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ABSTRACT Understanding variation in host-associated microbial communities is im-
portant given the relevance of microbiomes to host physiology and health. Using
560 fecal samples collected from wild chimpanzees (Pan troglodytes) across their
range, we assessed how geography, genetics, climate, vegetation, and diet relate to
gut microbial community structure (prokaryotes, eukaryotic parasites) at multiple
spatial scales. We observed a high degree of regional specificity in the microbiome
composition, which was associated with host genetics, available plant foods, and
potentially with cultural differences in tool use, which affect diet. Genetic differences
drove community composition at large scales, while vegetation and potentially tool
use drove within-region differences, likely due to their influence on diet. Unlike
industrialized human populations in the United States, where regional differences in
the gut microbiome are undetectable, chimpanzee gut microbiomes are far more
variable across space, suggesting that technological developments have decoupled
humans from their local environments, obscuring regional differences that could
have been important during human evolution.

IMPORTANCE Gut microbial communities are drivers of primate physiology and
health, but the factors that influence the gut microbiome in wild primate popula-
tions remain largely undetermined. We report data from a continent-wide survey of
wild chimpanzee gut microbiota and highlight the effects of genetics, vegetation, and
potentially even tool use at different spatial scales on the chimpanzee gut microbiome,
including bacteria, archaea, and eukaryotic parasites. Microbial community dissimilarity
was strongly correlated with chimpanzee population genetic dissimilarity, and vegeta-
tion composition and consumption of algae, honey, nuts, and termites were potentially
associated with additional divergence in microbial communities between sampling
sites. Our results suggest that host genetics, geography, and climate play a far stronger
role in structuring the gut microbiome in chimpanzees than in humans.

KEYWORDS prokaryotes, parasites, diet, tools, host genetics, climate

Explaining differences among individuals and species in microbiome composition,
including gut microbiomes, has become a key dimension of research into host-

microbe interactions and the effects of changes in microbiome on host health and
physiology. Such differences have the potential to influence metabolic functions, nutri-
tion, disease resistance, and cognitive performance (1, 2). One challenging feature of
this work, particularly in humans and other species in which behavior differs among
populations, has been to understand the relative importance of dietary choices, envi-
ronment, geography, and host genetics in structuring microbiomes. We consider these
factors in light of a species-wide study of the gut microbiomes, including bacteria,
archaea, and eukaryotic parasites, of wild chimpanzees (Pan troglodytes) from 29 sites
in Africa ranging from 50 km to 5,130 km apart.

Perhaps the simplest explanation for variation in gut microbiome communities
among individuals within a species is a model in which infants acquire microbiomes
from their mothers (3, 4) and then have those microbiomes supplemented and modi-
fied via interactions with their social groups as a function of interaction frequency (5,
6) and interactions with their environment (e.g., microbial exposures in soil, food, and
water) (7). This explanation predicts that microbiomes diverge among populations and
lineages as a function of genetic and geographic isolation and the consequent lack of
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contact and opportunities for microbial transmission. Such a model reflects processes
that are neutral (or indistinguishable from neutral) with regard to local adaptation. In
such a model, differences in host neutral genetic divergence should be highly predic-
tive of differences in microbiome composition. However, microbiomes might be
expected to “record” differences among populations in terms of their isolation with
more nuance than is seen as a function of neutral genes of hosts alone, whether due
to rapid host-dependent evolutionary changes (8, 9) or changes in which different mi-
crobial taxa are extirpated from or colonize hosts (10).

Additional drivers might be expected to accelerate microbiome divergence among
populations. Two related factors suggested to have strong effects on microbiomes are
climate and habitat, where habitat type and specific vegetation composition are influ-
enced by climate but also by local factors such as soil type, slope, and land use (11). It
is unlikely that climate and vegetation have a direct effect on gut microbiota; few
microbes in mammalian guts have life histories that allow them to survive and prolifer-
ate outside the gut, with some parasites as a notable exception. However, climate and
habitat determine the foods that are available to hosts (12), the abundance and behav-
ior of vectors for parasites (13), and the immunological condition of the hosts (14). As a
result, individuals that live in different climates and habitats, with different plant spe-
cies composition, are expected to have more distinct gut microbiomes, especially with
respect to parasites, than would be expected based on a neutral model alone.
Interestingly, humans are an exception to this case, as the important factors of diet
and lifestyle can be decoupled from climate and geography, especially in industrialized
societies. For example, there can be major differences in gut microbiota composition
between human populations with different cultural traditions and diets, but minor dif-
ferences among regions within the same cultural tradition and diet (15).

In addition to the indirect effects of climate and habitat on microbiomes via diet
and host effects, there might also be effects of dietary choice on microbiomes (16).
This is the case in humans, where individuals living in the same region may have differ-
ent diets and, consequently, different microbiomes (1, 17, 18). A corollary of this pat-
tern is apparent in evolutionarily distinct species that share diets and have similar gut
microbiomes (19). Four chimpanzee subspecies are currently recognized (20) and
inhabit a range of ecotones from dense forest to forest mosaics to savannas across
equatorial Africa (Fig. 1) (21). They are considered frugivorous omnivores across their
range, although forest-dwelling populations exhibit more dietary variety and frugivory
than their savanna-woodland counterparts (22–24). The degree of faunivory (including
insectivory) is also highly variable across the range (25, 26). However, even in similar
and/or nearby environments, chimpanzees can have different diets (12, 27). This
appears to be particularly common where nearby chimpanzee communities differ in
their use of tools (28–33). For example, chimpanzees in Gombe National Park,
Tanzania, forage on army ants (Dorylus spp.) and acrobat ants (Crematogaster spp.)
using stick tools (32). In contrast, chimpanzees in Mahale Mountains National Park, less
than 140 km from Gombe and with a similar habitat type in which army ants are com-
mon, do not forage on army ants but rather on carpenter ants (Camponotus spp.) (34).
Similar differences are noted among chimpanzee communities in similar habitats with
regard to the consumption of fruits and leaves (35), termites (31), honey (36), algae (30,
37), and some nut species that require tools to crack (29). Such behavioral differences in
foraging techniques, presumed to be socially mediated and thus cultural (38), and conse-
quent differences in diet, may in turn affect gut microbiota composition. For example, the
use of tools facilitates access to dietary items that are relatively hard to digest, such as
algae (those with stronger cellulose or silica cell walls), and items such as nuts that have
unique protein and fat profiles relative to a predominantly fruit- and leaf-based diet.

