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Abstract: In recent years, 3D imaging became an increasingly popular screening modality for high-
throughput plant phenotyping. The 3D scans provide a rich source of information about architectural
plant organization which cannot always be derived from multi-view projection 2D images. On the
other hand, 3D scanning is associated with a principle inaccuracy by assessment of geometrically
complex plant structures, for example, due the loss of geometrical information on reflective, shad-
owed, inclined and/or curved leaf surfaces. Here, we aim to quantitatively assess the impact of
geometrical inaccuracies in 3D plant data on phenotypic descriptors of four different shoot architec-
tures, including tomato, maize, cucumber, and arabidopsis. For this purpose, virtual laser scanning
of synthetic models of these four plant species was used. This approach was applied to simulate
different scenarios of 3D model perturbation, as well as the principle loss of geometrical information
in shadowed plant regions. Our experimental results show that different plant traits exhibit different
and, in general, plant type specific dependency on the level of geometrical perturbations. However,
some phenotypic traits are tendentially more or less correlated with the degree of geometrical inaccu-
racies in assessing 3D plant architecture. In particular, integrative traits, such as plant area, volume,
and physiologically important light absorption show stronger correlation with the effectively visible
plant area than linear shoot traits, such as total plant height and width crossover different scenarios
of geometrical perturbation. Our study addresses an important question of reliability and accuracy
of 3D plant measurements and provides solution suggestions for consistent quantitative analysis and
interpretation of imperfect data by combining measurement results with computational simulation of
synthetic plant models.

Keywords: 3D plant phenotyping; virtual laser scanning; computational plant modeling; light
interception; shoot architecture; trait sensitivity; GroIMP

1. Introduction

In the last two decades, image-based assessment of phenotypic traits became an
indispensable tool in quantitative plant biology [1]. Due to geometrical complexity and
dynamic nature of developing plant structures, image-based estimation of even very basic
plant traits, such as plant biomass, renders a challenging technical and analytical task [2].

The early approaches to plant phenotyping based on 2D projectional multi-view
(i.e., rotational side and top) images enable estimation of a wide range of traits, including
some proxies of 3D plant morphology, such as quasi-volume [3]. However, in general, they
do not allow to accurately segment single leaves or compute such important physiological
traits as light interception area and real 3D biomass that are naturally derivable from
3D data.

To quantitatively assess 3D plant organization a number of different 3D scanning
and geometry reconstruction methods were developed [4,5]. The methods for 3D plant
reconstruction includes laser scanning (LS) [6–8], stereo vision (SV) or structure from
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motion (SfM) [9–14], structured light (SL) [15–17], space/volume carving [18], time of flight
(ToF) [19,20], light field (LF) [21], and terrestrial laser scanning (TLS) or Light Detection
And Ranging (LIDAR) [22–25]. Despite different methodological approaches, all methods
of 3D object reconstruction provide similar representation of 3D reconstructed objects in
form of point clouds and/or triangulated surface meshes. In previous works, a number of
methods for processing, segmentation, and analysis of 3D plant models resulting from 3D
scanning or image-based 3D reconstruction was presented [26–28]. However, the accuracy
of plant models resulting from 3D scanning and its impact on phenotypic plant traits was
rarely addressed in the past.

Goldbach et al. [29] performed evaluation of their volume carving approach by
comparing traits assessed from 3D reconstruction vs. manually cut individual leaves of
tomato seedlings with a relatively sparse shoot architecture. Zhou et al. [30] investigated the
accuracy of their greenhouse SfM imagery system on dummy objects. Amador et al. [31]
presented a study on generation of point cloud models of five different plant types using
the laser scanning system calibrated on synthetic geometric objects (sphere, cube, cylinder).
A general approach to evaluation of accuracy of 3D scanning vs. ground truth models of
arbitrary plant species, and, therefore, architectures are missing.

In this study, we present a general framework for virtual laser scanning of syn-
thetic 3D plant models which was applied to four different plants architectures (including
tomato, maize, cucumber, and arabidopsis shoots) with the goal to address the following
basic questions:

• To what extent progressive inaccuracy of 3D plant reconstruction simulated by differ-
ent types of geometric noise affects the resulting 3D plant traits?

• Can partially inaccurate measurements of 3D plant traits provide consistent quanti-
tative description of plant morphology and physiology by combining them with the
results of computational simulations of synthetic plant models?

The manuscript is structured as follows. In the next section, our methodological
framework for virtual laser scanning and phenotyping of synthetic 3D plant models is
described. Then, the experimental results of our simulation studies with four different 3D
shoot models are presented. Finally, possible approaches to normalization of 3D plant traits
derived from partial and error-afflicted measurements are discussed.

