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Gabi wheat a panel of European 
elite lines as central stock for  
wheat genetic research
Abhishek Gogna   1, Albert W. Schulthess1, Marion S. Röder1, Martin W. Ganal2 & 
Jochen C. Reif   1 ✉

In plant sciences, curation and availability of interoperable phenotypic and genomic data is still 
in its infancy and represents an obstacle to rapid scientific discoveries in this field. To that end, 
supplementing the efforts being made to generate open access wheat genome, pan wheat genome 
and other bioinformatic resources, we present the GABI-WHEAT panel of elite European cultivars 
comprising 358 winter and 14 summer wheat varieties released between 1975 to 2007. The panel has 
been genotyped with SNP arrays of increasing density to investigate several important agronomic, 
quality and disease resistance traits. The robustness of investigated traits and interoperability of 
genomic and phenotypic data was assessed in the current publication with the aim to transform this 
panel into a public data resource for future genetic research in wheat. Consecutively, the phenotypic 
data was formatted to comply with FAIR principles and linked to online databases to substantiate 
panel origin information and quality. Thus, we were able to make a valuable resource available for plant 
science in a sustainable way.

Background & Summary
The research landscape for wheat (Triticum aestivum L.) is witness to unprecedented developments owing to 
the availability of multi-omics data and advances in breeding informatics. These developments fueled the dis-
coveries of marker-trait associations, gene cloning(s)1, targeted gene editing(s), and better understanding into 
genetic architecture of complex traits. However, the upcoming decade poses new challenges in the face of climate 
change, evolving consumer food preferences and sociopolitical scenarios between the wheat producing and 
importing countries. This implies that the conventional wheel of research output has to now turn even faster 
without compromising on quality and throughput. Current crop growth models driven by climate change sce-
narios already predict forthcoming changes in temperature, rainfall and spatiotemporal alterations in pathogen 
pressures across Europe, which if left unchecked, could lead to dwindling yields and massive crop loss2.

In the past, whereas the genetic mapping for important traits benefitted from availability of high-density 
markers in the form of SNP arrays and even better from whole genome sequencing, modern research require-
ments necessitate a look beyond the now saturated genomic data generation technologies. Availability and 
choice of a genetically diverse panel with robust phenotypic data is, therefore, crucial. Several multi-parental 
populations covering a wide spectrum of traits for major crops like maize, barley, rapeseed, rice, soybean, cotton 
including wheat now exist3 and aim to address this issue. But the main limitation of such populations is that 
the genetic diversity space is defined by the founders/parents. Obviously, this limited number would hardly 
cover the genetic diversity existent in the elite pool for the crop. Elite breeding lines in Europe, culminated from 
years of commercial development, are a precise snapshot of region-specific variation required for optimal trait 
expression. As such these form an excellent open-ended core resource for genetic studies that can be extended 
with latest released cultivars.

A European panel of elite winter as well as some summer wheat cultivars, denoted as GABI-WHEAT, assem-
bled from varieties released between 1975 to 2007, representing almost four decades of breeding efforts in 
European wheat breeding companies was curated in 20134 and has since been used extensively for major devel-
opments in wheat across Europe. The panel was initially genotyped with SSR markers4, but given the popularity 
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of the panel, over the years the genotypes therein were typed with SNP marker arrays with increasing marker 
densities viz. 35k5, 90k6, and 135k7 with the aim to expand the canvas for novel association discovery.

Studies have benefitted from this expansion and have reported novel associations for previously reported 
disease8,9, and quality traits7. Exploiting the substantial genetic diversity existing in GABI-WHEAT panel for 
lipid activity10, efforts have been made to develop metabolomic methods for quantifying oxidative stability of 
lipid oxidases11 and to hasten development of lipid stable wheat varieties for diverse markets12. Beyond that, 
high-throughput phenotyping methods have been developed using GABI-WHEAT panel to augment genetic 
variant discovery using multi sensor field phenotyping platform13, hyperspectral canopy sensing14 as well as 
multi-image unmanned aerial vehicle based field phenotyping15 for stem elongation, Septoria tritici blotch, and 
for measuring plot canopy temperatures. Additionally, the panel has been used to study plant pathogen inter-
actions and propose mechanism of possible tradeoff between tolerance and resistance in elite wheat cultivar for 
Septoria tritici blotch16. Nevertheless, these developments are still in infancy and for limited traits. At the same 
time, high-throughput phenotyping is constantly expanding the array of traits to study involving for example 
root phenotyping. If near-term trends are even marginally indicative, then open sharing of proven and robust 
panels like GABI-WHEAT could not only cut costs in future developments but also save crucial research time 
needed for data generation.