Until very recently, the idea of comparing the microbiome of chimpanzees across
populations spanning the full extent of their extant geographic range was unfeasible.
Recently, however, the “Pan African Programme: The Cultured Chimpanzee” (PanAf;
http://panafrican.eva.mpg.de/) has studied the behavioral diversity of chimpanzees
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across Africa (39) and sampled chimpanzee feces across that same geographic range
(40). Building on these data and samples, it is possible to disentangle the relative influ-
ence of host genetics (and evolutionary history), climate, vegetation composition, and
tool use on chimpanzee microbiomes, including both prokaryotes (bacteria and arch-
aea) as well as eukaryotic parasites (including protist and nematode parasites and note
that we use a lenient definition of parasites to include organisms that may not be
harmful to the host or were originally listed as parasites but are now known to operate
on a spectrum). Lastly, as chimpanzees are among the most closely related extant species
to humans and comparisons are useful for understanding the evolution of the human
gut microbiome (41), we compared the effects of geography, climate, and sex on the gut
microbiomes of humans and chimpanzees. We hypothesized the following. (i) Large-scale
geographic, genetic, and habitat differences among sites would drive differences in gut
microbial community structure at the continental scale. (ii) Within regions, differences in
diet due to vegetation composition and tool use would cause divergence in gut microbial
community structure even within genetically similar populations owing to environmental
and potential cultural influences on diet. (iii) Variation in the composition of gut parasite
communities would mirror the observed variation in the prokaryotic communities due to
similar factors influencing both components of the gut microbiome.

RESULTS

DNA was extracted from 560 fecal samples (originating from 560 different individu-
als) collected across the chimpanzee geographic range (Fig. 1), and we used 16S and
18S rRNA marker gene sequence data to characterize the prokaryotic (bacteria and arch-
aea) communities and eukaryotic (parasite) communities, respectively, in each fecal sam-
ple. Permutational multivariate analysis of variance (PERMANOVA) and Mantel tests were
conducted on pairwise Bray-Curtis dissimilarities (prokaryotes) and Jaccard dissimilarities
(parasites) to test for the effects of genetics, geography, climate, habitat, diet, and sex
(see Materials and Methods).

FIG 1 Map (from https://open.africa/) of the 29 sites included in this study, showing either forest, forest
mosaic, savanna mosaic, or savanna habitat types and the ranges of the four main geographic regions of
chimpanzees (from reference 133). Insets show the variation among sites (points) in consumption of algae,
honey, nuts (hard-shelled drupes), and termites (orange = consumed, gray = not consumed). In many cases,
these items are accessed using tools (algae [6 of 7 sites], honey [10 of 13 sites], nuts [5 of 5 sites], termites [9
of 12 sites]).
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There were 14 bacterial families with mean relative abundances (number of reads out
of 8,000 reads per sample) greater than 1% in at least one site. Among these, 10 families
had significantly different relative abundances among the four regions (Kruskal-Wallis,
Bonferroni, P , 0.05, Fig. 2a). The most abundant bacterial family was Prevotellaceae
(mean6 standard error [SE] percent abundance, 22.16 0.5), followed by Lachnospiraceae
(10.56 0.3), Ruminococcaceae (9.36 0.2), Erysipelotrichaceae (7.96 0.2), and Rikenellaceae
(7.96 0.3), all of which are the typical dominant taxa seen in other studies of chimpan-
zees, humans, and other primates (18, 42–44). None of the most common taxa were likely
to be associated with soil, leaves, or other potential field contaminants (45, 46). Among
the 14 parasite taxa examined here, 10 had significantly different occurrence probabilities
among regions (logistic regression, P , 0.05, Fig. 2b). The two most prevalent parasites
across the whole data set, and the only two parasites present in all sites, were identified
as Troglodytella abrassarti and a Tetratrichomonas amplicon sequence variant (ASV) most
closely related to Tetratrichomonas buttreyi. For the other parasites, there were large dif-
ferences in prevalence among the regions, with some regions having no occurrences of a
particular parasite and other regions having almost 100% prevalence.

Geographic distance was significantly correlated with genetic, climate, and vegetation
distance across the whole data set and within some, but not all, regions (Mantel test, P =
0.001, see Fig. S1 at https://doi.org/10.6084/m9.figshare.14607732). Geographic regions
contained significantly different genetic populations of chimpanzees (PERMANOVA,

FIG 2 Heatmaps showing site mean percent relative abundances for 14 bacterial families with.1% mean relative abundance in at least one site (a) and
parasite percent prevalence at each site (number of samples with parasite/total samples at site � 100) (b). Each panel is sorted from top to bottom in
order of abundance (a) or prevalence (b). Note that there were 225 prokaryote families in the data set and if they were all included, columns would sum to
100. Different numbers after genera or families denote different ASVs; Trichomonadidae_12_51 represents two highly correlated ASVs that were combined.
For more information about parasite taxonomy, see Table S3 at https://doi.org/10.6084/m9.figshare.14390426. Asterisks in panel a denote taxa with
significantly different mean relative abundances among regions (Kruskal-Wallis, Bonferroni, *, P , 0.05; **, P , 0.01; ***, P , 0.001), and asterisks in panel b
indicate taxa with significantly different probabilities of occurrence among regions (logistic regression, *, P , 0.05; **, P , 0.01; ***, P , 0.001). N-C,
Nigeria-Cameroon.
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pseudo-F=15.6, R2 = 0.63, P = 0.001, Fig. 3a) as has been described elsewhere (47).
Vegetation composition varied significantly among regions (PERMANOVA, F=2.3, R2 =
0.23, P = 0.001, Fig. 3b). Regions also contained significantly different climates
(PERMANOVA, pseudo-F=4.5, R2 = 0.35, P = 0.001, see Fig. S2a at https://doi.org/10.6084/
m9.figshare.14607735). Visual principal coordinate analysis (PCoA) grouping of samples
by both vegetation composition and climate did not match the host genetic clustering,
with the Nigeria-Cameroon, Central, and East regions grouped genetically (Fig. 3a), and
the Nigeria-Cameroon, Central, and West regions grouped by vegetation (Fig. 3b) and cli-
mate (Fig. S2a at the figshare URL above).

Variation in gut microbiota among regions. Prokaryotic community composition
differed significantly among the four geographic regions (Table 1 and Fig. 3c), with differ-
ences in the fecal microbial communities well correlated with site-level and individual-
level genetic differences (Fig. 3a and c; see also Fig. S3 at https://doi.org/10.6084/m9
.figshare.14607738). Parasite community composition also varied significantly among the
four geographic regions (Table 1 and Fig. 3d). For both prokaryotes and parasites, all pair-
wise comparisons between regions were significant (P , 0.05). Additionally, parasite and
prokaryotic community dissimilarities were significantly correlated across the whole data
set (Mantel test, P = 0.001, see Fig. S4 at https://doi.org/10.6084/m9.figshare.14607741);
i.e., changes in the composition of the prokaryotic communities were strongly associated
with changes in the parasite communities.

