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Abstract 1 

Endogenous and exogenous metabolite concentrations may be susceptible to variation over 2 

time. This variability can lead to misclassification of exposure levels and in turn to biased 3 

results. To assess the reproducibility of metabolites, the intra-class correlation coefficient (ICC) 4 

is computed. A literature search in three databases from 2000 until May 2021 was conducted to 5 

identify studies reporting ICCs for blood and urine metabolites. This review includes 192 6 

studies, of which 31 studies are included in the meta-analyses. The ICCs of 359 single 7 

metabolites are reported and the ICCs of 10 metabolites were meta-analysed. The 8 

reproducibility of the single metabolites ranges from poor to excellent and is highly compound 9 

dependent. The reproducibility of BPA (bisphenol A), MEP (mono-ethyl phthalate), MnBP 10 

(mono-n-butyl phthalate), MEHP (mono-2-ethylhexyl phthalate), MEHHP (mono(2-ethyl-5-11 

hydroxyhexyl) phthalate), MBzP (mono-benzyl phthalate), MEOHP (mono-(2-ethyl-5-12 

oxohexyl) phthalate), methylparaben and propylparaben, is poor to moderate (ICC median: 13 

0.32; range: 0.15-0.49) and for 25-Hydroxyvitamin D (25(OH)D) excellent (ICC: 0.95; 95% 14 

CI: 0.90, 0.99). Pharmacokinetics, mainly the half-life of elimination and exposure patterns, 15 

can explain reproducibility. This review describes the reproducibility of the blood and urine 16 

exposome, provides a vast dataset of ICC estimates, and hence constitutes a valuable resource 17 

for future reproducibility, clinical and epidemiological studies. 18 

 19 

Keywords: reproducibility, reliability, metabolites, intra class correlation coefficient, 20 

variability, exposome 21 

  22 
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1 Introduction 23 

The exposome is the totality of all exposures accumulating during a person’s lifetime, including 24 

not only exogenous exposures but also exposures from endogenous processes (1). There is now 25 

a wealth of biomarkers available measuring the exposome, thanks to the progress of mass 26 

spectrometry and the development of metabolomics (2, 3). In metabolomics small molecules 27 

(molecular mass of 50-1500 Da) involved in the metabolism are measured, which are called 28 

metabolites. These biomarkers are intended to be used in epidemiological studies for exposure 29 

assessment (4). Though there is a high demand for biomarkers of exposure, the reproducibility 30 

of these biomarkers is widely unknown. Due to the scattered information regarding the 31 

reproducibility of metabolite concentrations. 32 

There are different sources of variability, specifically: nature of biospecimen, time of sampling, 33 

mode of collection and storage, within-subject variation over time and laboratory error (5). 34 

Epidemiological studies apply predominantly single biomarker measurements to reflect long-35 

term exposure (6). However, metabolite concentrations may be susceptible to variation over 36 

time. This variability can lead to biased results, namely, non-differential misclassification bias, 37 

which moves the risk estimate towards the null, i.e., no effect is found even though one is 38 

present (5). Hence, the variability of a biomarker must be evaluated, and its sources identified 39 

when assessing the appropriateness of a biomarker to be used in epidemiological studies (7). 40 

Reproducibility, sometimes called reliability, is the term to describe the variation between two 41 

measurements made on the same subject under varying conditions, e.g., repeated measurements 42 

on the same sample, or measurements of samples collected at two different time points (8, 9). 43 

A biomarker needs to be reasonably stable over time, meaning, to show high reproducibility in 44 

an individual. This translates to a smaller within-subject variance over time compared to the 45 

between-subject variance, which should explain most of the variation seen in the measurement 46 

(10, 11). The intra-class correlation coefficient (ICC) is used to assess reproducibility and 47 
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equals the correlation between any two or more measurements made on the same subject (8, 48 

12). It is generally computed by dividing the between-subject variation by the total variation 49 

(sum of the within-subject variation and between-subject variation) (12). The ICC can take any 50 

value between 0 and 1, and is commonly interpreted as < 0.4 poor, ≥ 0.4 moderate, ≥ 0.7 good 51 

and ≥ 0.85 excellent reproducibility (13). The ICC can be an important parameter to increase 52 

understanding of the variability of a given metabolite in a specific type of biospecimen. 53 

Only a few reviews have been conducted, collating studies on the reproducibility of biomarkers. 54 

One systematic review and meta-analyses included 368 studies to assess the reproducibility of 55 

hormone concentrations in blood and other biospecimens (i.e., urine, saliva, faeces etc.) (14). 56 