It is reasonable to expect that to support population pressure by 2050, crop production must rise and this 
would be possible given high throughput quality research. In line with developing public access resources to 
enable next generations of scientists spend less time on generating data and more time working with as well 
as building upon curated data, we publish herein the GABI-WHEAT panel including the original phenotypic 
data4 and recently generated marker data5,7 as well as respective marker oligo sequences. Our contribution to the 
scientific community is a step to (1) augment the wheat research landscape in Europe for fundamental research 
topics, (2) hasten the translation of scientific learnings into elite variety development, and (3) promote further 
resource development and sharing.

Methods
Phenotypic data.  The phenotypic data corresponds to seven agronomic [heading date (HD), plant height 
(PH), thousand grain weight (TGW), ear weight (EW), grains per ear (GPE), yield (YIE), specific weight (SW)], 
six quality [grain hardiness (GH), starch content (STC), protein content (PC), sedimentation index (SDS), 
Hagberg falling number (HAG), zeleny sedimentation index (ZEL)] and three disease [resistance to fusarium 
head blight (FHB), resistance to septoria blotch (STB), existence to tan spot (DTR)] traits for GABI-WHEAT 
panel comprising 358 winter and 14 spring wheat varieties. For the field trials nine checks were added in >1 
replications to round total number of genotypes per trial to 4004. Curation of phenotypic data for agronomic and 

Fig. 1  Overview of the analysis.
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quality traits was done from field experiments randomized according to alpha-lattice designs with two replica-
tions. These trials were conducted at up to 5 locations (Andelu/France; Seligenstadt/Germany; Wohlde/Germany; 
Janville/France; Saultain/France) in up to two years (2009; 2010). Investigations of disease resistance traits were 
done on randomized complete block design with three replications per site at up to 4 locations (Ahlum/Germany; 
Lafferde/Germany; Cecilienkoog/Germany; Halle-Bodenwerder/Germany) in up to two years (2009; 2010). Each 
year and location combination were considered as one environment. The grain moisture content for measurement 
of traits was standardized to 14%.

Genomic data.  The genomic data used herein derives from three different marker platforms, viz. 35k 
Affymetrix5,8, 90k iSELECT6 and 135k7 SNP arrays for 371, 372, and 186 genotypes (GABI-WHEAT-TROST 
panel) respectively, out of the total 372 individuals. The number of markers remaining after quality check includ-
ing filtering of markers with more than five percent heterozygous calls, missing values as well as minor allele 
frequency were 9,494, 18,776, and 35,258 respectively. Imputation of missing values in the filtered marker datasets 
was done using Random Forest regression17,18.

Phenotypic data analysis.  An unweighted two-stage univariate19 mixed model analysis was adopted to 
analyze the phenotypic traits (Fig. 1). In the first step, best linear unbiased estimates (BLUEs) were derived per 
environment for each trait with the following model:

y g r b (r ) e , (1)ijk i j k j ijk= µ + + + +

where, yijk denotes trait measurement from ith genotype (g) in kth block (b) nested in jth replication (r). In the 
model (1) all terms except the common mean (µ) and gi were considered random for deriving BLUEs, whereas all 
terms except µ were modelled as random to estimate variance(s) for deriving repeatabilities per environment as,

R / ( /n ) , (2)n g
2

g
2

g
2

r= σ σ + σ

where, Rn denotes repeatability for a trait at nth environment, σ2
g denotes the genotypic variance, σ2

e denotes 
the error variance and nr denotes number of replications. In the second step, BLUEs across environments were 
calculated with the model,

= µ + + +y g E e , (3)im i m im

where, yim denotes trait measurement from ith genotype in the mth environment (E). In the model (3) all except 
the µ and gi terms were considered random for deriving BLUEs, whereas all terms except µ were modelled as 
random to estimate variance(s) for deriving heritabilities for a given trait. The normality of the distribution of 

Traits Abbreviations Locations in 2009 Locations in 2010

Heading date HD Andelu (2) Seligenstadt (2) Wohlde (2) Andelu (2) Janville (2) Seligenstadt (2) Wohlde (2) Saultain (2)