Across the whole data set, geographic, genetic, climate, and vegetation distances were
all significantly correlated with prokaryotic community dissimilarity and parasite community
dissimilarity (Mantel test, P = 0.001, Fig. 4; see also Fig. S2 [https://doi.org/10.6084/m9
.figshare.14607735], Fig. S3 [https://doi.org/10.6084/m9.figshare.14607738], and Fig. S5
[https://doi.org/10.6084/m9.figshare.14607744]). The generalized dissimilarity model (GDM)
with geographic and vegetation predictor matrices indicated that geographic distance
explained the most variation in prokaryote and parasite communities across the whole data
set (Table 2). For prokaryotes, partial Mantel tests of vegetation while controlling for geo-
graphic distance were significant (r=0.27, P = 0.001). In other words, once we accounted for
the conjoined effects of geography and genetics, vegetation still had a significant influence

FIG 3 Principal coordinate analysis of chimpanzee site-level genetic distance [F9ST/(1 2 F9ST)] (a), site-
level vegetation distance (Bray-Curtis) (b), prokaryote (bacteria and archaea) community dissimilarity
(Bray-Curtis) (c), and ubiquitous parasite community dissimilarity (Jaccard) (d). Numbers in the bottom
corners represent the percent variation explained by principal coordinate 1 (PC1) and PC2,
respectively. Point colors and convex hulls delineate the four geographic regions. n= 32, 27, 560, and
560 for a, b, c, and d, respectively. Overall, much of the structure in microbiomes is accounted for by
genetic distance; note that the clustering in panel c matches the clustering in panel a rather than
panel b. To see climate distances by region, see Fig. S2 at https://doi.org/10.6084/m9.figshare
.14607735.
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on prokaryotic community composition. For parasites, partial Mantel tests of vegetation
while controlling for geography were also significant (r=0.08, P = 0.001).

At the prokaryote ASV level, there were 45, 7, 15, and 15 indicator ASVs for the
West, Nigeria-Cameroon, Central, and East regions, respectively; indicator taxa for a
region are both more abundant and more common in that region (48). These indicator
taxa were randomly distributed across the phylogenetic tree (see Fig. S6a at https://doi
.org/10.6084/m9.figshare.14607750), highlighting that they are not restricted to partic-
ular prokaryotic lineages and contain both spore-forming and non-spore-forming taxa.

Variation in gut microbiota within regions. To examine local effects and control
for genetic differences, we also performed analyses within regions. Such analyses are
also important to understand the extent to which broad patterns are generalizable or
are contingent upon the strong differences observed across regions. Community dis-
similarities of both prokaryotes and parasites were significantly greater in between-site
sample comparisons of the entire data set than in within-site sample comparisons
(Wilcoxon test, P , 0.001), and this pattern persisted in analyses within the four geo-
graphic regions (see Fig. S7 at https://doi.org/10.6084/m9.figshare.14607756). Within
geographic regions, habitat type, diet (consumption of algae, honey, nuts, and ter-
mites, all of which are often consumed with tools), site identity, and to a lesser extent
sex, affected prokaryotic and parasite community composition (Table 1). As with re-
gional differences, there were strong differences in bacterial family abundances and
parasite prevalence among sites in the same region (Fig. 2). Strikingly, certain parasite
taxa had no occurrences in some sites and almost 100% prevalence at other sites
within the same region (Fig. 2b).

Geographic, climate, and vegetation distances were all significantly correlated with pro-
karyotic community dissimilarity and parasite community dissimilarity within each region
represented by more than two sites (i.e., three regions) (Mantel test, P = 0.001, Fig. 4; see
also Fig. S2b [https://doi.org/10.6084/m9.figshare.14607735] and Fig. S5 [https://doi.org/10
.6084/m9.figshare.14607744]). Individual-level genetic distances were significantly corre-
lated with prokaryote community dissimilarity in all regions except for the West region
and with parasite community dissimilarity in the Nigeria-Cameroon and Central regions
(see Fig. S3 at http://doi.org/10.6084/m9.figshare.14607738). Additionally, parasite and

TABLE 1 PERMANOVA and PERMDISP resultsa

Data set Model structure Variable df Pseudo-F R2 P Fb

Prokaryotes No strata (dfresidual = 552) Region 3 60.6 0.25 0.001 10.4***
Sex 1 1.39 0.002 0.11 0.9
Region� sex 3 1.15 0.005 0.19 NA

Strata = region (dfresidual = 502) Habitat 3 28.33 0.1 0.001 52.4***
Diet 8 15.07 0.13 0.001 16.1***
Site 17 10.9 0.2 0.001 6.4***
Sex 1 1.42 0.002 0.02 0.9
Site� sex 28 0.98 0.03 0.68 NA

Parasites No strata (dfresidual = 552) Region 3 84.96 0.31 0.001 5.0**
Sex 1 2.02 0.002 0.07 0.6
Region� sex 3 1.41 0.005 0.12 NA

Strata = region (dfresidual = 502) Habitat 3 20.74 0.06 0.001 16.9***
Diet 8 20.04 0.16 0.001 12.7***
Site 17 13.98 0.24 0.001 2.0**
Sex 1 2.21 0.002 0.04 0.6
Site� sex 28 1.05 0.03 0.35 NA

aPERMANOVA and PERMDISP results showing degrees of freedom, pseudo-F, R2, and P values for PERMANOVA and F values with significance levels for PERMDISP for
prokaryotes and parasites. For each data set, two models were run. The first model tested for the effect of region, sex, and their interaction, and the second model, stratified
by region because of the large effect of region found in the first model, tested for effects of habitat, diet (consumption of algae, honey, nuts, termites, which typically
require tools to access, see Table S1 at https://doi.org/10.6084/m9.figshare.14607687), site, sex, and a site-sex interaction. Note that the order of variable input matters but
causes only minor changes in R2 values. For prokaryotes, if the order of habitat and diet is switched, habitat R2 = 0.08 and diet R2 = 0.15 (a change of 0.02). For parasites, if
the order of habitat and diet is switched, habitat R2 = 0.08 and diet R2 = 0.15 (a change of 0.02 and 0.01).

bF values with significance levels for PERMDISP for prokaryotes and parasites are shown as follows: **, P, 0.01, ***, P, 0.001. NA, not available.
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prokaryotic community dissimilarity were significantly correlated within each region
(Mantel test, P = 0.001, see Fig. S4 at http://doi.org/10.6084/m9.figshare.14607741). For
prokaryotes, partial Mantel tests of vegetation while controlling for geography were sig-
nificant within the East (r=0.40, P = 0.001), Central (r=0.29, P = 0.001), and West (r=0.09,
P = 0.001) regions. On the other hand, for parasites, partial Mantel tests of vegetation
while controlling for geography were significant only in the Central (r=0.32, P = 0.001)
and West (r=0.04, P = 0.03) regions. Full GDM models within each region indicate that
the relative importance of vegetation was greater than geography, in contrast to the
models built from the whole data set (Table 2).

