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A G R I C U L T U R E

Unlocking big data doubled the accuracy in predicting 
the grain yield in hybrid wheat
Yusheng Zhao1, Patrick Thorwarth2, Yong Jiang1, Norman Philipp3, Albert W. Schulthess1, 
Mario Gils4, Philipp H. G. Boeven5, C. Friedrich H. Longin2, Johannes Schacht5, Erhard Ebmeyer6, 
Viktor Korzun7,8, Vilson Mirdita9, Jost Dörnte10, Ulrike Avenhaus11, Ralf Horbach12, Hilmar Cöster13, 
Josef Holzapfel14, Ludwig Ramgraber15, Simon Kühnle16, Pierrick Varenne17, Anne Starke5, 
Friederike Schürmann14, Sebastian Beier1, Uwe Scholz1, Fang Liu1, Renate H. Schmidt1, Jochen C. Reif1*

The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and 
telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic 
and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred 
lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating 
data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted 
across individual experimental series. Our results suggest that combining data across breeding programs is a 
particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm 
shift can contribute to increasing yield and resilience, which is needed to feed the growing world population.

INTRODUCTION
Wheat is one of the most important crops providing one-fifth of the 
world’s food calories and proteins (1). To supply an estimated world 
population of 9 billion in 2050, global wheat production must be 
increased by 60% compared with 2005–2007 levels (2). Hybrid breed-
ing has the potential to become a critical factor in increasing grain 
yield and resilience of wheat (3). A key challenge in hybrid breeding 
is to predict the most promising combination of parents leading to 
a high-yielding hybrid (4, 5).

The genetic basis of hybrid grain yield in wheat is complex and 
determined by many quantitative trait loci and their interactions, 
each of which has little impact on the phenotypic variation (3, 6). 
Genome-wide prediction, which was initially implemented in animal 
breeding (7) but is now also routinely used in plant breeding (1) and 
human genetics (8), is the method of choice for hybrid prediction of 
complex traits such as grain yield (9). The success of genome-wide 
prediction depends on accurate prediction equations, especially for 
new lines that have not yet been evaluated in the field, i.e., out-of-
sample scenarios. For example, threefold higher prediction accuracies 
were observed for wheat hybrids, which had both parents in common 

with the training set that had been assessed regarding phenotype 
and genotype than for hybrids that that did not share a single parent 
with the lines that were evaluated in the training set (6). The low 
prediction accuracies that were observed in previous studies for 
out-of-sample scenarios are of concern as these impede due to 
decreasing relatedness with ongoing selection the long-term selection 
gains in recurrent genomic selection programs (10), which are 
crucial for the success of hybrid wheat breeding (11). Consequently, 
there is an urgent need to develop reliable prediction models for 
out-of-sample scenarios that are commonplace in continuously 
operating breeding programs. Theoretical and empirical results have 
shown that prediction abilities rise with a combination of increasing 
heritability of traits (12, 13), increasing ratio of sample size to effec-
tive population size (14, 15), marker density (16), and the genetic and 
also environmental similarity between training and test datasets (6). 
The development of accurate predictive models using comprehen-
sive data was convincingly demonstrated in the UK Biobank cohort 
study consisting of half a million participants (13). It appears, there-
fore, meaningful to assemble also for crop plants large and diverse 
training populations for which high-quality phenotypic and genomic 
data are available, but this is hardly feasible or cost-effective for 
small- to medium-scale hybrid breeding programs. So far, the grain 
yield performance of hybrids has been predicted in populations 
based on a maximum of 2000 single crosses and up to 700 parents 
(6, 17–19). Wheat breeding organizations, often in joint efforts in 
public-private partnerships, have generated extensive phenotypic 
and genomic data in individual studies with many of these studies 
(6, 18–20) focusing on hybrid wheat breeding in Europe. It remains 
to be explored whether the integration of these different datasets 
may permit the development of reliable prediction models as the 
aggregation of several medium-sized datasets for different popula-
tions of wheat lines and/or hybrids into a large one is challenging 
for several reasons. First, different types of genomic data need to be 
integrated. Owing to the availability of a high-quality reference 
genome for wheat, this can be efficiently realized (21). Second, marker 
density needs to be adjusted to the population size (16). Considering 
the genetic relatedness between lines, the genome size of wheat, and 
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the sizes of the individual populations, marker density does not rep-
resent a major limiting factor for genome-wide prediction studies 
of individual datasets (22), as sufficient marker coverage of more 
than 10,000 single-nucleotide polymorphisms (SNPs) can be achieved 
by using high-density SNP chips, genotyping-by-sequencing, or 
exome capture sequencing (23, 24). Third, the integrated analyses 
of phenotypic data pose problems because of their unbalanced and 
often noisy structure: The individual experimental series usually lack 
proper links across experimental series and/or environments.