2. Methods
2.1. Modelling Platform

The modelling and simulation of this study are performed using the open-source
modelling platform GroIMP v1.6 [32]. GroIMP is a widely applied plant modelling envi-
ronment which is mainly used for applications in functional-structural plant modelling. It
provides a rich set of features suitable for the need of this invention. In addition to a fully
3D modelling environment, it includes advanced capabilities for light modelling based on
a forward Monte Carlo path tracer [33,34]. GroIMP further provides a virtual laser scanner,
that allows virtually simulate 3D scans of a virtual scene. The virtual laser scanner was
used to perform point-wise sample of synthetic 3D plant shoot models.

2.2. Synthetic Plant Models

Synthetic 3D models of four plant shoot architectures, including tomato, maize, cu-
cumber, and arabidopsis, were generated and used in this study in virtual laser scanning
experiments, see Figure 1. A model of an adult tomato plant was chosen as example of
a relatively complex plant morphology. The greenhouse cucumber model has a similar
architecture as the tomato plant but with larger, closed leaves leading to a significantly
higher overlapping and so self-shading effects of leaves. An adult maize plant stands
exemplary for a more simple plant architecture characterized by its distinctive 2D vertical
plain geometry. In contrast, the arabidopsis plant model exhibits a flat, circular, quasi-2D
shape with large leaves covering the ground. All together, these four plant architectures
give examples of alternative and partially contrasting 3D plant architectures that differ with
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respect to their morphological and physiological properties, including light absorption, leaf
coverage, density, etc.

Figure 1. Screenshots of rendered images of the four plant shoot models used within this study
including (a) tomato, (b) arabidopsis, (c) greenhouse cucumber, and (d) maize.

The virtual tomato plant model, as described in Zhang et al. [35], consists of 21 in-
ternodes with one leaf at each internode. The plant model has a total height of 1.7 meter
and a maximal diameter of 86 centimetre. At rank four and six a panicle of tomato fruits
of different ageing stages and so sizes are modelled. The original 3D plant model was
taken and converted from geometric primitive objects, i.e., cylinder, spheres, and NURBS
shapes, to a set of vertices (intersection points for the triangles) and faces (triangles of the
triangulation)—a pure triangulation model of the original model. This step allows us to
remove small parts, i.e., individual triangles, from the whole model to “cut” holes and so
to simulate perturbation effects. The triangulation contains 25,674 vertices forming a total
of 8558 faces (always three vertices belong to one face). All colouring and shaders have
been removed during this process. Figure 2 shows screenshots of the whole tomato plant,
as well as enlargements of a leaf and single leaflet.



Remote Sens. 2022, 14, 4727 4 of 19

Figure 2. Screenshots of the 3D tomato plant model as described in Zhang et al. [35]. (a) a rendered
image of the whole virtual plant (uniformly coloured), (b) a detail enlargement of leaf with rank 13
with the underlying wireframe triangulation, and (c) an image of a single leaflet with the overlay of
the wireframe triangulation. A leaflet is modelled of eight vertical mirror symmetric arranged faces
(triangles), making it in total 16 faces for one single leaflet. The whole plant consists roughly of 25.7 k
vertices forming a triangulation of about 8.5 k faces.

All other plant models are constructed and transformed into triangulated meshes in
the same way as described for the tomato model. Table 1 summarizes the statistics of each
virtual plant model.

Table 1. Summary of the plant model properties. Starting from the number of geometric primitive
objects of the original 3D model, i.e., number of leaves and internodes and morphological traits like
plant dimensions, to the number of vertices and faces of the triangulated mesh.

Plant Number Number of Max Max Number Number Mean Face
Model of Leaves Internodes Height [m] Radius [m] of Vertices of Faces Area [mm2]

Tomato 21 21 1.7 0.43 25,674 8558 142.53
Arabidopsis 10 11 0.03 0.06 3600 1200 189.92
Maize 14 15 2.5 0.97 15,450 5150 699.83
Cucumber 17 18 2.0 0.43 5793 1931 12.74

2.3. Simulation Scenarios
2.3.1. Virtual Laser Scanner

An in GroIMP v1.6 integrated virtual laser scanner was used to simulate a 3D plant
scanning process. The laser scanner is based on the same physical-based ray tracing model
as used to perform light simulations within GroIMP, see Hemmerling et al. [33] for further
details. Instead of calculating light scenarios, it was modified in a way to generate point
cloud models of the scanned objects independent of the optical properties of the objects
or the colour of the laser ray. The virtual laser scanner allows to perform a set of standard
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scanning options, such as cylindrical or spherical scanning, around an object. Further
scanner parameters such as opening angle of the emitted rays and dentistry are configured
to match common handheld scanner systems. Figure 3 shows a side and top view of the
used hemispherical scanner dome. The virtual laser scanners are arranged in layers on a
virtual hemisphere, where the distance between two neighbouring scanners, horizontally
and vertically, is roughly about 50cm. The dimension of the scanner dome is set equal for
all scenarios, and dimensioned so that the highest plant (maize) fits in. The main view
direction of each virtual laser scanner is pointing towards the virtual centre of the scene,
where the plant model is located.