Some site-specific differences were observed and were more strongly associated
with prokaryote community composition than parasite community composition

FIG 4 Prokaryote Bray-Curtis dissimilarity as a function of geographic distance (in kilometers), and
vegetation dissimilarity (Bray-Curtis) for the whole data set and within the West, Central, and East
regions. Within-region analyses for Nigeria-Cameroon are not shown here because there are only two
sites. Statistics are from Mantel tests with Pearson r values. To aid in visualization, quadratic
(geography) and linear (vegetation) models are displayed. To view similar figures in relation to
climate distance, rather than geographic distance, see Fig. S2 at https://doi.org/10.6084/m9.figshare
.14607735. To view similar figures in relation to genetic distance, see Fig. S3 at https://doi.org/10
.6084/m9.figshare.14607738.

TABLE 2 Generalized dissimilarity modeling resultsa

Data set Predictor matrix All regions West region Central region East region
Prokaryotes Geography 0.697 0.097 0.133 0.000

Vegetation 0.067 0.174 0.213 0.344
% deviance explained 56.29 9.75 26.67 37.99

Parasites Geography 0.606 0.057 0.000 0.180
Vegetation 0.000 0.111 0.265 0.000
% deviance explained 22.54 1.29 8.22 1.58

aGeneralized dissimilarity modeling results showing the maximum partial ecological distance explained by geographic distance and vegetation dissimilarity predictor
matrices while controlling for the other, as well as the deviance explained by the model. Models were run with the whole data set as well as within the West, Central, and
East regions. Boldface values are the most important predictors in each data set.
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(Table 1; see also Fig. S8 at https://doi.org/10.6084/m9.figshare.14390369), although
no such associations were found in the West region (subspecies verus). Knowing that
some chimpanzee populations use tools to acquire certain specialty items in their diet,
we categorized each site by the observed collection of specialty items they consume.
For example, from long-term data, it is known that chimpanzees at Gashaka in the
Nigerian-Cameroon range consume honey (49), but not termites (50). At Mount (Mt.)
Cameroon, neither has been observed after 1 year of observation, and the possible dif-
ference in consumption of these items may contribute to the different microbial com-
munity composition between the two sites (see Fig. S8a and b at the figshare URL
above). The five sites in the East region contained two different specialty diets, honey
(Bwindi, Gishwati, and Nyungwe) and algae and termites (Issa), and a site (Budongo)
where chimpanzees were never observed to consume any of those items (over 1 year
of observations), although longer-term observations are needed as consumption of
honey and termites was observed in a neighboring community of chimpanzees (51,
52); these three groupings were associated with distinct prokaryote communities (Fig.
S8a at the figshare URL above). In the Central region, gut prokaryotic composition at
the one site where only termite consumption was observed (Mts. de Cristal) was signifi-
cantly different than at the two sites where only honey consumption was observed
(Lopé and Conkouati, Fig. S8a at the figshare URL above). At the long-term field site of
Goualougo, both termites and honey are known to be consumed (53), and at Loango,
underground honey is consumed with tools (54), while termite consumption without
tools has been observed. For consumption of honey and termites, which occurs in all
four regions, there were 80 and 61 prokaryotic indicator taxa, respectively, distributed
across the phylogenetic tree (see Fig. S6b at https://doi.org/10.6084/m9.figshare
.14607750). Indicator taxa were shared among more than one region in only a few
instances, likely reflective of the broader differences in community composition among
the regions. Together, these results suggest that tool use may affect the composition
of the gut microbiome by making certain food items available, but we recognize that
tool use is difficult to disentangle from other factors that may also differ across chim-
panzee populations, including differences in consumption of the various plant foods
that make up the bulk of the chimpanzee diet or other prey items (16).

Comparison with humans. To contrast the effects of geography, climate, and sex
on the gut microbiome in chimpanzees versus a population of industrialized humans
known to have a relatively homogeneous diet and a high degree of interregional con-
nectivity, we analyzed a comparable data set from humans enrolled in the American
Gut Project (17) (see Materials and Methods). In contrast to the patterns observed for
the chimpanzee gut microbiome, geographic distance and climate distance were not
significantly correlated with human gut microbiome dissimilarity (Mantel test, P $

0.05, Fig. 5a and b). While geography and climate had significant and strong (r=0.66
and 0.44, respectively) effects on the chimpanzee gut microbiome, these same factors
explained very little variation (r=0.007) in the human gut microbiome. The effects of
host sex were minor in both species (R2 = 0.0008 in chimpanzees, R2 = 0.0003 in
humans, Fig. 5c).

DISCUSSION
Variation in gut microbiota among regions. Previous studies on the chimpanzee

gut microbiome have been limited in both sample size and geography, with most
studies sampling only one of the four subspecies (e.g., references 50, 55, and 56). Our
comprehensive sampling scheme enabled us to examine geographic and genetic
effects on the chimpanzee microbiome. To date, few studies of any taxon have consid-
ered the variation in microbiomes among individuals within a species at such a scale,
except for humans (57–59). On the basis of studies of humans (17, 60, 61), we expected
there to be a weak effect of geographic and genetic distance on chimpanzee gut
microbiota. Instead, we found that much of the variation among chimpanzees’ gut
microbiomes was associated with geographic distance and genetic distance. This
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pattern was observed for both prokaryotes and eukaryotic parasites, including both
parasitic worms and protists.