The aggregation of several medium-sized experimental series into 
a large dataset has features in common with the dimensions volume, 
velocity, variety, and veracity that have been used to characterize 
“big data” and which depend on advanced analysis approaches for 
the generation of new insights or the optimization of processes (25). 
Here, we report on the collection and integration of large-scale 
genomic and/or phenotypic data of 12,858 wheat entries, consisting 
of 6575 single-cross hybrids and 6283 inbred lines, which were 
investigated in six experimental series in multienvironmental yield 
trials. The six experimental series were based on different crossing 
designs comprising factorial mating and topcross designs and in-
clude not only a very broad genetic diversity of the European wheat 
breeding pool but also plant genetic resources. We have used this 
comprehensive dataset to explore the challenges and potentials of 
entering the era of big data in crop breeding. The low overlap be-
tween common genotypes in the six experimental series resulting 
from the intrinsic structure when aggregating several medium-sized 
datasets clearly caused challenges because of interaction effects 
between genotypes and experimental series. Accordingly, hybrid 
prediction across two different experimental series resulted in low 
prediction abilities, but twofold higher values were achieved by 
integrating data from several experimental series into the training 
populations. This finding calls for the compilation of comprehen-
sive datasets to train models for hybrid prediction.

RESULTS
Genetic structure of the meta-population
We fingerprinted a subset of 5042 unique inbreds (Fig. 1A and figs. 
S1 and S2) out of 6283 winter wheat lines and parents of single-cross 
hybrids that were used for six large-scale field experimental series 
(table S1) with marker arrays derived from a public 90,000 SNP chip 
(26), resulting in 10,522 high-quality markers. The lines of experi-
mental series I, II, III, IV, and VI represented a comprehensive 
selection of the current elite bread wheat breeding pool developed 
for Central Europe, i.e., Germany, Poland, Denmark, Switzerland, 
Austria, Northern France, Netherlands, Czech Republic, and Slovakia, 
and were provided by 14 wheat-breeding companies (18). Experi-
mental series VI encompassed lines only (table S1), whereas exper-
imental series I to V included lines and hybrids. Three different 
crossing schemes shown in fig. S3 were used to generate in total 
5643 single-cross hybrids from current elite lines (experimental 
series I to IV in table S1). This panel was supplemented by 267 former 
elite varieties from the last five decades and 357 genetic resources 
preserved at the IPK gene bank in Gatersleben (experimental series V). 
The former elite cultivars and genetic resources were crossed with 
elite lines and produced 932 hybrids (experimental series V in table S1 
and fig. S4).

The effective population size was estimated using the marker 
data and amounted to 95 for the analysis across the six experimental 

series with a range within experimental series from 23 (experimental 
series IV) to 70 (experimental series VI; table S2). The larger effec-
tive population size of experimental VI in comparison to the other 
series comprising elite lines and derived hybrids only is also reflected 
in the results of the principal coordinate analysis (Fig. 1A and 
fig. S2). Lines of experimental series V were separated from current 
elite lines as emphasized by an average fixation index of FST of 0.06 
(Fig. 1B), which was further supported by the results of the principal 
coordinate analysis (Fig. 1A), distribution of genetic distances within 
experimental series V and across the different experimental series 
(Fig. 1C), and overall lower linkage disequilibrium (LD) phases 
observed for experimental series V as compared with the other 
five experimental series (Fig. 1D). In summary, we assembled a 
diverse sample of plant material for this study.

Integrated analysis highlights the quality 
of the phenotypic data
Extensive grain yield data were compiled by evaluating not only 
hybrids but also inbred lines in field trials in 125,422 plots in Central 
Europe. The phenotypic data were collected in six experimental 
series. We evaluated the quality of the raw data of the individual 
experimental series (fig. S1) and removed 519 plots as outliers (27), 
resulting in estimates of broad-sense heritability for grain yield in 
the range 0.64 to 0.92 for the individual experimental series (table 
S1 and Fig. 2A). The different experimental series were linked by up 
to 37 overlapping genotypes detected by genomic data (table S3). 
Pairwise Rogers’ distances between all genotypes were calculated, 
and genotypes with Rogers’ distances less than 0.03 were considered 
to be overlapping genotypes. The set of overlapping genotypes 
allowed an integrated analysis.

