692 7699 6671 7055 6380 5328 8239 
Data pre-processing (except Buffer removal) 256 196 932 548 249 835 356 522 
Buffer removal 578 619 1714 1927 1793 1090 1292 2012 
Global Outlier 0 2 51 3 35 44 1 11 
Local Outlier 64 122 778 213 391 401 318 449 
Total data removed [%] 33.9 34.9 45.1 40.3 35.0 37.1 36.9 36.3  

Fig. 5. Local Outlier analyses from GS 2015 rapeseed yield data of field_d A) Neighborhood plot of the original yield data points with its location within the field 
boundaries: Red dots symbolize significant high yield data points in close proximity to high yield data points (HH), blue data points symbolize significant low yield 
data points in close proximity to low yield data points (LL), orange data points symbolize data points that have significant high yield and are in the neighborhood of 
low yield (HL) and light blue data points symbolize significant low yield data points that are in the neighborhood of high yield data points. Grey data points are not 
significantly equal nor significantly unequal to the data points in its neighborhood (ns). B) Moran scatter plot. 

Fig. 6. Plots of interpolated relative yields of field_d overlaid with the created patch structure and a subpatch size of 72 m × 72 m oriented parallel to the traffic lane 
of Permanent Traffic Control (red line); A) Winter rye in 2010, B) Winter rye in 2011, C) Winter rye in 2013, D) Rapeseed in 2015, E) Winter rye in 2016, F) Winter 
rye in 2017, G) Rapeseed in 2018, H) Winter rye in 2019 I) Temporal stability map of all 8 GS with standard deviation of all data points and J) classified management 
map of all 8 GS with the classification ‘higher yielding and stable’, ‘lower yielding and stable’ and ‘unstable’ 
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Moran scatterplot (Fig. 5B) visualizes gray data points in the LH and HL 
quadrants which are not treated as local outliers because they are not 
significantly (ns) different from their neighboring data points. 

Fig. 6 shows all interpolated standardized yield maps of 8 GS of 
field_d (Figs. 6A-H) and the interannual variability of relative yields. The 
spatial distribution of yield differences can be seen by eye (Figs. 6A-H). 
Zones with higher yields are located in the northern, central and eastern 
part of the field, whereas zones with lower yields can be found in the 
southern and western part. This spatial yield pattern can also be 
recognized in the classified management map (Fig. 6J). There are 
several areas within the field that showed a high degree of yield vari-
ability. These unstable zones (Figs. 6I-J) are distributed across the field 
but occur more frequently in the central and southern area. 

By hardening the fuzzy partition (threshold of 0.5), all subpatches 
with a high continuous class membership value of cluster center A 
belong to cluster group class 1 (Fig. 7A). Cluster group class 1 obtained 
high average relative yields and is therefore assigned to the high yield 
potential. By setting the threshold to 0.5, a total of five patches were 
created for field_d (Fig. 7B), from which two of the patches consist of 
several connected individual subpatches, another patch consists of two 
subpatches and two patches consist of only a single subpatch each. Two 
subpatches are close to the threshold of 0.5 with a continuous class 
membership value of cluster center A of 0.49 and 0.51 (Fig. 8). Different 
cluster group classes were assigned to both subpatches, knowing that 
both differ only slightly from each other and both single subpatches 
belong neither to cluster group class 1 nor to cluster group class 2 to a 

Fig. 7. Output of the cluster analysis shows A) the patch structures with the continuous class membership value for cluster center A presented in greyscale. Cluster 
group class 1 corresponds to high average relative yield and therefore high yield potential. White subpatches have a high membership value of cluster center A. Black 
subpatches have a low membership value of cluster center A. B) The final output with 72x72 m subpatches and an assignment of the individual subpatches to a cluster 
group class. 

Fig. 8. Scatterplot of all Subpatches of field_d, their mean relative yield of all 8 GS and class membership value of cluster center A (blue points). The vertical black 
line visualizes the threshold of 0.5 to defuzzy the fuzzy partition. The red dots show the calculated RV for 50 different thresholds between 0 and 1 to defuzzy the 
fuzzy partition. 
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high degree. 
In Fig. 8, all subpatches of field_d are plotted with their mean relative 