The effects of geographic and genetic distance were apparent both among and
within geographic regions. Such effects could be due to either neutral divergence (42,
62, 63), disease (64), or some effect of host genetic identity on microbiome composi-
tion. The simplest (and most neutral) model is one in which microbiomes are inherited
by individuals from their mother during birth and subsequently acquired from commu-
nity members. The two predictions of this model, that geographic and genetic dis-
tance, which are strongly correlated in chimpanzees, are strongly predictive of prokar-
yote community composition and more weakly predictive of parasite community
composition, are both supported by our data. The weaker predictive power for para-
sites is possibly because many parasite taxa (especially macroparasites) are acquired
from dietary sources and the environment, in addition to directly from other chimpan-
zees via fecal-oral transmission (65), but it could also be due to the much lower num-
ber of parasite taxa compared to bacteria. Thus, we suspect that the relationship
between host genetic differences and microbiome genetic differences primarily
reflects history and neutral divergence. The relationship between genetic relatedness
and gut microbiota observed at the continental scale in our data has not been previ-
ously documented, as previous work has focused on individual chimpanzee commun-
ities. Within individual chimpanzee communities, gut microbiome composition does
not relate to genetic relatedness (e.g., parents and children and siblings) (66) but is
rather influenced by social contact (67), with similar patterns also observed in baboons
(5, 68), black howler monkeys (69), and sifakas (70). We cannot exclude the possibility
of associations between specific host genes and microbiome composition, but we
could not identify such associations here as the microsatellite genes provide informa-
tion only on host genetic divergence.

FIG 5 Relationship between geographic distance (in kilometers), climate distance (Euclidean distance), sex (FF = female-
female comparisons, FM = female-male comparisons, MM = male-male comparisons), and prokaryote (bacteria and archaea)
community composition in chimpanzees and humans. For chimpanzees, a quadratic (geography) and linear (climate) trendline
is shown, while for humans a dashed, nonsignificant, linear trendline is shown. Blue points and error bars represent means
and standard deviations, respectively. Statistics are from Mantel tests (geography and climate) and analysis of variance
(ANOVA) (sex). Note that while there were significant effects of sex on dissimilarity, and male-male comparisons were more
dissimilar than female-female and female-male comparisons in chimpanzees, but less dissimilar in humans, the extremely
small effect sizes in both species suggests sex does not structure the gut microbiome in either species.
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Alternatively, some of the observed effects of geography and host genetics may be
attributed to climate and vegetation, which were both correlated with geography (see
Fig. S2 at https://doi.org/10.6084/m9.figshare.14607735), as well as tool use for special di-
etary items (e.g., hard-shell drupes are eaten only in part of the West region, see Table S1
at https://doi.org/10.6084/m9.figshare.14607687). Climate is unlikely to directly impact
gut prokaryotes; many gut-associated prokaryotes cannot proliferate outside the gut.
However, climate could affect eukaryotic members of the gut via effects on the presence
and identity of alternate hosts at a particular site (65). In addition, climate can indirectly
affect both prokaryotes and eukaryotes by influencing the vegetation composition and,
consequently, the foods available at a particular site (71). Here, we find that across the
entire chimpanzee range, the effects of climate, habitat type, and vegetation composition
on the gut microbiome are modest, suggesting that the broad-scale geographic patterns
we observed are only partially explained by climate and habitat.

In contrast to the pattern we observed for chimpanzees across sub-Saharan Africa,
we found no geographic structure in the microbiomes of humans living across a similar
geographic extent, the contiguous United States. Based on an analysis of 2296 sam-
ples, the microbiomes of humans in the contiguous United States are not correlated
with geography or climate. For example, people in the United States living in New
York and California can have as similar gut microbiota as two New Yorkers despite liv-
ing in different climates 4,000 km apart. While other studies have shown differences in
the human gut microbiome based on geography (e.g., reference 72), those studies
reflect the effects of diet and lifestyle rather than geographic distance (18). Assuming
that the patterns in gut microbiomes of chimpanzees are reflective of those of our last
common ancestor, this lack of pattern in human microbiome data, at least in an indus-
trialized Western society, suggests that humans have obscured ancient patterns in
microbiome biogeography since diverging from chimpanzees, as has been observed
with human effects on other ecosystems (56). This is likely due to a variety of processes
associated with industrialization and globalization including, but not limited to, the
decoupling of food and climate, and increased cross-regional traveling, movement,
and social contact.

Variation in gut microbiota within regions. In addition to the broad regional dif-
ferences we observed in chimpanzee microbiomes, there were also strong site-level
differences within regions, which is likely amplified by higher rates of social contact
among chimpanzees living in the same site (5, 67). Variation among sites within
regions was correlated with geographic distance and genetic distance (just as with the
among-region comparisons) but also with vegetation and consumption of specific diet
items (16). It has been noted previously that even neighboring chimpanzee commun-
ities can have very different gut microbiomes (66). Here, we suggest that while some
of the site differences are environmentally driven, the socially mediated use of tools
may also possibly contribute to gut microbiome variation via diet.

Chimpanzees are one of the few species that employ the socially mediated use of
tools, arguably a component of their foraging cultures (29, 31, 34, 38, 73), which influ-
ences which foods they eat and which tools they use to eat those foods. Consequently,
differences between the foods available in a particular region and the foods actually
consumed in a region may vary. The effect we observe of the consumption of algae,
honey, nuts, and termites, which are consumed with the help of tools in many cases,
suggests the potential influence of tool use on the gut microbiome via diet (44, 74).

Additional work is required to identify potential mechanisms of any associations
between tool use and diet on microbiomes and the potential implications for host
health. Here, we focused on four dietary items observed to be accessed using tools,
although only one of them—nuts—is exclusively consumed when tools are used.
Consumption of these four dietary items was possibly associated with differences in
microbiome composition among sites in some instances. Since most of these items are
eaten in large quantities, at least seasonally, it is possible that they offer different nutri-
tional profiles that could select for different prokaryotic taxa in the gut. Algae, which
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are consumed at an average rate of ;360 g/day during some months, are an impor-
tant source of nutrients for chimpanzees (30) and feature recalcitrant complex carbo-
hydrates; in fact, the gut bacteria of some human populations appear to have acquired
the ability to produce specialized enzymes to digest seaweeds (75). Alternatively,
honey provides high concentrations of simple sugars (76). In humans, sugar-rich diets
are associated with increases in Bifidobacteria and decreases in Bacteroides (77); we
observed one Bifidobacteria ASV associated with honey consumption in the Nigeria-
Cameroon region, but this comparison should be made cautiously, as chimpanzee
honey consumption is lower than human sugar consumption. The nuts such as oil-
palm (Elaeis guineensis) and Coula edulis consumed by chimpanzees in the West region
are rich in fat (78) and are consumed in large quantities in some months (700 g/day,
net gain of 3,450 kcal/day) (72). Lastly, termites are sources of protein, iron, and manga-
nese and are a valuable part of chimpanzee nutrition (79). However, we do not have
comprehensive data on everything consumed by the chimpanzees at each site, and
thus, there remain potential alternative explanations for site differences. For example,
the three sites in the Central region where both honey and termites are consumed
(Mts. de Cristal, Goualougo, and Loango) had distinct microbiomes, possibly due to the
consumption of unique prey species, such as tortoises at Loango (80), or consumption
of different fruit species. Furthermore, any differences between the Taï sites and other
sites in the West region could be partially due to hunting of red colobus monkeys (16).
While we do not have data on the frequency of tool use or the quantity of consump-
tion for all of these specific diet items, we speculate that consumption of these items,
if it is indeed contributing to these patterns, must be frequent and long term, as has
been shown in certain sites (30, 76, 78, 79). For example, long-term dietary patterns in
humans have far larger effects on the gut microbiome than short-term changes in diet
(81). Continued long-term observations as well as DNA examination of feces for plants,
arthropods, and other dietary items will provide additional insights into the relation-
ships between diet and microbiome composition.