Figure 3. Top- (a) and side-view (b) of the virtual scanner hemisphere with the synthetic 3D tomato
plant model in the centre of the scene. Blue spheres indicate the position of spatial points from where
the 3D scanning is performed. The scanning sphere consists of 13 layers with 25 measuring points on
each layer, resulting in 325 measuring points used for each scan. The thin yellow lines—length set to
30 centimetres for visualization only—represent a small fraction of the rays used for the scanning.

In the output, the virtual laser scanner produces a set of XYZ coordinates, where
each 3D point stands for one intersection point of a ray emitted by one of the virtual laser
scanners and an object, i.e., triangle/face, of the scene. The resulting point clouds are saved
for further processing.

The computation time for the simulation of the virtual laser scan is directly related to
resolution of the defined scanner dome, i.e., the number of scanners and so the number of
simulated laser rays. The average scanning time for the tomato model is about 9.3 s while
for relatively simple architectures as the arabidopsis model only 9.0 s are required on a
Intel© Core™ i7-4710MQ CPU @ 2.50 GHz × 4 with 32 GB RAM.

2.3.2. Light Simulation

In addition to the simulation of the virtual laser scanner, the estimation of light
absorption of the 3D structure was used as further indicator to quantify the “completeness”
of the structure when compared to the original plant structure. The GroIMP in-built
raytracer called “Twilight”, a bidirectional path tracer [33], was used to simulate the light
scenario within the virtual 3D scene and so for the plant structures. The diffuse colour of
the plant was set to pure green (RGB: 0, 255, 0), which means that all green part of light was
reflected and all other parts of the visual light waveband are absorbed. The transparency of
all leaves was set equally to 10 %, allowing 10 % of the incoming radiation to pass through
the leaf. To generate a homogeneous, diffuse light distribution, a virtual hemisphere of
72 regularly arranged direct light sources (six circles with 12 light sources each) was used as
described in [36,37]. The intensity of the total power to the diffuse sky was set constant to
1000 W for all simulations. Please note that the value of the power of the light sources does
not have any effect on the observed light distribution itself or on the following absorption
by individual plant organs, and can be therefore chosen arbitrarily. Changing the power
can be compared to dimming a lamp, it changes only the intensity but not the overall
distribution. To be able to simulate a reproducible and accurate light distribution the light
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model was configured to use 10 million light rays and a recursion depth of 10 reflections
levels, what is more than sufficient relative to the size of the simulated 3D scene [34].

As output of the light simulation, the absorption for each face as well as the object
identification number are saved.

The computation time for the light simulation is directly related to the complexity and
the size of the 3D scene as well as the number of objects within the scene and the number
of used light rays and their maximal recursion depth. The average light simulation time for
the tomato model is about 20.8 s and about 9.3 s area required for the arabidopsis model on
a Intel© Core™ i7-4710MQ CPU @ 2.50 GHz × 4 with 32 GB RAM.

2.3.3. Geometrical Perturbation Scenarios and Simulations

In this study, three thinning, or perturbation, scenarios assuming three different ways
of how and where parts of the plant are lost, have been investigated, namely, random,
from outside to inside (outside-to-inside), and from inside to outside (inside-to-outside).
Although, in the random scenario, facets are removed randomly, for the other two scenarios,
directional pattern of face elimination, i.e., from the plant periphery to stem (outside-to-
inside) and in the opposite direction (inside-to-outside) is used.

For each thinning scenario, 30 simulations are performed, while at each step the plant
model, or more precisely the triangulated mesh of the plant model, is reduced by one
percentage of the faces starting with the complete plant. For each simulation step, the point
cloud is generated by the virtual laser scanner, and the amount of absorbed light, calculated
by the light model, of the reaming structure is stored for further analyses.

Figure 4 shows the effect of all three thinning scenarios at the thinning of 30% in top
view of the tomato plant model.

Figure 4. Top-view visualization of the tomato plant model for the three thinning scenarios: (a) the
original complete plant, (b) random thinning, (c) inside to outside thinning, and (d) outside to inside
thinning, all at 30%.