The authors found moderate (ICC 0.68) reproducibility of hormone levels in human studies. 57 

Another systematic review collected evidence on the reproducibility of whole-grain and cereal 58 

fibre intake biomarkers (15). The authors concluded that the medium- to long-term 59 

reproducibility of these biomarkers was poor and a substantial limitation for their clinical use. 60 

Furthermore, two studies assessed the reproducibility of urinary biomarkers of exposure to non-61 

persistent chemicals, such as phthalates (16, 17). The authors found most biomarkers to have 62 

low reproducibility (ICCs <0.4) and only 6% of biomarkers showed high reproducibility (ICCs 63 

>0.75) (16). Also, the authors of the other study found low reproducibility of phthalate 64 

biomarkers (ICC ranging from 0.1 to 0.6) (17). Another systematic literature review 65 

summarised the reproducibility of triclosan, where the ICC ranges from 0.3 to 0.9 in the 66 

included studies (18). Additionally, Exposome-Explorer is a database aiming to collect and 67 

summarise comprehensive data on all known biomarkers of exposure, including information on 68 

reproducibility (19, 20). 69 

To our knowledge, no further reviews summarising the reproducibility of metabolite 70 

concentrations were conducted in the past. There is a gap in the literature to extensively 71 

summarise the existing evidence on the reproducibility of urine and blood metabolite 72 
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concentrations constituting the exposome. The increasing number of available/ discovered 73 

biomarkers and interest in using these in clinical settings and research shows the great need to 74 

assess the reproducibility of these biomarkers and summarise possible biological variability 75 

over time. Hence, this review aims to summarise the present literature on the reproducibility of 76 

urinary and blood metabolite concentrations, present meta-analyses of ICC estimates, and 77 

provide useful guidance for future studies.  78 

 79 

2 Materials and Methods 80 

2.1 Search Strategy  81 

We searched PubMed, ISI Web of Science and Scopus for relevant articles, from 1st January 82 

2000 to May 5th, 2021. The authors used the following search terms and variations of those: 83 

“reproducibility of results”, “biological variation”, “variability”, “reliability”, “stability”, 84 

“reproducibility”, “within person variation”, “between person variation”, “intra class 85 

correlation coefficient”, “biomarker”, “metabolomics”, “metabolome”, “blood”, “serum”, 86 

“plasma”, “urine” and “metabolites”. Whenever possible, these terms were mapped to Medical 87 

Subject Headings (MeSH) (Supplementary Materials and Methods 1 contains the full search 88 

strategy).  89 

 90 

2.2 Study selection for qualitative synthesis  91 

First, two independent reviewers (JG and LY) screened the titles and abstracts of the non-92 

duplicated references retrieved from the databases. Second, full-text articles of the selected 93 

references were screened for eligibility by one reviewer (JG). The following in- and exclusion 94 

criteria were used during the screening process: (1) studies with assessing reproducibility as 95 

part of the main objectives; (2) at least two measurements taken from a subject; (3) more than 96 
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one time point assessed; (4) metabolites assessed from urine or blood; (5) the study was 97 

conducted in humans; (6) the study had to be published in a peer-reviewed journal and English 98 

language. Conference abstracts, short communications, editorials, or comments were excluded, 99 

due to the limited information available in the text. Any disagreements during the screening 100 

process were resolved by consensus between the two reviewers (JG and LY), or if necessary, 101 

by a third independent reviewer (AF) if the disagreement could not be resolved. This review 102 

was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and 103 

Meta-Analyses) guidelines (21). The review protocol was not prior published.  104 

 105 

2.3 Data extraction 106 

Data were extracted from each eligible full text by one author (JG). Information collected 107 

includes data source, study population, sample size, subject characteristics, study time, time 108 

points of collection, number of samples taken at each time point, state at collection (fasting, 109 

phase of menstruation cycle, etc.), samples from urine or blood, metabolites collected, 110 

metabolite platform, ICCs, adjustments made to the ICC, ICC formula, statistical technique 111 

used for ICC calculation, and ICC classification scheme. Information was collected for each 112 

metabolite alone and not a combination/ summary of the study, i.e., studies looking at the same 113 

metabolite under different conditions will have several rows to summarise the information of 114 

the metabolite in each condition. Except if a study assessed the reproducibility of more than 70 115 

metabolites, then only a summary of the study was reported, e.g., average or range of ICCs for 116 

groups of metabolites, classes, or all metabolites. ICCs are reported as adjusted ICCs whenever 117 

possible. 118 

 119 

2.4 Quality assessment and risk of bias  120 
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The quality of the included references in this review was assessed by two independent reviewers 121 