Parasites. There is a long history of research on parasites in primates (65), including
many studies focused on chimpanzees (e.g., references 51 and 82). Until recently, how-
ever, parasite surveys used morphology-based identification, and newer sequencing
studies have been limited in their geographic breadth or sample size (83–86). As a
result, while we have a rich understanding of the presence of certain parasites in cer-
tain chimpanzee populations (65), our understanding of the distribution of parasites
lags behind that of bacteria (85, 87). Our survey of gut microbial eukaryotic parasites
sheds new light on parasite distributions in chimpanzees and the factors influencing
those distributions. Only two parasites—one Tetratrichomonas ASV and the ciliate
Troglodytella abrassarti—were present in all sites. Troglodytella abrassarti was not only
found in all chimpanzee sites and in 94% of samples, but is also known to be common
in other primates (88). This ciliate appears to be an important and beneficial compo-
nent of the gut microbiome, contributing to polysaccharide hydrolytic activities in the
chimpanzee colon (89). In contrast, most parasite species had more restricted patterns
of distribution. Such between-site differences may be amplified by minimal social con-
tact between sites, which is restricted to some immigration, while prevalence may be
high within sites due to the social contact among individuals living at a site (87). In
other primates, social contact has been observed to affect transmission of the nema-
tode Strongyloides (82), but not protists (90, 91). Most parasites were also not consis-
tently found in individuals with multiple samples, suggesting that they are transient in
the gut and/or sourced from the environment or diet, or difficult to detect with 18S
rRNA gene data (see Fig. S9 at https://doi.org/10.6084/m9.figshare.14390372).

As with the gut prokaryotes, dissimilarity in parasite communities was correlated
with geography, climate, and vegetation, although the relationships for parasites were
weaker than for prokaryotes, as has been found in other studies (85). Previous work
has found more closely related primates to have more similar parasite communities
(86), an observation we extend to the subspecies and population level. For example,
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parasites in the parabasalid Tetratrichomonas genus are prevalent in sympatric chim-
panzees, gorillas, and humans, but different species and strains are found among the
three species (84); different lineages within the genus are associated with different
hosts, with a high degree of specificity (92). We report host specificity, at the regional
level, in four of five trichomonads. Chimpanzees that eat insects as well as plants are
expected to acquire some of the parasites present in the insects (65, 93), which likely
contributed to the relationship between diet (e.g., termite consumption) and parasite
community composition. Furthermore, the four items studied here contribute to chim-
panzee nutrition, which may also influence parasite loads, as has been found in deer
(94), bovids (95), and rats (96).

Dissimilarity among sites in prokaryotic communities and parasite communities was
significantly correlated, which may be due to the fact that both prokaryotic commun-
ities and parasites are similarly influenced, both directly and indirectly, by geography,
climate, and vegetation. It is also possible that the presence or absence of certain para-
sites can influence bacterial community composition or that the bacterial community
influences parasite establishment. Many such transdomain correlations have been
observed previously in both humans and chimpanzees (83, 97). In humans, the well-
studied protozoan parasite Blastocystis is associated with lower abundances of
Bacteroides bacteria (98), while the presence of Entamoeba can be predicted with 79%
accuracy based on gut bacterial community composition (97). In chimpanzees,
Blastocystis and Strongyloides carriers were associated with different bacterial commun-
ities (83). Several mechanisms of parasite-bacterium interactions have been proposed
in the vertebrate gut (99). For example, parasites, including helminths and Entamoeba,
can stimulate mucus production and alter mucosal composition, which may in turn
affect nutrient availability and movement and attachment sites in the gut. Microbial
eukaryotes can also play roles in nutrient cycling and bacterial turnover, and some,
including Entamoeba, directly feed on bacteria (98, 100).

Many of the most prevalent parasites observed in our data set are common in
humans and other mammals (88) and are associated with host health. Dientamoeba,
Blastocystis, and Entamoeba are very common in humans and have been found to be
more prevalent in healthy humans relative to humans with irritable bowel syndrome,
inflammatory bowel disease, or other gastrointestinal disorders (98). Thus, these para-
sites may be potentially beneficial to the host under certain conditions (101).
Alternatively, their prevalence may simply be a function of higher intestinal oxygen
concentrations in humans with intestinal dysbiosis-linked diseases (98). In most cases,
gut microbial eukaryotes move along the parasitism-mutualism spectrum in a context-
dependent manner which may also be modulated by gut bacteria (99, 102).

Conclusions. Our geographic range-wide survey of the chimpanzee gut micro-
biome, including both prokaryotes and eukaryotic parasites, combining data on chim-
panzee genetics, geography, climate, vegetation, and tool use to acquire specific
foods, partially disentangles the drivers of gut microbiota composition across scales
and synthesizes results from a number of previous local studies. The use of tool behav-
ioral data in chimpanzees to explain differences in gut microbiota is a novel approach
which may shed light on how diet, and the potential cultural behaviors that affect diet,
can shape the gut microbiome and may have played a role in the evolution of the
human microbiome. While isolation, either through genetic differences or geographic
separation, outweighs climate, vegetation, and diet factors at large scales, climate, veg-
etation, and tool use all are correlated with gut microbiome composition at local
scales, likely due to changes in diet. Geographic distance and climate played compara-
tively stronger roles in structuring the chimpanzee gut microbiome than the industrial-
ized human gut microbiome, a product of technologies and developments that have
decoupled humans from their local environments and food sources.