Plant height PH Andelu (2) Seligenstadt (2) Wohlde (2) Andelu (2) Janville (2) Seligenstadt (2) Wohlde (2) Saultain (2)

Thousand grain 
weight TKW/TGW Andelu (2) Seligenstadt (2) Wohlde (2) Andelu (1) Janville (1) Seligenstadt (1) Wohlde (2) Saultain (2)

Ear weight EW Wohlde (2) Wohlde (2)

Grains per ear GPE Andelu (1) Wohlde (2) Andelu (2)

Yield YIE Andelu (2) Seligenstadt (2) Wohlde (2) Andelu (2) Janville (2) Seligenstadt (2) Wohlde (2) Saultain (2)

Specific weight SW Andelu (2) Seligenstadt (2) Wohlde (2) Seligenstadt (2) Wohlde (2)

Grain hardiness GH Andelu (1) Andelu (1) Janville (1) Saultain (1)

Starch content STC/GSC Seligenstadt (2) Wohlde (2) Wohlde (2)

Protein content PC/GPC Andelu (1) Seligenstadt (2) Wohlde (2) Andelu (1) Janville (1) Seligenstadt (2) Wohlde (2) Saultain (1)

Sedimentation index SDS Andelu (1) Andelu (1) Janville (1) Saultain (1)

Hagberg falling 
number HAG Seligenstadt (2) Wohlde (2) Seligenstadt (2) Wohlde (2)

Zeleny sedimentation 
index ZEL Andelu (1) Seligenstadt (2) Wohlde (2) Andelu (1) Janville (1) Seligenstadt (2) Wohlde (2) Saultain (1)

Resistance to 
fusarium head blight FHB Cecilienkoog (3) Ahlum (3) Halle-Bodenwerder (3) Ahlum (3)

Resistance to septoria 
blotch STB Cecilienkoog (3) Cecilienkoog (3)

Resistance to tan spot DTR Lafferde (3) Ahlum (3)

Table 1.  Description of trial structure for various traits in GABI-WHEAT. Location coordinates – Andelu 
- 48.8°N 1.8°E; height = 120.8 m, Seligenstadt - 50.0°N 8.9°E; height = 113.4 m, Wohlde - 54.4°N 9.2°E; 
height = 11.6 m, Janville - 48.2°N 1.8°E; height = 135.0 m, Saultain - 50.3°N 3.5°E; height = 72.5 m, Cecilienkoog 
- 54.5°N 8.9°E; height = 0.7 m, Ahlum - 52.6°N 11.0°E; height = 45.4 m, Halle-Bodenwerder - 51.9°N 9.5°E; 
height = 98.4 m, Lafferde - 52.2°N 10.2°E; height = 87.4 m. Values in brackets ({1–3}) denote the number of 
replications available at that location for a given trait and environement.
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BLUEs across environments was tested for each trait with the Shapiro–Wilk test at p = 0.05. Heritability was 
estimated as:

= σ σ + σ + σh / ( ) , (4)g g g gplotbased
2 2 2

e
2 2

*

35k chip 90k chip 135k chip

35k chip 35143 0 715

90k chip 0 81588 0

135k chip 715 0 136780

Table 2.  Marker overlaps between different chips.

Fig. 2  Population structure based on principal coordinate analysis (PCo) using classical multidimensional 
scaling based on pairwise estimates of Rogers’ distance(s) derived from 90k chip. PC1 and PC2 represent the 
first two principle components.

Fig. 3  Population structure based on principal coordinate analysis (PCo) using classical multidimensional 
scaling based on pairwise estimates of Rogers’ distance(s) derived from 35k chip. PC1 and PC2 represent the 
first two principle components.

Fig. 4  Population structure based on principal coordinate analysis (PCo) using classical multidimensional 
scaling based on pairwise estimates of Rogers’ distance(s) derived from 135k chip. PC1 and PC2 represent the 
first two principle components.
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Fig. 5  Biplot from rank two approximation of centered g*e matrix for grain yield.

Fig. 6  Biplot from rank two approximation of centered g*e matrix for heading date.
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and

σ σ σ σ= + + ∗h / ( / (n ) / (n n )) , (5)entry mean based
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where, ne denotes number of environments and nr stands for (mean) number of replications.

Fig. 7  Biplot from rank two approximation of centered g*e matrix for plant height.