(JG and LY). As no adequate quality assessment tool for our purposes was available a 122 

combination of tools from the Biomonitoring, Environmental Epidemiology, and Short-Lived 123 

Chemicals (BEES-C) (22) instrument and the quality assessment tool designed to assess 124 

biomarker-based cross-sectional studies (BIOCROSS) (23) was created and defined for 125 

reproducibility studies of metabolites in humans. Even though no cross-sectional studies are 126 

included in this review, the BIOCROSS tool provides unique issues to consider for studies 127 

including biomarkers. Likewise, the BEES-C tool is developed to assess the quality of 128 

epidemiological studies involving biomonitoring of chemicals with short physiological half-129 

lives, however, this tool adds additional aspects unique to biomarker studies (Supplementary 130 

Table S1). The total score is 24, the overall study quality is based on the awarded score and is 131 

regarded as ≤7 poor, ≥8 - ≤16 fair, ≥17 good study quality. 132 

 133 

2.5 Study selection for quantitative synthesis  134 

Based on the previous selected studies for the quantitative synthesis, the authors reduced the 135 

number of metabolites available for analysis by selecting only metabolites occurring ≥ 10 times 136 

in the extracted data, i.e., having ≥ 10 ICC estimates available. Furthermore, for the analysis 137 

the exact number of specimens taken, and the number of time points is crucial information, 138 

when not available, the study is excluded from the analysis. If after following these exclusion 139 

criteria the number of ICC estimates is reduced to under 10, then the metabolite is excluded as 140 

well. For urine metabolites the ICC was only included in the analysis when the concentrations 141 

were adjusted for dilution (e.g., specific gravity, creatinine, or osmolality). 142 

 143 

2.6 Data analysis 144 
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All analyses were performed in R Studio (Version 4.0.3) (24) and the packages metafor (25), 145 

foreach (26) and ggplot2 (27) were used. Normally when meta-analysing correlation 146 

coefficients, the coefficients are transformed to the Fisher’s z scale. This is done because the 147 

variance depends strongly on the correlation (28). However, no straightforward method exists 148 

to convert z-transformed ICC values back to an interpretable ICC after the meta-analysis. 149 

Hence, we applied a previously tested method, where we did not standardise the ICC estimates 150 

and used the raw estimates (29). For this method, a normal distribution of the ICC estimates is 151 

assumed, and the sample variance could be approximated with the following equation (Eqn. 1).  152 

𝑉𝑎𝑟 𝐼𝐶𝐶 =  
2 × (1 − 𝐼𝐶𝐶)2 × (1 + (𝑛 − 1) × 𝐼𝐶𝐶)2

𝑘 × 𝑛 × (𝑛 − 1)
 (𝐸𝑞𝑛. 1) 153 

Where ICC is the raw ICC estimate extracted from the full text, k is the number of repeated 154 

measures per subject and n is the number of individuals in the study. 155 

Random effects models were carried out to obtain summary ICC estimates for each metabolite 156 

included in the quantitative synthesis. The model is modelled with a random effect for authors 157 

and a second-level random effect, as higher clustering is present since studies reported several 158 

ICCs for one metabolite. Furthermore, to assess heterogeneity, i.e., if the effect sizes are 159 

consistent across studies, we estimated the I2 from the computed random effect models (30).  160 

Publication bias can be present, as studies that report significant effect sizes are more likely to 161 

be published than studies that have smaller effect sizes or no significant findings at all (28). To 162 

evaluate the presence of publication bias we computed Kendall’s Tau and visually assessed the 163 

computed funnel plots. 164 

2.6.1 Visualisation 165 

The metabolites with available reproducibility data were plotted as a similarity network based 166 

on chemical structures. The visualization was accomplished using Cytoscape, a software 167 

dedicated to the visualization and analysis of complex biological networks (31). 168 
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The chemical structures were retrieved from PubChem (32) using the get_cid() and pc_prop() 169 

functions from the R webchem package (33). Compound names were used to get the PubChem 170 

IDs. These IDs were used to retrieve the chemical data (isomeric simplified molecular-input 171 

line-entry system (SMILES)). 172 

The network calculation and figure generation in Cytoscape were automated with the RCy3 173 

package (34, 35). The similarity network was computed with a 0.8 Tanimoto coefficient using 174 

the chemViz2 Cytoscape app (36). 175 

 176 

2.7 Data availability  177 

The data generated in this study for the meta-analyses are available upon request from the 178 

corresponding author. The data generated in this study, apart from the data used for the meta-179 

analyses, are available within the article and its supplementary data files. 180 

 181 

3 Results  182 

The literature search resulted in 13,536 records. After duplicate removal 10,185 records were 183 

screened, of which 9,944 were excluded, resulting in 241 records eligible for full-text screening. 184 