MATERIALS ANDMETHODS
Experimental design. We collected feces from 29 different sites from a total of 14 countries span-

ning four main geographic regions of chimpanzee (Pan troglodytes) populations across the African
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continent (Fig. 1). To compile such a comprehensive sample set, samples were collected from multiple
years and in all 12 months of the year, but year and season (wet/dry) had minimal effects on community
composition (PERMANOVA R2 = 0.02 and 0.01, respectively, for prokaryotes and 0.02 and 0.02, respec-
tively, for parasites). Regions are defined as West, Nigeria-Cameroon, Central, and East, which corre-
spond to the Pan troglodytes verus, ellioti, troglodytes, and schweinfurthii subspecies, respectively. At
each site, we aimed to collect feces from a single chimpanzee community, but because some of the
groups are not habituated to human presence and therefore not observed directly, it is possible that
samples from neighboring communities were inadvertently collected at a given site. Of the 560 samples
used in the microbiome analysis, the number of samples per site ranged from 4 to 38 (see Table S2 at
https://doi.org/10.6084/m9.figshare.14390420). Annual temperature, temperature seasonality (standard
deviation � 100), annual precipitation, and precipitation seasonality (coefficient of variation) were
extracted for each site from the BioClim data set (https://gitlab.com/tpoisot/BioClim/tree/master/assets).
Vegetation composition data were collected according to the PanAf protocol (103) except for five sites
which are described in Appendix 1 at https://doi.org/10.6084/m9.figshare.14390378. To summarize, at
each site, transects spaced 1 km apart were established. Along these transects, 20 m � 20 m habitat
plots were placed generally every 100 m (but up to 1,000 m); additional habitat plots were surveyed
along gallery forest in sites with dominant savanna vegetation. The surveyed area ranged from 3ha to
24 ha depending on the size of the site. Within each plot, all trees, lianas, and shrubs with a diameter at
breast height (DBH) of $10 cm were taxonomically identified, and their diameter was measured at 1.3-m
height. Site habitat type was defined broadly as either forest (mean 6 SE plant species richness,
1006 11), forest mosaic (986 21), savanna mosaic (786 10), or savanna (586 0) following previous
work (104). Data on tool use behaviors to acquire algae, honey, nuts (technically hard-shell drupes), and
termites come from the following sources: (i) extensive camera trap footage; (ii) fecal samples that pro-
vided evidence of ingestion of insects, algae, and honey, resources often exploited with the aid of tools;
and (iii) evidence of tool use identified during reconnaissance, line, and strip transect surveys (39, 105)
(see Table S1 at https://doi.org/10.6084/m9.figshare.14607687). We selected these four food acquisition
behaviors because they generally occur at fixed locations with artifacts and are therefore relatively easy
to detect via camera traps, exhibit variation across communities rather than being universal traits of
chimpanzees, and target unique dietary items that could potentially affect the gut microbiome even if
the majority of the chimpanzee diet is fruit. There is evidence of tool use to eat algae (6 of 7 sites where
algae is consumed), honey (10 of 13 sites), nuts (5 of 5 sites), and termites (9 of 12 sites); for the remain-
ing sites, we do not know whether tools for these dietary items were used or not, only that it has not
been documented thus far. We did not include analysis of data on the consumption of other items such
as meat and bone marrow as it is beyond the scope of the current observational record to reliably distin-
guish presence versus true absence at a site. Thus, we recognize that we account for only a fraction of
the potential dietary differences in chimpanzees.

Feces collection, extraction, and individual identification. Chimpanzee fecal samples were col-
lected throughout the year and preserved according to the two-step ethanol-silica method (106), stored
in the field for up to 2 years, and then stored in the lab at 220°C prior to extraction. Feces were up to 3
days old as determined by field staff. The effects of time between defecation and sampling have been
shown to be minor (7). Due to the presence of dung beetles, rain, and maggots, ape feces generally do
not persist for more than a few days (107). Furthermore, samples older than 3 days are highly degraded
and generally do not yield viable DNA for reliable chimpanzee genotyping (108). DNA was extracted
from the samples using the QIAamp 96 PowerFecal QIAcube HT robot and kit (Qiagen, Hilden, Germany)
with a pretreatment step to improve DNA yield (40). Microsatellite genotypes were obtained for up to
15 microsatellite loci using a two-step multiplex PCR method (109) with slight modifications (40) and
electrophoresing the amplicons using an ABI PRISM 3130 Genetic Analyser and GeneMapper v 3.7 soft-
ware (Applied Biosystems, Foster City, CA, USA) to visualize and score the results manually. Individual
identity was assigned based on matching genotypes at a minimum of seven loci (110) from at least three
PCR replicates for homozygotes and at least two replicates for heterozygotes (40). A fixation index (Fst)
genetic distance matrix at the site level was calculated from these genetic data. Additionally, an individ-
ual-level genetic distance matrix was calculated using the Smouse and Peakall metric (111) with the
GenoDive software program (112).