Fig. 8  Biplot from rank two approximation of centered g*e matrix for hagberg falling number.
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For disease resistance traits (FHB, SEP, DTR), since complete-block structure was missing the previously 
described model (1) is reduced to:

= µ + + +y g r e , (6)ij i j ij

For the traits having few environments with just one replication (TKW, PC, ZEL, GPE) or traits with no 
complete-block replication in any of the environment (SDS, GH), the previously described model (1) was mod-
ified as follows,

= µ + + +y g b e , (7)ik i k ik

For disease resistance traits mean values for genotypes in a given replication of the respective trial were 
calculated (1) First across two assessments and then over two types of leaves for DTR as well as STB; (2) Across 
three assessments separately for incidence and severity score for FHB. In the latter case, an FHB score was addi-
tionally calculated as,

(mean incidence score across three assessments) (mean severity score across three assessments)/100 (8)×

Biplot analysis.  The genotype times environment (random) effects matrix (g*e matrix) was derived by fitting 
a one-step model, i.e.,

= µ + + + + + +y g E g : E r b e , (9)ijkm i m i m j k ijkm

for agronomic as well as quality traits, and

y g E g : E r e , (10)ijm i m i m j ijm= µ + + + + +

for disease traits respectively. In model (9) as well as (10), all components except µ were assumed random and 
the biplot was produced from a rank two approximation of the centered g*e matrix as outlined in20.

Genomic-phenomic data interoperaty.  Genomic repeatability was used as a measure of data interoper-
ability and was calculated for BLUEs within each environment with the three types of marker datasets by simul-
taneously modelling additive and additive*additive epistasis21 using the following model,

Fig. 9  Biplot from rank two approximation of centered g*e matrix for fusarium head blight.
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= µ + + +y 1 g g e, (11)n 1 2

where, y denotes an n-dimensional vector of phenotypic records, 1n denotes an n-length vector of ones, µ stands 
for the population mean of the trait under investigation, g1 and g2 denote additive and additive*additive epistatic 
genotypic values respectively. µ was assumed fixed, whilst g1 ~ N(0, G*σ2

g1), g2 ~ N(0, H*σ2
g2) and e ~ N(0, 

I*σ2
e). G was an n × n genomic relationship matrix calculated following22 and H was subsequently calculated as 

the Hadamard product of G with itself. In the model (8) it was assumed that cov (g1, g2) = cov (g1, e) = cov (g2, 
e) = 0. The model (9) was implemented with BGLR23 inside R24 with an apriori kernel set to “RKHS” for both 
kinship matrices.

Genomic repeatability was thereafter defined in two ways as (1) narrow-sense genomic repeatability (Rn) and 
(2) broad-sense genomic repeatability (Rb):

σ σ σ σ= + +R / ( ) & (12)n g1
2

g1
2

g2
2

e
2

Fig. 10  Plot showing distribution of BLUEs for agronomic, quality and disease traits.

https://doi.org/10.1038/s41597-022-01651-5


9Scientific Data |           (2022) 9:538  | https://doi.org/10.1038/s41597-022-01651-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1HD PH TGW
EW GPE

YIE SW GH STC
PC SDS

HAG
ZEL

FHB
STB

DTR

HD

PH

TGW

EW

GPE

YIE

SW

GH

STC

PC

SDS

HAG

ZEL

FHB

STB

DTR

Fig. 11  Correlation plot showing significant correlations between BLUEs of agronomic, quality and disease 
traits. Crosses imply non-significant correlations.