15 full-text articles were added to the full-text screening from the database Exposome Explorer 185 

(19, 20). The main reason for exclusion was that no metabolites (e.g., cytokines) were assessed 186 

in the study, followed by reproducibility not being one of the main objectives of the study. In 187 

the end, 192 studies were included in the qualitative synthesis and of these 31 studies were 188 

included in the meta-analyses (Figure 1(21)). The study quality is overall high, indicating a low 189 

risk of bias. The mean score for all included studies is 16.9 (SD= 1.9) and the median score is 190 

17 (range= 10-21). Most studies (N= 119) are in the high quartile with a score of ≥17 and 73 191 

studies are in the medium quartile with a score of ≥8 and <17 (Supplementary Materials and 192 
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Methods 2). For the domain “Reliability and reproducibility specific considerations” with max. 193 

3 points, the average for all studies is 2.74. Further, for the domain “Biomarker measurement” 194 

with max. 2 points, the average is 1.63, for the domain “Specimen characteristics and essay 195 

methods” with max. 3 points, the average is 1.32, and for the domain “Laboratory 196 

measurements” with max. 3 points, the average is 1.70. The study quality for the sub-domains 197 

“Reliability” and “Biomarker” is overall good, while for “Specimen” and “Laboratory” the 198 

quality can be considered fair.  199 

The sample size of the included studies ranges from five to 3,455 individuals and the study time 200 

ranges from one day to up to 15 years. Five studies did not sufficiently report the study time. 201 

Almost all studies have a study time below 10 years, only three studies have a study time above 202 

10 years and 106 studies have a study time ≤ 6 months. The total number of samples per subject 203 

ranges from two to up to 65, while three studies did not report the total number of samples per 204 

participant. The time points when specimens were collected ranges from two to 46 time points 205 

of the collection over the study period, while three studies did not report the time points. The 206 

included studies based their analysis on diverse study populations such as children, pregnant 207 

women, pre- and postmenopausal women, elderly, and patients with chronic diseases. 208 

Specimens were collected under 13 different sampling conditions, for example, fasting and non-209 

fasting, or at some (luteal or follicular) phase during the menstrual cycle. The full table of 210 

extracted data for all included studies is presented in Supplementary Materials and Methods 2. 211 

Supplementary Materials and Methods 2 is intended as an interactive dataset, for researchers to 212 

search and select specific metabolites or chemical classes and to explore the corresponding 213 

reproducibility studies.  214 

 215 

3.1 Blood and urine metabolites 216 
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In total 359 single metabolites (i.e., no classes/ groups/ ∑ or other summed metabolites) are 217 

analysed in the included studies, and 98 classes and summed metabolites were additionally 218 

recorded. A total of 14 studies either included ≥ 70 metabolites or only reported a median ICC 219 

for groups of metabolites or all analysed metabolites (11, 37-50). Of the 359 single metabolites, 220 

97 were only analysed in blood and 216 only in urine, and 46 were analysed in blood and urine. 221 

Benzene and substituted derivatives (n= 70), fatty acyls (n= 38) and carboxylic acids and 222 

derivatives (n= 25) are the top three of the most common metabolite classes (defined from The 223 

Human Metabolome Database (HMDB) (51-54) and Exposome Explorer). In sum 67 different 224 

metabolite classes are included in this review. Several metabolites (n= 58/ 359) could not be 225 

classified from HMDB or the Exposome Explorer database. The most widely studied 226 

metabolites are bisphenol A (BPA, n= 51 in a total of 33 studies), mono(2-ethyl-5-227 

hydroxyhexyl) phthalate (MEHHP, n= 49 in a total of 30 studies) and mono-ethyl phthalate 228 

(MEP, n= 48 in a total of 33 studies). 183 metabolites only occur once in the included studies, 229 

i.e., only one ICC estimate is reported.  230 

In Supplementary Table S2, all 359 single metabolites are summarised, providing information 231 

on the chemical class, use, biosample and a list of all available ICC estimates for the specific 232 

metabolite. The classified uses of the metabolites range from oxidative stress markers, dietary 233 

or metal compounds, to environmental toxicants, pesticides/insecticides/herbicides, 234 

plasticizers, or antibiotics. Bringing together a part of the blood and urine exposome.  235 