yield over 8 GS and their class membership value of cluster center A. All 
subpatches to the right of the vertical bar belong to cluster group class 1, 
all subpatches to the left of the vertical bar belong to cluster group class 
2. The red dots within this plot represent the RV of 50 different 
thresholds between 0 and 1 for hardening the fuzzy partition. A 
threshold of zero or one would result in an RV of zero, since all sub-
patches are in one group and thus no variance would be reduced. The 
highest RV of 0.42 is obtained with a threshold between 0.26 and 0.48. 
With a threshold of 0.5, a slightly lower RV of 0.41 was obtained, 
assigning a total of 26 subpatches to cluster group class 2 and 42 sub-
patches to cluster group class 1. The choice of the threshold for hard-
ening the fuzzy partition thus has a direct influence on the number of 
individual subpatches in the cluster group classes as well on the RV. If 
the total number of subpatches within one cluster group class should be 
modified this can be done within a certain range without major changes 
to the RV by threshold selection. Choosing thresholds between 0.08 and 
0.80 would change the cluster group class assignment for a total of 8 
subpatches, but would have relatively small effects on the RV (Fig. 8). 

If field_d is clustered with the same variables but Fuzzy C-means 
algorithm settings of three or more cluster center, these two subpatches 
with membership vales of 0.49 and 0.51 would belong to the middle 
cluster center. In precision agriculture application, the search for the 
optimal number of cluster groups and thus management zones is often in 
the focus (Córdoba et al., 2016; Reyes et al., 2019; Xiang et al., 2007). 
However, since the objective of this study was to design a new cropping 
system with two cluster groups, several subpatches belong neither to one 
nor to the other cluster group to a high degree. Furthermore, the pre-
sented framework does not directly take into account temporal vari-
ability of yields due to the soil-climate interactions, which leads not only 
to zones with stable and high yield zones or stable and low yields zones, 
but also to unstable yield zones (Fig. 6J). 

The largest average RV of 0.72 was obtained with a subpatch edge 
lengths of 12 m and one GS (Fig. 9). If an additional GS was used for 
clustering, the RV was reduced to 0.57. If all GS were used, the RV 
decreased to 0.51. The high RV values with only one GS are explained by 
the one-dimensionality of the data set. If data from an additional GS are 
added, the dimensionality of the dataset increases and with it the dif-
ficulty to reduce the variance for both GS. As a result of the increase in 
dimensionality through additional GS, the calculated total RV decreases. 

A reduction of the RV also takes place with an increase in subpatch 
size. Here, the RV was reduced to 0.47 when one GS was used and the 
subpatch size increased from 12 m to 108 m. If all 8 GS were used, the 
RV diminished by 0.12 to an RV of 0.39 when the subpatch size 

increased from 12 m to 108 m. Xiang et al. (2007) detected a decrease of 
RV with an increase of the grid size used for the post-classification 
majority filter. The larger the subpatches become, the more difficult it 
gets to reflect homogeneity within the subpatches due to the sometimes 
small-scale site differences resulting in low RV. 

Shifting the patch structure parallel along the traffic line while 
keeping the number of GS and the edge length of the subpatches con-
stant, caused an alteration in the RV (Fig. 10). The RV of the initial patch 
structure with seven GS and a subpatch size of 108 m was 0.39, the RV of 
the clustering with identical parameters but shifted parallel by ½ was 
0.34. The difference in RV caused by this parallel shift of the patches is 
0.05 and thus 12.0 % in relation to the original RV value (Fig. 10). 

However, most of the changes in the RV caused by parallel shift were 
smaller but as the edge length of the subpatches increased, the changes 
due to the parallel shift also became greater (Fig. 11). 

There was a remarkable increase in RV with subpatch sizes of 78 m 
and 84 m (Fig. 9). In this case, the optimal subpatch size was found 
which, due to the spatial arrangement of the patch structure as well as 
their size, better reflects the heterogeneity through clustering and in-
creases the RV. If the patch structures are moved by the parallel shift, the 
RV with subpatch sizes 78 m and 84 m decreased (Fig. 10). Therefore, 
the successful clustering with the highest possible RV for a specific 
subpatch size can be obtained when the patch structure is shifted par-
allel to the traffic lane. 

3.2. Method verification by RV and RSMEP 

3.2.1. Relative variance (RV) 
When clustering is conducted for homogeneous within-field patches, 

the sum of variances of the data points within the groups is reduced 
compared to the total variance. The extend of RV reduction depends on 
the size of the subpatches. The RV of all fields gradually decreased as the 
edge length of the subpatches, and consequently the subpatch size 
became larger (Fig. 12). Clustering was less effective in reducing vari-
ance as the subpatches increased in size. In other words, subpatch sizes 
of single or double working width (36 m, 72 m) have a higher degree of 
homogeneous site conditions and yield patterns than subpatch sizes of 
threefold working width (108 m) and are therefore more suitable to be 
selected for a new site-specific cropping method. 