+0.98 +0.85 +0.94 +0.97 +0.98 +0.97 +0.95 +0.99 +0.96 +0.97

+0.99 +0.87 +0.97 +0.97 +0.96 +0.98 +0.93 +0.97 +0.95 +0.98

+0.94 +0.70 +0.93 +0.83 +0.96 +0.86 +0.95

+0.65 +0.35 +0.60 +0.61

+0.50 +0.30 +0.78 +0.88

+0.89 +0.44 +0.86 +0.96 +0.82 +0.87 +0.73 +0.93 +0.88 +0.86

+0.95 +0.69 +0.96 +0.99 +0.68 +0.86 +0.95

+0.92 +0.75

+0.88 +0.68 +0.94 +0.93 +0.95

+0.83 +0.52 +0.94 +0.93 +0.89 +0.93

+0.90 +0.69

+0.75 +0.35 +0.50 +0.83 +0.87 +0.74

+0.94 +0.76 +0.97 +0.91 +0.92 +0.92

+0.90 +0.56 +0.92 +0.92 +0.73 +0.91

+0.73 +0.44 +0.85 +0.84

+0.29 +0.11 +0.62 +0.99

he
rit

_p
lo

t

he
rit

_e
nt

ry

20
09

.A
N

D

20
09

.S
E

L

20
09

.W
O

H

20
10

.A
N

D

20
10

.J
A

N

20
10

.S
A

U

20
10

.S
E

L

20
10

.W
O

H

20
09

.A
H

L

20
09

.C
E

C

20
10

.A
H

L

20
10

.B
O

D

20
10

.L
A

F

20
10

.C
E

C

DTR

STB

FHB

ZEL

HAG

SDS

PC

STC

GH

SW

YIE

GPE

EW

TGW

PH

HD

+0.10

+0.20

+0.30

+0.40

+0.50

+0.60

+0.70

+0.80

+0.90

+1.00
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Repeatability narrow 35k
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Fig. 13  Narrow sense genomic repeatabilities for respective combination of environments and traits based on 
35k chip.
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Fig. 14  Broad sense genomic repeatabilities for respective combination of environments and traits based on 
35k chip.
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Repeatability narrow 90k
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Fig. 15  Narrow sense genomic repeatabilities for respective combination of environments and traits based on 
90k chip.
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Fig. 16  Broad sense genomic repeatabilities for respective combination of environments and traits based on 
90k chip.

https://doi.org/10.1038/s41597-022-01651-5


1 2Scientific Data |           (2022) 9:538  | https://doi.org/10.1038/s41597-022-01651-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Repeatability narrow 135k

+0.51 +0.51 +0.49 +0.52 +0.49 +0.52 +0.52 +0.53

+0.45 +0.45 +0.43 +0.48 +0.47 +0.42 +0.44 +0.47

+0.32 +0.32 +0.41 +0.27 +0.34 +0.32 +0.36 +0.31

+0.25 +0.19

+0.38 +0.29 +0.12

+0.44 +0.46 +0.34 +0.41 +0.31 +0.36 +0.28 +0.34

+0.40 +0.42 +0.39 +0.39 +0.42

+0.33 +0.35 +0.35 +0.37

+0.36 +0.36 +0.28

+0.45 +0.45 +0.38 +0.41 +0.26 +0.31 +0.37 +0.36

+0.47 +0.49 +0.52 +0.40

+0.21 +0.35 +0.19 +0.24

+0.50 +0.46 +0.39 +0.46 +0.46 +0.40 +0.43 +0.42

+0.43 +0.43 +0.28 +0.36

+0.30 +0.25

+0.29 +0.26

20
09

.A
N

D

20
09

.S
E

L

20
09

.W
O

H

20
10

.A
N

D

20
10

.J
A

N

20
10

.S
A

U

20
10

.S
E

L

20
10

.W
O

H

20
09

.A
H

L

20
09

.C
E

C

20
10

.A
H

L

20
10

.B
O

D

20
10

.C
E

C

20
10

.L
A

F

DTR

STB

FHB

ZEL

HAG

SDS

PC

STC

GH

SW

YIE

GPE

EW

TGW

PH

HD

+0.00

+0.10

+0.20

+0.30

+0.40

+0.50

+0.60

+0.70

+0.80

+0.90

+1.00

Fig. 17  Narrow sense genomic repeatabilities for respective combination of environments and traits based on 
135k chip.
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Fig. 18  Broad sense genomic repeatabilities for respective combination of environments and traits based on 
135k chip.
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Lastly, genomic predictions for BLUEs across environments was calculated using a 5-fold cross validation 
implemented 100 times with the model (11), separately for each source of genotypic data. Genomic prediction 
ability was thereafter defined as the correlation between BLUEs across environments for a trait and those pre-
dicted with model (11).

Data Records
The phenotypic data produced herein is formatted in ISA-TAB format25 to enable FAIR use by diverse audience 
engaged in wheat research landscape. The description of the experiments including metadata adheres to the 
standards defined by MIAPPE 1.126. The phenotypic data correspond to seven agronomic (HD, PH, TGW, EW, 
GPE, YIE, SW), six quality (GH, STC, PC, SDS, HAG, ZEL), and three disease resistance traits (FHB, STB, DTR) 
for the GABI-WHEAT panel. The entire array of genotypic data(s) and marker oligo sequences with different 
marker densities for GABI-WHEAT as well as for GABI-WHEAT-TROST panel (a subset of GABI-WHEAT 
panel) is also being published. The phenotypic data for this publication is available at e!DAL-PGP-Repository27 
and the genotypic data along with marker oligo sequences is accessible at dryad repository28.