The metabolites, that could be identified in PubChem and where the chemical class membership 236 

is available (N=352), are visualised in two different figures (Fig. 2-3). The lines connecting 237 

compounds, called edges, represent the similarity between metabolites in the two figures. The 238 

sizes of the nodes are proportional to the number of ICC estimates available for the specific 239 

compound.  240 
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In Figure 2 the metabolites are grouped according to chemical class and the colour of the nodes 241 

indicates category membership (diet, endogenous, pollutants and drugs) and their 242 

subcategories. The compounds with the largest number of ICC estimates are pollutants, more 243 

specifically the subcategory phthalates. Also widely studied is the group of dietary compounds, 244 

however, the number of ICC estimates per compound is lower.  245 

In Figure 3 the metabolites are grouped by chemical class and the colours of the node indicate 246 

the mean ICC classification. Where a darker shade indicates a higher average ICC estimate for 247 

the compound and a lighter shade a lower average ICC estimate. Only a few nodes, meaning 248 

compounds, have a dark colour. Especially the larger nodes show the lightest shades, and hence, 249 

only low reproducibility. Compounds belonging to the class of fatty acyl have overall the 250 

highest average ICC estimates, followed by steroids and derivatives.  251 

In Supplementary Figure S1 the metabolites are grouped according to the chemical class, while 252 

here the colours of the nodes show the proportion of ICC estimates derived from urine or blood 253 

compounds from the total number of ICC estimates available for the compound.  254 

 255 

3.1 ICC calculation and interpretation 256 

The ICC is commonly calculated by the following equation (Eqn. 2), where σ2
between (σ2

b) and 257 

σ2
within (σ2

w) are between-subject variance and within-subject variance, respectively.  258 

𝐼𝐶𝐶 =  
σ𝑏

2

(σ𝑏
2 + σ𝑤

2 )
 (𝐸𝑞𝑛. 2) 259 

In this review 114 studies apply Eqn. 2 to calculate ICCs, seven studies employ an alternative 260 

formula, while 71 studies do not report the applied ICC formula. A study (55) only reported the 261 

values for between- and within-subject variance, hence the ICC estimates were manually 262 

calculated by applying Eqn. 2. The required variance estimates for the calculation of the ICC 263 
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need to be computed by a statistical model. In total 33 different methods were used, here most 264 

studies applied a linear mixed model (n= 74/ 192), followed by an analysis of variance model 265 

(ANOVA) (n= 44/ 192), and random effects model (n= 26/ 192). Again, some studies (n= 38/ 266 

192) do not report the employed statistical method. From the extracted data three types of 267 

adjustments could be identified: urine concentration (creatinine, specific gravity, or osmolality), 268 

time of sampling (fasting/non-fasting, season, etc.) and individual characteristics (age, sex, 269 

body-mass-index, etc.). The adjustments made to the urine concentration, are made before the 270 

calculation of the ICC estimate and should be systematically applied. However, 34 studies did 271 

not report an adjustment made to the urine concentration. Whereas the two other types are made 272 

during the calculation of the ICC estimate.  273 

 274 

3.3 Meta-analyses results 275 

In total 10 metabolites from 31 studies were included in the meta-analyses. All metabolites, 276 

except 25-Hydroxyvitamin D (25(OH)D), which belongs to the prenol lipids class and is 277 

measured in blood, belong to the benzene and substituted derivatives class and are measured in 278 

urine. Ten or more creatinine adjusted ICC estimates for BPA, MEP, mono-n-butyl phthalate 279 

(MnBP), mono-2-ethylhexyl phthalate (MEHP), MEHHP, mono-benzyl phthalate (MBzP), 280 

mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), methylparaben and propylparaben are 281 

available from the included studies. Only unadjusted ICC estimates are reported for 25(OH)D 282 

in the included studies. The reproducibility measurements are mainly based on samples from 283 

women and the longest study time is up to 8 years in the included studies. An overview of the 284 

studies included in the meta-analyses is presented in Supplementary Table S3-21. The results 285 

of the 9 metabolites where creatinine adjusted ICCs were available, and of the one metabolite 286 

of vitamin D are presented in Table 1, the corresponding forest plots are in Supplementary Fig. 287 

S2-38. Visual assessment of the computed funnel plots (Supplementary Fig. S3-39) and 288 
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Kendall’s Tau values (Table 1) are indicative of the presence of publication bias for BPA, 289 

MEHHP, MEOHP (adjusted), and 25(OH)D. Furthermore, the results for MEP, MnBP, 290 