Microbiome analysis. Extracted DNA was transported on dry ice to the Fierer lab at the University
of Colorado Boulder for PCR amplification and sequencing using the primers and methods of the Earth
Microbiome Project (113). For prokaryotes (bacteria and archaea), we targeted the V4 region of the 16S
rRNA gene using the 515F/806R primer pair, modified to include the necessary Illumina adapters. For
eukaryotes, we targeted the V9 region of the 18S rRNA gene using the 1391f/EukBr primer pair.
Following PCR, DNA was pooled, normalized with the SequalPrep normalization plate kit (Invitrogen,
Carlsbad, CA, USA), and then sequenced on the Illumina MiSeq platform using 2� 150 bp chemistry at
the BioFrontiers Institute (Boulder, CO, USA). Amplicon reads were demultiplexed using the open source
“idemp” tool (https://github.com/yhwu/idemp), and adapters were cut from the sequences using the
open source “cutadapt” tool (114) (https://cutadapt.readthedocs.io/en/stable/) with default parameters
and –minimum-length set at 50. Sequences were then quality filtered (16S parameters maxEE = 1,
truncQ= 11, maxN= 0; 18S parameters maxEE= 2, truncQ= 2, maxN= 0), trimmed (150 and 145 bp for
16S, 103 bp for 18S) and merged (only 16S) using the DADA2 pipeline (115) to then infer amplicon
sequence variants (ASVs) (116) and remove chimeras. 18S rRNA gene reads were not merged, and only
the forward reads were used due to the variable length of the amplified region. Using the DADA2 pipe-
line, taxonomy was assigned using the SILVA database (117) version 132 (https://www.arb-silva.de/) for
16S rRNA sequences and the PR2 database (118) (https://pr2-database.org/) for 18S rRNA sequences. A
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phylogenetic tree of the 278 most abundant (.0.0625% mean relative abundance) and ubiquitous
(present in.5% of samples) bacteria and archaea was constructed by using PyNAST (119) to align
sequences and FastTree (120) to construct the tree using the QIIME program (121). Trees were visualized
using the ggtree (122) R package. Eukaryote, chloroplast, and mitochondrial sequences were removed
from the 16S rRNA sequence data set, as well as any ASV not assigned to either the bacterial or archaeal
domains. 16S rRNA gene sequence data were then rarefied to 8,000 sequences per sample. Taxonomic
filtering and rarefaction were performed using the mctoolsr (123) R package. This sequencing depth is
adequate to capture most of the richness of ASVs in each sample, which ranged from an average of 196
to 247 ASVs per sample depending on the region (see Fig. S10 at https://doi.org/10.6084/m9.figshare
.14390375). 18S rRNA gene sequence data were not rarefied, but samples with less than 3,100 sequences
per sample before any taxonomic filtering were removed (samples should also have abundant plant and
chimpanzee DNA). We identified 11 different ASVs that were present in at least 10% of samples, all of
which were from known parasite species based on the literature (134). We took a conservative approach (to
avoid false-positive results) and defined presence as having $50 sequences in a sample. To avoid counting
two ASVs that likely represent the same parasite taxon as separate taxa, we ran correlations on read abun-
dances and used BLAST analysis of ASV sequences for any ASVs identified as belonging to the same family,
combining those ASVs that were strongly correlated and identified as belonging to the same species. Two
of the ASVs that were significantly and strongly correlated (r=0.82, P , 0.001) and closely related (percent
identity= 98.06) were combined. Furthermore, due to previous work (83, 124) on known chimpanzee para-
sites from the Blastocystis, Strongyloides, and Entamoeba genera, we included a Blastocystis ASV, a
Strongyloides ASV, and two Entamoeba ASVs that were present in at least 5% of samples, for a total of 14
parasite ASVs (see Table S3 at https://doi.org/10.6084/m9.figshare.14390426). These most prevalent and
known chimpanzee parasites are unlikely to be sourced from prey species (93).

Statistical analysis. A total of 852 fecal samples passed the rarefaction cutoff of 8,000 16S rRNA
gene reads per sample. These samples originated from 577 unique individuals (based on the microsatel-
lite analysis described above), 147 of which were sampled multiple times, and 17 of which did not have
sex identification. Within the same site, prokaryotic community Bray-Curtis dissimilarity was significantly
greater between individual chimpanzees than within the same individuals that were sampled multiple
times (see Fig. S11 at https://doi.org/10.6084/m9.figshare.14390381). To avoid statistical issues due to
repeated sampling, we included only one sample per individual (using the first sample of each individ-
ual) in the analysis. Thus, we focused analyses on 560 fecal samples that originated from unique individ-
uals and for which sex was identified (257 female, 303 male). To assess differences in community compo-
sition, we calculated Bray-Curtis dissimilarity for the prokaryote data and Jaccard dissimilarity for
parasites. We conducted Wilcoxon tests to analyze whether Bray-Curtis or Jaccard dissimilarities were
significantly different within versus among sampling sites, both on the entire data set and within each
geographic region. We conducted principal coordinates analysis to visualize differences among samples
with regard to genetic distance, climate distance, vegetation distance, prokaryote community composi-
tion, and parasite community composition. We used permutational multivariate analysis of variance
(125) (PERMANOVA) implemented in the vegan (126) R package to assess the effects of geographic
region on genetic, climate, and vegetation distance and the effects of geographic region, habitat type,
diet, site identity, and sex on prokaryotic and parasite community composition. Pairwise PERMANOVAs
were performed with the RVAideMemoire (127) R package. Multivariate homogeneity of group disper-
sions was tested with permutational analysis of multivariate dispersions (PERMDISP) implemented in
vegan. We used Kruskal-Wallis tests with Bonferroni P value correction to analyze differences in the
mean relative abundances of top bacterial families among the four geographic regions and logistic
regressions to analyze differences in parasite occurrence probabilities among the regions. We used mul-
tilevel pattern analysis implemented in the indicspecies (48) R package to identify indicator taxa for each
geographic region as well as for the presence and absence of consumption of honey and termites,
which are consumed in all four regions (algae are consumed in two regions and nuts in one region).

To analyze the effects of geographic distance, climate, and vegetation on prokaryote and parasite
community composition, we used Mantel tests and partial Mantel tests (controlling for geographic dis-
tance) between distance/dissimilarity matrices. Additionally, to further assess the relative importance of
these predictor matrices, we used generalized dissimilarity modeling (128) (GDM) implemented in the
gdm (129) R package. These analyses were performed on the entire data set as well as separately within
the West, Central, and East regions; within-region analyses were not performed for Nigeria-Cameroon as
there were only two sampling sites in this region. Climate distance was calculated as the Euclidean distance
of annual mean temperature, annual mean precipitation, temperature seasonality, and precipitation season-
ality, which were scaled (to 0 mean unit variance) before the calculation. Vegetation “distance” was calcu-
lated as Bray-Curtis dissimilarity in plant species composition.

To contrast the effects of geography, climate, and sex on the gut microbiome in chimpanzees versus
in Westernized humans, we conducted Mantel tests between geographic distance, climate distance, and
prokaryotic community Bray-Curtis dissimilarity for 2,296 human gut samples from the American Gut
Project (17). This data set has readily and publicly available ASV tables, a similar geographic extent and
sample size as our study, and used the same primers as our study. As previous studies have already
investigated differences between the microbiomes of nonhuman primates and humans in different loca-
tions and societies (19, 42, 63, 130, 131), the goal here was simply to contrast the effects of geographic
distance, climate, and sex in chimpanzees with a population of industrialized humans known to have a
relatively homogeneous diet and a high degree of interregional connectivity. The effect of sex was
assessed by comparing Bray-Curtis dissimilarities among female-female, female-male, and male-male
pairwise comparisons. The human samples are from adults in the contiguous United States who did not
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take antibiotics in the year prior to sampling. Samples were rarefied at 10,000 sequences per sample
and processed using Deblur (132) as outlined in reference 17. Data are publicly available and were
downloaded from ftp://ftp.microbio.me/AmericanGut/manuscript-package/10000/distance/ on 24
March 2020.

Data availability. Raw sequencing data and ASV sequences were deposited to NCBI SRA and
GenBank, respectively, under the BioProject accession number PRJNA625726.
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