The varieties analyzed herein originate from over 12 European countries wherein they were first registered 
in the period 1975 to 200729. Originally, the observations were made for agronomic, quality and disease traits in 
2009 and 2010. However, for the purpose of current publication the original data was reformatted into ISA-TAB 
format. It includes an investigation file outlining the general features of the original data as well as study and 
assay files for each experimental design. Each pair (study + assay file) corresponds to data collected in a given 
experimental design viz. alpha-lattice design (for agronomic and quality traits) and randomized complete block 
design (for disease traits). The study file describes the genotypes analyzed in the respective trial design, specifi-
cally it has information on (1.) Organism studied (Characteristics[Organism]), (2.) Name of reference database 
for the organism [Term Source REF], (3.) Access information of the organism in reference database [Term 
Accession Number], (4.) Variety evaluated (Characteristics[Variety Name]), (5.) Access information to the vari-
ety in the public database [Variety Database 1 (http://wheatpedigree.net/) and 2 (https://www.proplanta.de/)],  
(6.) Design effects (Factor Value[…]), (7.) Mapping of study file rows to assay file (Sample Name), (8.) Coding 
used to resolve design effects and connecting to genodata (Characteristics [Original Coding]) and other infor-
mation like location coordinates. The assay file on the other hand records the traits phenotyped in given envi-
ronment(s) (Harvest year + Location), specifically each row in the assay file connects via ‘Sample Name’, the 
relevant rows of study file to measurements for phenotypic/quality or disease traits in the assay file.

Phenotypic data for agronomic and disease traits were recorded across two seasons (in two years) at up to 5 
locations in Germany or France. In Germany, respective locations i.e. Wohlde and Seligenstadt were available 
in both seasons, whereas in France for season one of the two locations was unavailable due to slug damage. So, 
to compensate for the loss of a location in season one, three locations (Andelu, Janville, Saultain) instead of two 
were used for phenotypic evaluation in season two. Phenotypic data for all 8 environments was available for HD, 
PH, TKW, YIE, PC and ZEL. The data for EW, STC as well as HAG was only available for German environments, 
whilst that for GH and SDS was only available for French environments. The data for the two remaining traits 
viz, SW and GPE was available only for few environments in both Germany and France (Table 1).
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Fig. 19  Boxplots showing distributions of 5-fold cross validation runs (100x) for the three marker platforms for 
respective agronomic, quality and disease traits.
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Phenotypic data for disease traits was collected from separate inoculation trials at different locations in 
Germany albeit in the same two seasons. The phenotypic data for FHB was available for Ahlum and Cecilienkoog 
for season one and for Ahlum and Halle‐Bodenwerder for season two. The phenotypic data for STB was available 
only for Cecilienkoog for both seasons, whilst that of DTR was available only for season two at two locations viz. 
Ahlum and Lafferde (Table 1). The curation of each trait along with other relevant data is summarized below.

Agronomic Traits.  Heading date (HD).  Total days from the 1st of January, when approximately half of the 
ears per plot were fully visible i.e. at BBCH 59 from the Zadoks growth scale30,31.

Plant height (PH).  Average plant height per plot was measured before harvest, in centimeters, without awns32.

Thousand grain weight (TGW).  For French environments; 500 grains were counted with a mechanical counter 
“Contador” and weighted. For German environments; grains in 10 g sample per plot were counted using the 
mechanical counter “Pfeuffer Contador”. Finally, all weight/grain values were extrapolated to 1000 grains33 and 
expressed in grams.

Ear weight (EW).  Average of 10 ear sample weights per plot. Ear samples were taken before harvest and 
expressed in grams34.

Grains per ear (GPE).  Average number of grains per ear from 10 ear samples per plot. Ear samples were taken 
before harvest34.

Yield (YIE).  Plot yield after combine harvest was extrapolated to an area of one hectare and expressed in quin-
tal per hectare34.

Specific weight (SW).  A 250-milliliter cylinder was filled up to the top with a clean grain sample from each 
harvested plot. The weight/volume value of the sample was extrapolated to 100 liters and expressed in kilogram/
hectoliter34.