The RV of some fields was always greater than the RV of other fields 
with the same number of GS and similar subpatch size (e.g RV of field_c 
> RV field_k > RV of field_g). Data clustering of the presented workflow 
will always generate two groups, although the data have low variance. 
Thus, a field with homogeneous site characteristics and yield pattern 
will be divided into two groups with different yield potential. Clustering 

Fig. 9. Relative variance of Field_d with varying edge lengths and increasing number of GS.  
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Fig. 10. Relative variance of Field_d with varying edge lengths and GS used depicting A) the relative variance with no parallel shift, B) Field_d with a parallel shift of 
¼, C) Field_d with a parallel shift of ½ and D) Field_d with a parallel shift of ¾. 

Fig. 11. Boxplot diagram of the relative variance (RV) differences caused by the parallel shifts of the patch structures in field_d. Single data points of a single boxplot 
consist of the difference of the minimum and maximum RV of all parallel shifts per GS and subpatch size. 
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of data originating from homogeneous fields reduces the sum of vari-
ances, but not to the extend as in heterogeneous fields. The comparison 
of RV between fields can be used to draw conclusions about the het-
erogeneity of a single field. Since the RV of field_c is much higher than 
the RV of field_g, field_c is more heterogeneous in the distribution of 
yields than field_g. 

3.2.2. LOOCV 
In LOOCV analysis of multi-year yield maps, a decreasing RSMEP 

value was found with increasing number of GS used for simulating corn 
yield (Thorp et al., 2007). In this study, the results of LOOCV showed 

that the RMSEP for all fields and constant subpatch size decreased with 
an increasing number of GS (Appendix C). If more GS were used to 
cluster the data, the division into two yield potential zones was more 
robust. 

RMSEP calculation showed differences between the individual fields 
(Fig. 13). While the RMSEP for field_k with one GS and subpatches with 
an edge length of 72 m was 34.7, it was only 14.1 for field_f with 
identical subpatch size and number of GS. This low RMSEP value for 
field_f can only be reduced by 1.7 (12.1%) to 12.7 by adding another 5 
GS. With field_c, on the other hand, the RMSEP can be reduced by 15.6% 
from 30.1 to 25.4 by adding 7 more GS. 

Fig. 12. Relative variance of different fields as a function of increasing subpatch sizes and increasing numbers of yield maps used from the corresponding GS.  

Fig. 13. RMSEP from LOOCV of all fields and all GS with subpatches with edge length of 72 m.  
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3.3. Patch cropping structure 

The patch structures created according to the presented workflow 
divide previously uniformly cultivated fields into two different machine- 
manageable zones (Fig. 7B). Based on the concept of patch cropping, 
these zones would differ in future management. This will reduce the 
mean field size and increases the length of field boundaries per area. A 
number of positive changes in ecosystem services can be induced by 
reducing field sizes. Landscapes with smaller average field size 
compared to landscapes with large field size were found to have higher 
within-field biodiversity with higher abundance, and alpha, beta and 
gamma diversity of different taxa (Fahrig et al., 2015). The longer the 
field boundaries within a given area, the higher the species richness of 
all analyzed bird, plant, spider and bee taxa (Concepción et al., 2012). 
The positive effect of smaller fields on biodiversity was also observed 
with conventional agricultural management whereas in large fields with 
organic management, lower biodiversity was measured. This was mainly 
due to the fact that most farmland species were found in the area of the 
field boundaries (Batáry et al., 2017). 

Our approach differs fundamentally from previous approaches in 
precision agriculture in general and from Management Zone Delineation 
(MZD) in particular, since they aim to identify zones with similar site 
conditions, similar yields or a combination of both and respond to this 
heterogeneity with one crop variety in all zones but differences in 
operational activities or inputs (Mulla and Khosla, 2015) whereas patch 
cropping relies on the change of the entire field geometry, size and crop 
selection to diversify agricultural production. Frequently, yield limiting 
factors or variables which lead to different crop responses in space and 
time (chemical or physical soil properties, landscape attributes or crop 
properties, etc.) are taken into account for MZD. The management zones 
thus correspond to a homogeneous combination of yield limiting factors 
that can lead to site-specific crop management recommendations 
(Khosla et al., 2010). Only a few of these factors are potentially 
manageable such as nutrients (N, P and K), lime, irrigation water, 
seeding rate and seeding depth and herbicides. 