2.3.4. Data Analysis

Virtual laser scans of original and progressively thinned 3D plant models were subse-
quently analysed to calculate quantitative traits of 3D plant architecture. For each thinning
step, one percentage of the initial number or faces for the complete pant was removed.
For the remaining plant structure, the following features are calculated:

• Height. Total plant height in metre defined as highest Z-coordinate of the point cloud
above the ground.

• PCA1. The length of the largest PCA axis of the scanned point cloud in [m].
• PCA2. The length of the smallest PCA axis of the scanned point cloud in [m]. ize

Convex_Hull_Volume. The 3D volume [m3] of the convex hull (Figure 5) enclosing all
points of the scanned point cloud.
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Figure 5. Visualization of the scanned point cloud (green dots) of the complete (initial) plant and
the convex hull drawn as transparent blue for all four plant species used in this study: (a) tomato,
(b) arabidopsis, (c) greenhouse cucumber, and (d) maize.

• Plant_AbsorbedRadiation. Total amount of radiation absorbed by the plant structure
in Watt [W].

• Plant_SurfaceArea. Total surface area [m2] of the plant structure, computed as a sum
of areas of all single-side faces.

• Visible_Plant_SurfaceArea. The visible surface area [m2] is defined as the sum of
areas all single-side faces that are “visible” to the virtual laser scanner and obtained
an intersection with at least one virtual light ray emitted by the scanner.

• Number_ScanPoints. Total number of scanner points, i.e., number of points within
the point cloud, generated by the virtual laser scanner.

Quantitative analysis of the above descriptors and, in particular, linear correlation
between the quantitative traits and the visible plant area were performed using MATLAB
R2021a (Mathworks Inc., Natick, MA, USA).

3. Experimental Results

In this study, we restrict our investigations to a meaningfully range of up to 30% loss
of the original plant area. Perturbation is performed in one percent steps starting from zero
to 30% in number of faces, respectively, starting from a full, un-perturbed model containing
all faces going down to a model that only contains 70% of the original number of faces.
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Thirty percent represent already quite a substantial loss of plant area but can be
reached in real measurements thinking of dense plant architectures where inner plant parts
are in the shade of outer parts.

Figure 6 shows the average hit density of each triangle of the original virtual tomato
model. The local hit density was calculated as a number of ray intersections (hits) with a
triangle, and the average hit density per mm2 as the average of number of hits per square
millimeter of the surface area. A slightly darker blue colour in the inner areas of the plant
directly visualize the lower hit density of small and very small triangles as found in the
approximation of the of the internodien and petiole. This further illustrates the direct
influence of outer layer of leaves that are covering the inner parts of the plant, preventing
the laser rays from penetrating the plant architecture deeper and, therefore, from obtaining
a complete scan. A common effect which can be seen in real world 3D scans of plants and
which can be interpreted as circumstantial evidence for the reliability of the the virtual
laser scanner approach used in this study. The histogram of the hit density in Figure 6c,
reveals a quite homogeneous overall distribution with an average hit density of 0.105 hits
per square millimeter and a variance of 0.0042.

Figure 6. Visualization of the hit density (ray hits/mm2) on the example of the full tomato model at
zero perturbation in (a) top-, and (b) side-view, as well the the normalized histogram in sub-figure (c).
Each triangle of the mesh model is coloured according to the number of rays that had hit is and the
resulting hit density.

To estimated area of a triangle which is “visible” to the virtual laser scanner, the re-
lation between the number of hits per triangle and their area was investigated. For this
purpose, the relationship between the number of ray hits and triangle area was studied on a
simplified geometrical model, i.e., a half-ellipsoid fitted to the plant dimensions. Figure 7b
shows the hit density per square millimeter triangle area calculated using the half-ellipsoid
model. Due to a particular (hemispherical) geometry of the ray dome and the relative
proportion of the plant half-ellipsoid, a slightly higher hit density around the north pole
and a belt of the half-ellipsoid is seen. The correlation between the number of hits and the
area of a triangle is given in Figure 7c with a r2 of 0.93.
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Figure 7. Visualization of the surrounding half ellipsoid (a), that is used to estimate the relation
between triangle area and number of hits. As shown in (b) the hit density per square millimeter
triangle area [hit/mm2] is quite homogenise around the surface of the ellipsoid with a slight higher
concentration on the north pole and a bit lower at the south pole as expected from the used geometry
from the hemispherical shape of the scanner dome. The chart in (c) shows the relation between the
number of hits per triangle versus the area of it.