Quality traits.  Grain hardiness (GH), starch content (STC), and protein content (PC).  A 400 g grains sam-
ple per harvested plot was analyzed using an OmegAnalyzer G (Bruins Instruments) with wavelengths of 730–
1100 nm. Observations were recorded in percentages7.

Sedimentation test (SDS).  Eight grain samples per plot, were ground and mixed at rate 6.3 g per sample to 50 ml 
of distilled water taken in 100 ml graduated cylinder. After proper mixing and shaking, mean sedimentation 
values were recorded across the eight samples with a 0.5 ml precision. Values were adjusted according to the 
temperature of sedimentation liquid using AACC standardization tables35.

Hagberg falling number (HAG).  A 250 g of representative seed sample per plot was ground, from which 7 g 
flour was added to a dry falling number tube and suspended by mixing with 25 ml distilled water at 22 ± 2 °C. 
Viscometer was then inserted and the combination was immediately (30–60 seconds of mixing) placed in water 
bath. The timer was started simultaneously. After the viscometer falls the standard threshold distance, the end 
time was recorded in seconds. Difference between start and end time was reported as falling number36.

Zeleny sedimentation index (ZEL).  Four-gram grain sample was ground, sieved and 0.32 g of flour was taken 
in a 10 ml stoppered graduated cylinder. Five ml of bromophenol blue solution was added to the cylinder. After 
proper mixing, 5 ml of lactic acid reagent was added and mixing was done again. Cylinder was then put on a 
stand and sedimentation volume was recorded with a 0.01 ml precision. The obtained micro sedimentation val-
ues were transformed to macro sedimentation values using AACC standardization tables37.

Disease traits.  Resistance to Fusarium head blight (FHB).  Spray inoculations were done with 50,000 spores 
per ml using a 1:2 mixture of F. graminearum and F. culmorum isolates, respectively, with water volume of 600 L/
ha. Three inoculations were done at 10 days interval starting at BBCH 61. Incidence and severity were recorded in 
3 assessments 20, 28 and 33 days after the first inoculation. Incidence was visually rated as percentage of infected 
spikes from 50 infected spikes per plot, whereas severity was visually rated as the percentage of infected area per 
spike of the infected spikes4. Low values indicate low infection and vice versa.

Resistance to Septoria blotch (STB).  Spray inoculations were done with 5 × 106 spores per ml of pycnidiospores 
using a water volume of 600 L/ha. Two inoculations were done at 10 days interval starting from BBCH 39/41. To 
augment infection risk, Septoria infested grains were distributed on each plot at BBCH 31/32 at a density of 25 g/m2.  
Visual assessment of first and flag leaf was performed 32 and 48 days after inoculation38. Low values indicate low 
infection and vice versa.

Resistance to Tan spot (DTR).  Inoculations were made with naturally infected straw, stubble and artificially 
infected grains (prepared by inoculating autoclaved wheat grains with tan spot isolates, viz. a mixture of JKI-Nos. 
2009-01, 2009-02 and 2009-07). Before sowing in October, the natural inoculants were soil incorporated at 
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density of 1 kg inoculant/m2 of land. To augment infection risk, additional spring inoculation was done wherein 
fungus infested grains were distributed on each plot at BBCH 21–25 at a density of 25 g/m2. Visual assessment 
of first and flag leaf was performed at BBCH 65–69 (70 days after spring inoculation) and BBCH 83 (90 days 
after spring inoculation). In total, 10 flag and 10 first leaves were evaluated for each assessment and score for a 
genotype was calculated as the mean infected area for 10 samples for a given leaf and assessment39. Low values 
indicate low infection and vice versa.

Technical Validation
The genotyping arrays deliver complementary data for GABI-WHEAT panel.  The marker over-
laps between the three arrays (Table 2) are complementary and with the exception of 715 common markers 
between 35k and 135k chip, little overlap exists between pairs of chips.

High genetic diversity of the GABI-WHEAT panel is retained with high marker densities and in 
subset GABI-WHEAT-TROST panel.  Principle coordinate analysis based on pairwise Rogers’ distance 
matrix of 371 genotypes using 90k data (Fig. 2), 372 genotypes using 35k (Fig. 3) and the subset of 186 genotypes 
using 135k data (Fig. 4) agree with past reports4 and shows no trend whatsoever across winter or spring wheat 
genotypes. For traits with complete and balanced data i.e. YIE, HD, PH, HAG and FHB (Figs. 5 to 9), a biplot 
analysis similar to the principle coordinate analysis revealed (1) no clustering for genotypes for the respective 
traits (2) no patterns of clustering for environments across the traits. Clustering of environments for any specific 
trait as well as outlier genotypes for particular environments, were however discovered and may be identified in 
the interactive plot provided in additional data29.