We have used multi-annual yield maps that quantify the spatial and 
temporal yield variability of a field without including the individual 
factors that are responsible for the differences in crop performance. 
However, multi-annual yield maps have significant advantages for the 
identification of homogeneous zones. Using a high number of yield maps 
over multiple GS, not only permanent environmental factors are 
considered (soil properties or landscape attributes) but also dynamic 
factors (weather, crop type and crop rotation, disease, weeds or unusual 
management decisions) and the interactions between both factors are 
taken into account (Blasch et al., 2020). The higher the number of 
different GS used for clustering, the more likely it is that a wide range of 
different crops, crop rotations and climatic interactions, and thus spatial 
and temporal variation will be represented. This assumption is also 
supported by our decreasing RMSEP with increasing numbers of GS for 
LOOCV (Fig. 8). The identified patches can be planted with crops most 
suitable for that cluster group class. Which crop species or land use is 
most suitable for each cluster group class must be decided individually, 
taking into account local agronomic expertise. 

Furthermore, our approach limits the number of cluster centers to 
two compared to traditional MZD and does not consider the optimal 
number of cluster centers per field. Normally, the optimal number of 
cluster centers is either set by default to three yield classes (Khosla et al., 
2010) or six yield classes (Ping and Dobermann, 2003) identified by the 
fuzziness performance index or normalized classification entropy 
(Fridgen et al., 2004), the relative variance reduction (Xiang et al., 
2007), the silhouette width (Reyes et al., 2019) or a combination of Xie- 
Beni index, Fukuyama Sugeno index and proportion exponent (Córdoba 
et al., 2016). 

Another substantial difference between the patch cropping frame-
work and MZD approaches is the fact that patch sizes and the alignment 
of the patches along the permanent traffic line were considered which 

allows the use of the farmers ́ existing machinery and working widths. In 
traditional MZD approaches, fragmented smaller zones are often 
simplified into spatially contiguous zones after clustering by applying 
spatial filtering algorithm like Median filter or Majority filter (Ping and 
Dobermann, 2003) or the application of spatial correlation analysis 
before clustering to generate larger management zones with smoother 
boundaries (Gavioli et al., 2016). 

Field heterogeneity is not expressed in regular local patterns, leading 
to single cases where individual patches of a cluster group class are 
isolated next to patches of another cluster group class. As depicted in 
Fig. 7, a single subpatch in the north-eastern area belongs to cluster 
group class two. This subpatch is surrounded by patches of cluster group 
class one. The cultivation of this single subpatch would lead to enormous 
additional operating costs as this subpatch requires to be accessed 
separately each time. To optimize the economic aspects, this subpatch 
should be assigned to cluster group class one or surrounding patches 
should be assigned to cluster group class two to increase the resulting 
patch area that can be cultivated uniformly. However, this assignment 
would reduce the RV and thus weaken the power of the cluster analysis. 
But even if individual patches are too large, this can limit certain ap-
plications. An approach to consider the total size of individual patches 
could be an iterative process after cluster analysis that determines the 
size of connected subpatches of the same cluster group classes. If these 
connected subpatches are too small or too large (min. and max. size 
thresholds), the patches are either merged if they are too small or split if 
they are too large. The possibilities of merging and splitting should be 
tested in future studies. 

Patch cropping is an interesting use case for crop production using 
agricultural robots. Changing field size and shape affects the time ratio 
of typical field operations such as working in the main field and turning 
in the headland. Due to more complex geometries and the increased 
headland per total area, field productivity decreases and fuel con-
sumption increases compared to large fields (Janulevičius et al., 2019). 
Cost analyses of autonomous vehicles in agriculture showed that field-
work is the most time-consuming operation. With a high autonomy rate 
of fieldwork, the operating costs can be reduced compared to manned 
tractors (Lagnelöv et al., 2021). Swarm robotics can have a significant 
influence on the economic profitability of small-scale farming. Low-
enberg-DeBoer et al. (2021) showed that the use of swarm robotics 
would increase the gross margin even when managing small and irreg-
ular shaped fields. 