Since unstructured grids are typically composed of triangles of quite different size,
the statistical analysis of the hit density was performed with 10 different categories of
triangle areas ranging between [25(i− 1), 25i], i = [1, 10]. The results of this statistical
analysis are presented as box-whisker plots in Figure 8. In particular, they show the median
hit density for 10 different area classes with a bin width of 25 mm2, from zero to a maximum
area of 250 mm2. As one expects, the average hit density for all categories with exception of
very small triangles (0–25 mm2) is nearly constant. Based on this observation, an equal hit
density for all triangle sizes can be assumed. To calculate the visible area of a “fully visible”
triangle of each plant at each perturbation level, a mean hit density of ρm = 0.0959 hit/mm2

is assumed. This can also be interpreted as an average projection area of 10.43 mm2 for a
single laser ray. For further processing the visible area (vA) of each triangle is determined
as area of the triangle (A) weighted by the relative hit density (ρr = ρt/ρm), where the
relative hit density (ρr) is, in turn, calculated as actual hit density of the current triangle
ρt divided by the mean hit density of a “fully visible” triangle ρm = 0.0959 hit/mm2. By
weighting full triangle area with the relative hit density a more realistic assessment of the
“visible” triangle area is achieved. Furthermore, a triangle is considered as visible, if more
than 50% of its total surface area is calculated as “visible area”. In Table 2, the ratios of
the visible area and number of visible faces for a complete (undisturbed) plant geometry
are summarized. As one can see reduced visibility of faces does not equally affect the
reduction in visible area. The discrepancy can be traced back to two factors: First, the size
of the “invisible” faces is relatively small compared to the faces used to build the leaves.
These small faces mainly building the steam elements, internodien, peduncle, and petioles,
which directly leads to the second factor, the location within the plant architecture of these
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small faces. As main plant supporting structure, these elements are typically found hidden
within the plant structure, often covered by the outer leave foliage.

Figure 8. Statistics of hit density of half-ellipsoid triangles. Visualization of the median and mean
hit density along 10 area classes from zero to a maximum of 250 mm2 and a bin width of 25 mm2.
The low variance between the individual mean and median values to the overall values proves that
there is—as expected—a constant relation relation between the size of the triangles and the observed
hit density. The hit density of a “fully visible” triangle is ρm = 0.0959 hits/mm2.

Table 2. Overview of the faces (F) and areas (A) that are “visible” to laser scanner in original (unper-
turbed) plant models as relative ratios to their known full-plant values, i.e., Fvis/Fall re. Avis/Aall .

Species Visible Faces [%] Visible Area [%]

Tomato 0.59 0.78
Arabidopsis 0.79 0.81
Maize 0.67 0.94
Cucumber 0.48 0.94

From Table 2 it is evident that only a fraction of the full-plant area is “visible” to laser
scanner in all plants. However, the visible fraction of plant area depends on the plant type
(i.e., 3D plant architectures) and varies in the range between 78% for a rather more dense
architecture of tomato up to 94% for a more sparse maize and cucumber plant architecture.
For every step of the geometrical model perturbation with an increment of one percent loss
of faces, the above described phenotypic descriptors were calculated. In order to obtain
quantitative descriptors that are independent on the absolute size of a concrete 3D model,
all phenotypic traits were normalized by calculating the relative ratios to their values in the
original (unperturbed) plant model, for example, Hi → Hi/H0 ∈ [0, 1], where i = 0 stands
for zero (no perturbation) step of the simulation series. Figure 9 shows plots of phenotypic
traits for all four plant models (tomato, maize, cucumber, and arabidopsis) and the three
perturbation scenarios (random (red), outside-to-inside (blue) and inside-to-outside (green))
in dependency on the percentage of simulated area loss. From Figure 9, it is visible that
that (i) some phenotypic traits are more sensitive for perturbation of 3D plant geometry
than others, (ii) some perturbation scenarios exhibit stronger dependency on the loss of
the visible area than other traits. In particular, the plant height is not significantly affected
in all plant models and simulation scenarios for the entire range of the relative area loss
from zero to 30%. This can be attributed to the fact that the plant height is defined by a
small fraction of the highest remaining points. Among all three geometrical perturbation
scenarios, the outside-to-inside thinning shows the largest impact on phenotypic traits,
including principle plant dimensions (PCA1 and PCA2), as well as the volume and effective
light absorption, while random and inside-to-outside scenarios exhibit more moderate or no
pronounced effects. This observation can be traced back to the fact that the outside-to-inside
scenario has the strongest effect on the plant shape and the visible plant area compared
to other two perturbation scenarios that alter the plant architecture randomly or rather
hidden inner regions than are anyway covered visible leaves, and thus do not contribute
significantly to quantitative traits of “visible” plant geometry. Despite the large differences
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between simulated plant architectures, trait responses among all four plants turn out to
be remarkably comparable, although, different in their magnitude. The difference in the
plant surface area between the large faces building the leaves and the relative small faces
used for the supporting structure, consequently, supports the pattern seen for the outside-
to-inside and inside-to-outside perturbation scenarios. Although, for the outside-to-inside
scenario, first the larger faces of the leaves on the outside are remove and the remaining
area decreases fast, for the inside-to-outside scenario first the relative small faces of the
supporting structure are removed, leading to a relative small lost of area.