MEHHP, MEOHP, and propylparaben are highly inconsistent (I2 ≥ 75%, Table 1).  291 

The reproducibility of BPA, MnBP, MEHP, MEHHP, MBzP and MEOHP adjusted for 292 

creatinine can be classified as poor (ICC < 0.4), for MEP, methylparaben and propylparaben 293 

adjusted for creatinine as moderate (ICC > 0.4), and for 25(OH)D as excellent (ICC > 0.9).  294 

Results for the unadjusted concentrations of BPA, MnBP, MEHP, MEHHP, MBzP, BP-3, 295 

MEOHP, MEP, methylparaben and propylparaben can be found in Supplementary Table S4-23 296 

and Fig. S4-43. The meta-analysed ICC estimates are generally higher compared to the adjusted 297 

analyses. 298 

 299 

4 Discussion  300 

In this review, we compiled all suitable studies investigating the reproducibility of the blood 301 

and urine exposome. This results in the formation of a dataset containing the ICC estimates for 302 

359 single metabolites and further 98 classes and summed metabolites. Additionally, an 303 

overview of the study and metabolite specific information is provided. The meta-analyses of 304 

the ICC estimates of 10 metabolites, showed low to moderate reproducibility for the 9 non-305 

persistent chemicals and high reproducibility for a persistent metabolite of vitamin D. 306 

 307 

4.1 Sources of Variability of ICC estimates 308 

The observed variability between ICC estimates for the blood and urine exposome can have 309 

several sources: the nature of the biospecimen, the time of collection, the time intervals between 310 

the collection, and the population from which biospecimens are collected (10). For example, 311 

two studies compare the reproducibility of metal compound and essential element 312 
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measurements in spot, FMV and 24h urine samples collected in adult men (56,57). The 313 

differences in reproducibility estimates between biospecimens were highly dependent on the 314 

nature of the compound. Differences between FMV, spot and 24h urine samples, or blood can 315 

be explained by varying exposures over time and/or half-lives of elimination, i.e., the rate at 316 

which the exposure is cleared from the body. Thus, the observed reproducibility of a specific 317 

metabolite can depend on the timing of collection. Fluctuating variability patterns in 318 

populations over time can further explain differences between ICC estimates. However, the 319 

information on which biospecimen, or sampling time, results in the most reliable metabolite 320 

concentration is highly compound dependent. Hence, it is nearly impossible to give overall 321 

recommendations for (classes of) metabolites. Some metabolite concentrations present low 322 

variability over time, are reproducible in different populations or show limited differences in 323 

variability when measured in blood or urine. On the other hand, some metabolites might show 324 

distinct variabilities in different populations, due to varying exposure patterns, i.e., the source 325 

of exposure is not always present. Another problem could be that the metabolite is rapidly 326 

excreted from the body, resulting in large variability along time, unless the exposure source 327 

frequently reappears. In summary, the reproducibility of metabolite concentrations depends on 328 

two main factors: pharmacokinetics, mainly half-life of elimination, and frequency of exposure. 329 

Another aspect is the adjustment for urine dilution, some studies did not report any adjustments 330 

made to the urine samples during laboratory analysis. It is not clear if these studies did not 331 

adjust for urine dilution or plainly did not report it, all the same, ICC estimates based on adjusted 332 

urine samples tend to be overall lower, as seen in the meta-analyses results. Hence this needs 333 

to be considered when comparing ICC estimates. 334 

It is not possible to give overall statements regarding the reproducibility of all blood or urine 335 

metabolite concentrations. Thus, to meta-analyse ICC estimates can provide a general idea of 336 

the reproducibility of a specific metabolite. This can offer useful guidance when planning a 337 

study with metabolite-based exposure assessment. However, whenever possible ICC estimates 338 
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derived from studies in a similar population should be assessed for the planning of a study 339 

measuring the specific metabolite (for this Supplementary Materials and Methods 2 can be 340 

used).  341 

 342 

4.2 ICC formula and calculation  343 

The studies included in this review applied multiple different statistical approaches to compute 344 

ICC estimates. In a recent paper, the authors (12) compare three statistical methods (restricted 345 

maximum likelihood from a linear mixed model, ANOVA and a variance estimate method) to 346 

compute the ICC from synthetic biomonitoring data. They find no major differences between 347 

the three analytical techniques, and the results stay the same even under changing conditions, 348 

i.e., missing values, suboptimal distributions, unbalanced data sets and unusual variance 349 

estimates. Hence there should be no major differences in the ICC estimates computed by 350 

different statistical approaches in the literature. However, there are studies in this review that 351 

applied uncommon statistical techniques or formulas to calculate ICC estimates. A novel 352 

analytical technique to calculate the ICC (58) is employed by one of the included studies (59). 353 