The distribution of BLUEs approaches normality for majority of the traits.  Raw data was adjusted 
for design effects to derive best linear unbiased estimates (BLUEs) across environments for all traits29. The BLUEs 
for most agronomic traits (Fig. 10) were normally distributed except for HD as well as PH, which had slight left 
and right skew(s), respectively, and for GPE which had a bimodal distribution. Similarly, for quality traits, GH 
showed a minor secondary peak towards the left end of the distribution, PC was slightly rightly skewed, and 
others like SDS, STC as well as HAG showed slight left skew. Interestingly however, all disease traits showed a 
right skew implying only a few of the genotypes were highly susceptible for a given disease. Further, Shapiro–
Wilk test for normality revealed that BLUEs for all traits all except SW (pval = 0.27), EW (pval = 0.52) and GPE 
(pval = 0.07) were normally distributed.

Several significant correlations were observed between BLUEs of traits (Fig. 11) both within and across the 
broad grouping of agronomic, quality and disease traits. Whereas, within agronomic traits majority pairings 
except those of GPE, HD with YIE and GPE, YIE with PH showed significant positive correlations, only STC 
showed negative correlations with all others within quality traits. Interestingly, all pairings within disease traits 
showed positive correlations. Across the three broad groups, disease traits were predominantly negatively corre-
lated with agronomic and quality traits, except for pairings of EW, GPE, YIE, as well as STC with FHB and those 
of GPE as well as YIE with DTR respectively. For pairings of agronomic and quality traits it was observed that 
PH was positively correlated with all quality traits except STC and TKW was positively correlated to majority of 
quality traits excepting HAG. Other possible pairings of agronomic and quality traits were majorly negatively 
correlated with each other, barring those of HAG with HD and YIE with SDS.

Heritability estimates are high for traits phenotyped in multiple environments.  The traits con-
sidered in the study can be clustered into three broad groups based on number of replications present per envi-
ronment wherein they were phenotyped into 1. Those with 2 or more replications per environment (EW, HD, 
PH, YIE, HAG, STC, SW, FHB, SEP, DTR), 2. Those with one replication per environment (SDS, GH) and 3. 
Those with upto two replications at a given environment (GPE, TKW, PC, ZEL). Repeatabilities were evaluated 
for those environments which had at least two replications and the estimates thereof for respective traits suggests 
high quality of phenotypic data (Fig. 12). The same trend continues for plot mean based heritabilities wherein, 
excepting traits which were phenotyped in upto three environments (GPE, EW, DTR, SEP), the estimates are high 
(Fig. 12). Expectedly, the estimates are in line with previous works for GH, PH, HD, TGW, TW, EW34, and STC7 
respectively. Entry mean based heritabilities were at par or in most cases higher than plot based heritabilities.

The fit of genomic data to BLUEs of respective traits improves with modelling additive*ad-
ditive epistasis.  The three marker datasets reported herein were assessed for their fit to 1. BLUEs within 
environments and 2. BLUEs across environments by estimating their respective broad sense and narrow sense 
genomic repeatabilities. The estimates of broad sense genomic repeatabilities were consistently higher for a given 
combination of trait and environment compared to corresponding narrow sense heritabilities (Figs. 13 to 18). 
The higher estimates of the former not only highlight the advantage of modelling epistasis for predicting line 
performance.

High genomic prediction accuracies support the interoperability of genomic and phenotypic 
data.  The varying marker densities used to predict respective traits herein reveal counter-intuitive results 
wherein, markers derived from 35k and 90k chip perform at par (Fig. 19). The prediction abilities with markers 
derived from 135k chip for most phenotypes are in most cases lower compared to those derived from other chips 
since the number of genotypes is almost halved with the 135k chip. Interestingly however, the higher marker 
density of 135k chip yields close results to the other for disease traits and surpasses the other two for DTR. The 
redundancy observed stems from robust fit of used model in assessing genotype performance(s) for a given trait. 
The higher marker density however has uses in GWAS augmented with precision phenotyping for instance40.
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Code availability
Preliminary script for processing ISA-TAB files and estimating BLUEs is accessible at https://github.com/
AbhishekGogna/GABI-WHEAT/tree/master/output_data.
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