Figure 9. Summary of the simulated dependency of normalized phenotypic traits on the percentage
of plant area loss for four different plant models and three different area perturbation scenarios
including random (red), outside-to-inside (blue), and inside-to-outside (green) perturbation scenarios.
The last row shows the dependency of the normalized visible plant area on the percentage of the total
area loss for four plant models and the three alternative perturbation scenarios.
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Interestingly, patterns of phenotypic traits from Figure 9 exhibit distinctive similarity
to the patterns of the visible area in dependency on the geometrical loss rate shown in
the last row of Figure 9. Again, the relative visible area was computed as the absolute
visible area of plant leaves hit by the virtual laser rays normalized by its value in the
original, i.e., unperturbed, plant model. The direct comparison of the three simulation
scenarios for all four plant species shown in Figure 10 allows a more clear assessment of the
effects of plant architecture on reduction in the visible area in dependency of progressive
model perturbation. As one can see from this overview, random perturbation scenario
affects all four plants with different spatial organization almost equally, which basically
reflects the fact that random removal of faces linearly correlates with reduction in visible
area. In contrast, inside-to-outside and outside-to-inside perturbations scenarios lead to
different patterns of visible area reduction with progressive model perturbation. Although
the maize model exhibits rapid reduction in visible area with the amount of removed
faces in the inside-to-outside scenario, visible area of arabidopsis model remains almost
unaffected throughout the entire range of tested perturbations of up to 30%. By the mirrored
outside-to-inside scenario, one sees the reverse pattern of visible area reduction.

Figure 10. Visualization of the relative visible area for each perturbation scenario in different
plant types.

In order to dissect the relationship between the phenotypic traits and the visible
plant area, all phenotypic descriptors from Figure 9 were plotted in Figure 11 vs. the
relative visible area. As one can see, curves of features as function of the visible area
begin now to show a clearly linear pattern. Table 3 with a summary of linear correlations
between phenotypic features and the visible plant area confirms their statistically significant
relationship. From Table 3, it follows that the whole plant surface area, plant volume but,
in particular, also such important physiological feature as the light absorption, show a
significant linear correlation with the visible plant area crossover all four plant models and
three perturbation scenarios. The exact form of this functional relationship is, however,
dependent on the particular plant architecture and perturbation scenario. The global
features such as area and linear dimension analysed above are commonly accepted, simple
descriptors of plant morphology. However, they do not allow to intrinsically assess the level
of plant model perturbation especially when the perturbation scenario and degree of data
loss during the measurement is not known. In order to enable a low-level analysis of shoot
point cloud models, we introduced a criterion which is based on measurement of local
(point-wise) smoothness. The basic idea of point cloud smoothness measurement is that
the inner points are surrounded by other neighbouring points, and only regular boundary
or artificial discontinuity points exhibit an asymmetric neighbourhood. To measure the
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local point smoothness, further termed as the smoothness factor (SF), the integral (sum)
over the local neighbourhood Pj(xj, yj, zj) of the point Pi(xi, yi, zi) was introduced:

SFi =
1
N

∣∣∣∣∣ N

∑
i=1

Pj − Pi

|Pj − Pi|

∣∣∣∣∣ (1)

Thereby, the local neighbourhood of each and every point of the point cloud was determined
using the MATLAB’s knnsearch function. The smoothness factor defined in Equation (1)
takes the value zero for an inner point of a flat leaf and deviates from zero towards
unity on edge and corner points. As the amount of edge and corner points growths in a
geometrically perturbed (i.e., inaccurately scanned) 3D model growth, the amount of points
with SF >> 0, as well as the average SF value is expected to reflect it. Figure 12a shows the
histograms of SF distributions for original (unperturbed) vs. 30% perturbed tomato model.
As one can see the distribution of SF values in a perturbed model significantly deviates
from the original distribution which can be formally quantified, for examples, using the
Student’s t-test between original vs. perturbed full or, in particular, boundary point cloud
SF distributions. For detection of boundary points with higher SF values the threshold of
SF > 0.5 was used. Figure 12b shows original vs. perturbed full and boundary point cloud
models of the tomato plant. Figure 13 gives an overview of dependency of SF features on
the degree of random model perturbation, including average SF, stdev of SF distributions,
fraction of boundary point detected using the threshold SF > 0.5, as well as t-test values
computed from comparison of SF distributions in randomly perturbed vs. original point
cloud models. As one can see all SF features show similar linear patterns of dependency on
model perturbation, however, with exception of t-test values they have different starting
values for different plant that obviously reflect intrinsic differences in plant architectures.