One study (60), calculated the so-called ICC(2,1) (61) and another study (49) included the 354 

technical variance in the ICC formula. Here it is not clear if these estimates are comparable 355 

with ICC estimates derived from standard statistical techniques and the common formula (Eqn. 356 

2). We must point out that these approaches hamper the comparability with other studies. 357 

Similarly, one study (62) refrained from adjusting the ICC for fixed factors such as age and sex, 358 

due to the fear of decreasing comparability. It is possible to adjust for potential covariate 359 

influences and by this remove within-subject variation that arises from individual 360 

characteristics at the time of collection, however unrelated to exposure. Applying a novel 361 

statistical technique to calculate ICC estimates or to adjust for individual characteristics can 362 

enhance the understanding of the variability of metabolite concentrations; however, 363 
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comparability needs to be considered. We recommend when presenting adjusted ICCs to 364 

display unadjusted values as well. Furthermore, when applying a novel analytical technique, 365 

we advise including, whenever possible, ICC estimates obtained from a standard technique, 366 

e.g., ANOVA. This way comparability can be increased and differences in methods can be 367 

better understood.  368 

 369 

4.3 Meta-analyses of ICC estimates 370 

The 25(OH)D metabolite measured in blood is the only metabolite that can be classified as 371 

highly reproducible. MEP, BP-3, MBzP, MiBP, methylparaben and propylparaben, measured 372 

in urine, can be classified as moderately reproducible. BPA, MnBP, MEHP, MEHHP and 373 

MEOHP, measured in urine, are all poorly reproducible. For BPA, MEP, MnBP, MEHHP, 374 

MEOHP, propylparaben, methylparaben and 25(OH)D are either large heterogeneity, 375 

publication bias or both present. Hence, the results for these metabolites need to be interpreted 376 

with caution. One review showed similar results for non-persistent chemicals (including BPA, 377 

MEP, MnBP, MEHP, BP-3, MEHHP, MBzP, MEOHP; MiBP, methylparaben and 378 

propylparaben), most ICCs fall under the categories indicating only poor to moderate 379 

reproducibility (16). Furthermore, the authors also state the great inconsistency in the results of 380 

the included studies and attribute this to different parameters. The low reproducibility of these 381 

chemicals might be due to short half-lives and/or varying exposure patterns. As the authors 382 

already state in their conclusion, these results show the necessity for multiple samples per 383 

subject when measuring these metabolites in a study (16).  384 

 385 

4.4 Repeated measurements 386 

For metabolites with higher reproducibility, single measurements can be acceptable to depict 387 

long-term exposure, that is the “usual level” of exposure (6). As these metabolite concentrations 388 
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show higher between-individual variability than within-individual variability. Making single 389 

measurements of these metabolite concentrations adequate at the relative ordering of individual 390 

exposure levels (63). On the other hand, ICC estimates below 0.6 have been found to bias results 391 

(64). Many metabolite concentrations in this review show low ICC estimates, indicating poor 392 

to moderate reproducibility (Fig. 2 and Supplementary Materials and Methods 2). When using 393 

these metabolites as biomarkers of exposure the number of measurements per subject needs to 394 

be increased, to reduce the impact of low reproducibility. Yet, it is not always possible to 395 

increase the specimen collection per subject, due to cost restrictions or strain on the subjects. 396 

Here are three possible, however not exhaustive, approaches to handle this problem: In one 397 

study the authors propose a statistical method to estimate lifetime exposures from spot 398 

biomarkers using ICC estimates (6). The authors present a way to improve spot measurement-399 

based risk estimates, by using ICC estimates from the literature, or if feasible collecting 400 

repeated measurements for a small subsample and calculating ICCs based on the collected data. 401 

Alternatively, another study presents an approach, when it is possible to collect several repeated 402 

measurements per subject, but cost restrictions are in place (64). The authors propose within-403 

subject pooling of biospecimen samples before laboratory analysis. This method can reduce 404 

laboratory costs and the authors show, that increasing the measurements per subject and pooling 405 

them, is efficient in decreasing bias and increasing statistical power without affecting assay 406 

costs. Correspondingly, power calculations are often based on time-invariant exposures, 407 

however, this is mostly not the case in observational studies (65). Authors of a study developed 408 

a power calculation method where exposure variability and the costs of repeated measurements 409 

are taken into account (65). This way the number of participants and the number of 410 

measurements, while accounting for the total cost of the study, can be explored to optimize the 411 

power of a study.  412 

 413 
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4.5 Strengths and limitations  414 