4. Conclusion 

This paper presents a framework to design novel cropping systems 
that increase diversity in agricultural landscapes. Large fields with 
heterogeneous site conditions were divided into smaller homogeneous 
units called ‘patches’ according to their yield potential. A step by step 
description to divide fields into high yield and low yield potential zones 
of machine manageable units using multi-year yield maps is provided 
with an automated workflow in the Python programming language, 
taking into account maximum working widths and permanent traffic 
lanes. The reduction of variance by the used cluster algorithm depends 
on the within-field heterogeneity. The subpatch size, the number of GS 
used for clustering, and the parallel shift of the patch structures along 
the permanent traffic lane resulted in a change of the relative variance. 
Independent cross validation showed that the predictive performance 
increased with increasing number of GS used for clustering. Patch 
cropping has the potential to increase biodiversity and resource use ef-
ficiency through site-specific farming, reduces mean field sizes and is a 
potential use case for future autonomous robotic fieldwork. 
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Appendix 

Appendix A 
Histogram of 2015 Rapeseed yield data from field_d; Blue bins are raw yield data with standard moisture content; orange bins are yield data with 

standard moisture content after completion of the cleaning steps

Appendix B 

Boxplot of all maximum RV differences by parallel shift for all fields and all GS for a patch size of 72 m
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Appendix C 

Results of the Root mean squared error of prediction (RMSEP) of standardized yield [%] of 12 fields and maximum of 8 GS from LOOCV for three 
different subpatch sizes   

GS_used subpatch_size Field_a Field_b Field_c Field_d Field_e Field_f Field_g Field_h Field_i Field_j Field_k Field_l               

1 36  24.1  28.7  30.8  33.2  15.3  14.7  16.7  16.2  19.6  34.7  35.7  19.4 
72  23.8  28.0  30.1  33.2  14.7  13.9  15.8  16.5  19.1  34.3  34.7  19.5 
108  23.6  29.0  30.8  32.3  14.4  13.5  15.3  16.8  19.5  35.3  35.8  20.6 

2 36  22.6  26.8  27.5  30.4  14.3  13.2  15.2  15.5  17.6  32.2  33.5  18.0 
72  22.5  26.8  27.6  30.9  14.2  12.9  14.8  15.9  17.5  32.5  33.6  18.6 
108  22.7  28.1  28.6  30.7  13.6  12.8  14.5  16.4  17.8  34.4  34.8  19.7 

3 36  21.9  26.0  26.5  29.6  13.4  12.9  14.8  15.2  16.9  31.2  32.8  17.5 
72  21.7  26.3  26.8  30.2  13.5  12.5  14.5  15.8  17.0  31.9  33.0  18.3 
108  22.2  27.8  27.9  30.2  12.9  12.6  14.3  16.2  17.2  33.9  34.5  19.5 

4 36  21.4  25.6  26.0  29.0   12.7  14.6  15.0  16.6  30.8  32.4  17.3 
72  21.1  26.0  26.4  29.8   12.4  14.3  15.6  16.7  31.6  32.6  18.2 
108  21.5  27.6  27.5  29.9   12.4  14.1  16.1  16.9  33.6  34.2  19.3 

5 36  20.8  25.2  25.7  28.6   12.5  14.4  14.9  16.2  30.6  32.1  17.1 
72  20.6  25.9  26.2  29.4   12.3  14.2  15.7  16.4  31.4  32.3  18.1 
108  20.9  27.4  27.2  29.6   12.3  14.0  15.9  16.6  33.2  33.9  19.2 

6 36  19.9  24.9  25.5  27.9   12.2  14.0  14.8   30.1  31.6  16.9 
72  19.8  25.8  26.0  29.0   12.1  13.9  15.7   30.8  31.7  18.1 
108  20.3  27.2  27.0  29.2   12.1  13.6  16.0   32.4  33.3  19.0 

7 36   24.4  25.4         35.7  16.7 
72   25.5  25.8         34.7  18.0 
108   26.7  26.9         35.8  18.8 

8 36    25.1          
72    25.4          
108    26.7           
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and Bellvert, J. (2020). Dynamic management zones for irrigation scheduling. 
Agricultural Water Management 238, 106207. 

Fridgen, J.J., Kitchen, N.R., Sudduth, K.A., Drummond, S.T., Wiebold, W.J., Fraisse, C. 
W., 2004. Management Zone Analyst (MZA) Software for Subfield Management Zone 
Delineation. Agron. J. 96, 100–108. 

Garibaldi, L.A., Carvalheiro, L.G., Vaissière, B.E., Gemmill-Herren, B., Hipólito, J., 
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