Table 3. Summary of the linear correlation between the phenotypic features from Figure 11 and
the visible plant area for all three geometry perturbation scenarios (random, inside-to-outside (i2o),
and outside-to-inside (o2i)) in the range of 0–30% including correlation coefficients (ρ) and corre-
sponding p-values. NaN entries indicate a uncorrelated relationship between a feature and the visible
plant area.

Height PCA1 PCA2 Volume Absorption Area
ρ, p-Value ρ, p-Value ρ, p-Value ρ, p-Value ρ, p-Value ρ, p-Value

Tomato
Random NaN, NaN −0.75, 8.11× 10−4 0.87, 1.10× 10−5 0.94, 5.88× 10−8 1.00, 4.75× 10−19 NaN, NaN
i2o NaN, NaN 0.98, 1.26× 10−11 0.95, 2.57× 10−8 0.78, 3.46× 10−4 0.99, 1.90× 10−13 1.00, 2.00× 10−103

o2i NaN, NaN 0.98, 6.60× 10−12 0.98, 6.00× 10−12 1.00, 4.57× 10−18 1.00, 3.26× 10−20 1.00, 9.13× 10−107

Maize
Random NaN, NaN 0.80, 1.69× 10−4 0.87, 1.15× 10−5 0.94, 9.83× 10−8 1.00, 3.03× 10−25 1.00, 4.98× 10−102

i2o NaN, NaN 0.95, 1.93× 10−8 0.87, 1.28× 10−5 0.97, 5.40× 10−10 0.99, 7.83× 10−14 1.00, 9.13× 10−107

o2i NaN, NaN 0.99, 3.19× 10−13 0.92, 3.67× 10−7 1.00, 1.34× 10−23 1.00, 1.12× 10−20 1.00, 0.00

Cucumber
Random NaN, NaN −0.85, 3.44× 10−5 −0.73, 1.34× 10−3 0.91, 8.62× 10−7 1.00, 4.25× 10−21 NaN, NaN
i2o NaN, NaN 0.43, 9.76× 10−2 0.42, 1.02× 10−1 0.75, 7.96× 10−4 0.98, 1.49× 10−11 1.00, 4.36× 10−106

o2i NaN, NaN 0.99, 1.18× 10−13 1.00, 4.57× 10−16 1.00, 1.97× 10−21 1.00, 2.20× 10−20 1.00, 0.00

Arabidopsis
Random 0.71, 1.91× 10−3 0.89, 3.51× 10−6 0.83, 5.80× 10−5 −0.77, 5.00× 10−4 1.00, 2.70× 10−22 1.00, 0.00
i2o NaN, NaN −0.88, 5.59× 10−6 0.87, 9.27× 10−6 0.73, 1.44× 10−3 0.95, 1.74× 10−8 1.00, 7.14× 10−109

o2i 0.82, 1.07× 10−4 0.98, 6.08× 10−12 0.99, 1.04× 10−14 1.00, 1.18× 10−21 1.00, 3.57× 10−23 1.00, 0.00
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Figure 11. Visualization of the same phenotypic features as in Figure 9 but in dependency on the
relative visible plant area shown in the last row of Figure 9.
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Figure 12. Example of analysis and visualization of smoothness of tomato point clouds (PC). (a) His-
tograms of smoothness factor (SF) from Equation (1)) of original and randomly perturbed tomato
point clouds. The arrow in the histogram plot indicates the elevation of amount of corner/edge
points with a larger smoothness factor (SF) in the randomly perturbed model. (b) Visualization of
original vs. randomly perturbed full and boundary point clouds of the tomato plant. Boundary
points were detected using the smoothness factor values larger than 0.5. The colour map indicates
the SF values ranging in [0, 1].
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Figure 13. Exemplary comparison of point cloud smoothness of different plants (A—arabidopsis,
C—cucumber, M—maize, T—tomato) in dependency on random model perturbation. (a) Average
smoothness factor (SF) of different plants, (b) stdev of SF distribution in different plants, (c) fraction
of boundary points in % detected by thresholding of SF values larger than >0.5, and (d) t-test values
computed from comparison of SF distributions of randomly perturbed plant point clouds vs. original
(unperturbed) models.