This review is an extensive summary of the existing literature presenting ICC estimates for the 415 

blood and urine exposome. We applied broad inclusion criteria, allowing a comprehensive 416 

collection of available ICC estimates for a great number of metabolite concentrations. However, 417 

there are still more ICC estimates available in the literature, as some studies additionally report 418 

computed ICCs. These studies were mainly excluded as reproducibility was not part of the main 419 

objectives of the study. The presented method to meta-analyse ICC estimates is not optimal, 420 

and some of the results show great heterogeneity and publication bias is present. Further, these 421 

analyses are only carried out for ICC estimates from studies presenting the required 422 

information, where several studies could not be included in the analysis, which could have 423 

potentially reduced heterogeneity and publication bias. This is the first attempt to meta-analyse 424 

ICC estimates from such a variety of metabolite concentrations. Further work into the best 425 

methodology to meta-analyse ICC estimates is needed.  426 

 427 

5 Conclusion 428 

This review collected the ICC estimates of 359 single exogenous and endogenous metabolite 429 

concentrations, and of additionally almost 100 classes of (or summed) metabolites. Making this 430 

review one of the first comprehensive reviews summarising the available information about the 431 

reproducibility of the blood and urine exposome. The results from the meta-analyses give a first 432 

indication of the general reproducibility of 9 non-persistent chemicals and one persistent 433 

metabolite of vitamin D. Moreover, further aspects of variability are discussed, and 434 

recommendations to handle low reproducibility are given. The vast dataset of information on 435 

the reproducibility of the exposome can be used by researchers to help interpret findings and to 436 

plan biospecimen collection. This makes this review a useful source for future reproducibility 437 

studies and epidemiological studies planning to use metabolite-based (exposure) assessment.  438 
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Table 1 Results from the meta-analysis for nine urinary metabolite concentrations adjusted 639 

for creatinine and one unadjusted blood metabolite 640 

 641 

NOTE: CI, confidence interval.  642 

 643 

Figure Legends 644 

Figure 1 Flow diagram of selection process for the inclusion in the qualitative synthesis. The 645 

diagram depicts the flow of information throughout the three phases of the systematic literature 646 

review. It provides an overview of the number of identified references from the database search 647 

and other sources, the number of included references and reasons for exclusion.  648 

Figure 2 Classification of single metabolites (N= 352) according to simplified class 649 

membership and visualisation of number of ICC estimates available. All 352 metabolites are 650 

grouped by colour into sub-categories according to overall class, which are indicated by the 651 

grey square. The lines, so called edges symbolise the chemical similarity between metabolites. 652 

Metabolite Number 

of studies 

ICC (95% CI) I2 Kendall’s Tau, p value 

BPA 13 0.15 (0.10, 0.21) 13.9% 0.67, < 0.001 

MEP 9 0.43 (0.23, 0.63) 75.3% 0.23, 0.37 

MnBP 9 0.31 (0.17, 0.46) 75.7% 0.2, 0.45 

MEHP 10 0.32 (0.22, 0.42) 29.5% 0.2, 0.3 

MEHHP 9 0.20 (0.04, 0.36) 91.9% 0.55, 0.01 

MBzP 9 0.38 (0.24, 0.52) 43.8% 0.38, 0.16 

MEOHP 8 0.21 (0.01, 0.40) 97.8% 0.59, 0.01 

Methylparaben 5 0.44 (0.29, 0.59) 71.2% 0.09, 0.76 

Propylparaben 5 0.49 (0.32, 0.66) 80.1% -0.13, 0.65 

25(OH)D 7 0.95 (0.90, 0.99) 37.3% -0.88, < 0.001 
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The size of the circle, i.e., node, indicates the number of ICC estimates available for the 653 

metabolite. These results are based on the extracted data from 178 studies (excluding 14 studies 654 

reporting only summary ICC estimates).  655 

Figure 3 Colour coded classification (low to high reproducibility) of mean ICC estimates of 656 

single metabolites (N= 352) grouped according to chemical class membership. All 352 657 

metabolites are grouped into sub-categories according to overall class, which are indicated by 658 

the grey squares. The lines, so called edges symbolise the chemical similarity between 659 

metabolites. The colour of the circle, i.e., node, indicates poor (< 0.4) to moderate, good, and 660 

excellent (>= 0.85) reproducibility. These results are based on the extracted data from 178 661 

studies (excluding 14 studies reporting only summary ICC estimates). 662 



 



 



 