4. Conclusions

In this study, we aimed to investigate effects of geometrical inaccuracies of 3D surface
scans on the resulting plant traits. For this purpose, virtual laser scanning of synthetic 3D
plant models was used. Using a virtual 3D laser scanner and plant models provides us with
the full control over the original pant structure, as well as the exact configuration including
position and properties of the virtual laser scanner. In particular, virtual 3D scans of four
different plant species (arabidopsis, cucumber, maize, and tomato) with three different
scenarios of geometrical thinning/perturbation (random, outside-to-inside, and inside-to-
outside) with up to 30% loss of the total plant area were analyzed and compared. These
four plants models represent four different, but common, plant architectures ranging
from a complex (tomato), over large-leaf (maize) to quasi-2D rosette plant shape, such
as arabidopsis. Our experimental results showed that different phenotypic traits of the
whole plant geometry exhibit, in general, different responses to gradual model perturbation.
Thereby, some metric features, such as, for example, the plant height turn out to be widely
independent on the percentage of missing surface area, and, thus, relatively robust to
inaccuracies of 3D scanning. Principle plant dimensions in the mean 2D ground projection
planes (i.e., plant width, 2D projection PCA axes) are, in contrast, dependent on the type
of model perturbation scenario, whereas the outside-to-inside thinning has, as expected,
the strongest impact in most plant species. On the other hand, the outside-to-inside scenario
turn out to be strongly dependent on the particular plant architectures which reflects in
different patterns of the relative visible area reduction as a function of progressive model
perturbation. In contrast, all four plant models exhibit a very similar pattern of the visible
area loss in dependency on the random model perturbation. An important observation is
that integrative plant features, such as the total surface area, volume of the convex plant
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hull, and the light absorption show a strong correlation with the visible plant area, which is
the main measurable variable under real experimental conditions. This means that these
integrative features can only be accurate as the visible plant area. Since this correlation
was observed crossover all plant species and perturbation scenarios, normalization of
features by the visible plant area would provide a widely invariant phenotypic description.
The exact form of the functional dependency of phenotypic features on the visible plant area
is, however, dependent on the particular plant architecture, which is typically not accessible
from direct measurements, but still can be estimated using synthetic models like it was
performed herein. From this viewpoint, combination of real experimental data, which is
always bound to measurement of visible plant parts, with computational simulations of
synthetic models of the whole plant architecture represents a promising approach to a more
consistent and reliable 3D plant phenotyping.

In addition to global features of plant geometry, low-level descriptors of point cloud
smoothness were studied in dependency on the degree of model perturbation. Here, we
introduced a new feature termed smoothness factor (SF) which reflects the symmetry
of local neighbourhood within the point cloud. Consequently, SF allows to separate
inner points of a flat leaf geometry from nodes of discontinued regions, such as edges,
corners, wholes, etc. Our experimental results demonstrated that conventional statistical
descriptions SF distributions such such as average/stdev SF or the fraction of boundary
points (related to fractal dimension) show a linear correction with the degree of model
perturbation. In conjunction with re-normalization of our synthetic and real 3D scanning
data, dimensionless SF features can serve as a useful measure of point cloud accuracy and
consistency.

One of the main limitations of this study are an idealized (hemispherical dome)
strategy of 3D scanning, as well as a rather artificial character of geometrical perturbations.
The hemispherical scanner dome represents an optimal static scanner configuration to
capture as much as possible of the object to be scanned. This configuration is not unusual
in multi-view scanner systems. In fact, most of the stationary 3D scanning systems cover
far less than the entire hemisphere around the scanned object, however, manual scanners
can enable coverage of even larger perspective angles. The three perturbation scenarios
simulated in this study reflect, even if extreme scenarios, but still common effects that can
be observed while scanning plants.

Random, outside-to-inside and inside-to-outside model perturbation scenarios used
in this work share some common properties with the gaps in the real data. However,
artefacts of real scanning systems are often linked to some local properties of scanned
objects such as local surface curvature and/or optical leaf properties. Another source of
potential errors is by assessing 3D plant architecture that frequently occur by triangulation
of initial point clouds include generation of spare surfaces due to erroneous gap-closure or
movement artefacts (e.g., leaf motion). Consideration of such error sources is not trivial but
would probably help to make virtual simulations more realistic. Further investigations are
required to extend findings of this feasibility study, and to make the results of synthetic
model analysis useful for quantification of real 3D scanning data of plant structures.
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