We used the grain yield data from overlapping genotypes to as-
sess the presence of potential biases and reduced correlations due to 
interaction effects between genotypes and environments in estimating 
the performance across the six experimental series. To detect a 
potential bias between experimental series, a sufficient number of 
common genotypes need to be present in the different pairs of envi-
ronments to obtain reliable data, but it is equally important that 
experimental series do not have too many environments in com-
mon because this may lead to a systematic underestimation of a 
potential bias. Contrasting experimental series I and VI with the 
combined set of experimental series II, III, IV, and V fulfilled these 
requirements. Using the combined phenotypic data, we selected a 
genotype that was common in at least one of the pairs of experi-
mental sets described above (I versus II–V and VI versus II–V) and 
coded it differently in the two sets. Grain yield was then estimated 
and recorded for the selected common genotypes for experimental 
series I and VI and the combined set of experimental series II, III, 
IV, and V. Repeating this procedure for all overlapping genotypes 
resulted in two sets of yield estimates. The correlation between the 
two estimates for all overlapping genotypes was high and amounted 
to 0.68 (P < 0.001) with a regression coefficient of 1.001, which was 
not significantly (P = 0.81) different from 1 (Fig. 2B). This clearly 
suggests absence of a systematic bias; nonetheless, the reduced cor-
relation (Fig. 2B) provides evidence for interaction effects between 
genotypes and experimental series.

The integrated phenotypic analysis resulted in 4491 lines and 
6246 high-quality hybrids (figs. S1, S3, and S4) for which marker 
profiles were available (table S2) or, in the case of hybrids, could be 
derived from their parents’ information. The hybrids and lines were 
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Fig. 1. Population genomic analyses of parental lines grouped into six experimental series. (A) Principal coordinate analysis of the inbred lines based on Rogers’ 
distances matrix. Percentages in parentheses refer to the proportion of genotypic variance explained by the first and second principal coordinates (PCs). (B) Neighbor-
joining tree based on the results of FST statistics for the six experimental series (Exp.). (C) Distribution of Rogers’ distances for inbred lines within and across experimental 
series. In each histogram plot, the range of Rogers’ distances is displayed on the x axis; on the y axis the percentage of line pairs is provided. (D) Persistence of the LD phase 
between the six experimental series.
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evaluated on average in 9.3 and 5.4 environments resulting in broad-
sense heritability estimates of 0.81 and 0.87 (Fig. 2A and table S4), 
respectively. Within experimental series, hybrids outperformed their 
parents and checks by on average 9.4% (Fig. 2C). This was also 
observed when inspecting the results across experimental series: 
hybrids (9.7 Mg ha−1) outyielded on average all lines and checks by 
5.5% (9.2 Mg ha−1), indicating the potential to increase wheat yield 
by implementing hybrid breeding programs.

Prediction ability of hybrid grain yield is determined mainly 
by relatedness
Because each of the parents in experimental series I, II, and III was 
tested in several hybrid combinations, we investigated the ability to 
predict hybrid grain yield performance using a genomic-based un-
biased prediction model incorporating both additive and dominance 
genomic relationships and a chessboard-like cross-validation with 
three different level of relatedness: T2, T1, and T0 (fig. S5). The vali-
dation in test set T2, which included only hybrids originating from 
the same group of parents as the hybrids in the training set, showed 
the highest prediction ability of 0.73 averaged over experimental 
series I, II, and III (Fig. 3A). This value decreased to 0.25 for the test 
set T0, which contained only hybrids that did not share parents with 
the training set. Thus, the decreasing trend in prediction ability 
reflected the diminishing relatedness from the T2 to the T0 scenario. 
The declines in prediction ability observed in our wheat experiments 
were more pronounced than in maize (28). This can be explained by a 
lower effective population size for a single maize breeding program 
compared with the diversity panels sampled across multiple wheat 
breeding programs in our study.

The topcross mating design of experimental series IV with 
only four tester lines (fig. S3) and of experimental series V with 
an average of two tester lines (fig. S4) prevented chessboard-like 

cross-validation, and we, therefore, applied random fivefold cross-
validation (fig. S5). The prediction ability was 0.61 for experimental 
series IV and 0.71 for experimental series V (Fig. 3A). This, as 
expected, corresponds to the values observed for the T2 scenario in 
experimental series I, II, and III and highlights again that within–
experimental series relatedness is the driving force of the prediction 
ability for hybrid grain yield in our study.

Analysis of a comprehensive inbred line population
Experimental series VI was the most comprehensive series in our 
study, with 3448 lines being genotyped and phenotyped (table S2). 
It represented grain yield data from a commercial line breeding 
program. The fivefold cross-validation showed a high prediction 
ability of 0.69 and thus approached the mean value of 0.73, which 
had been established for the T2 scenario of experimental series I, II, 
and III (Fig. 3A). At first glance, this may appear unexpected because 
the genetic distance between training and test populations was higher 
in experimental series VI (average 5% quantile of genetic distances 
equaled 0.22) than the average value observed for the other five ex-
perimental series (average 5% quantile of genetic distances equaled 
0.16; table S5 and fig. S6). Nevertheless, the observed range of phe-
notypic values in experimental series VI was much larger than that 
in experimental series I, II, and III (Fig. 2C). Thus, the prediction 
ability in experimental series I, II, and III might have been suppressed 
due to range restriction, a phenomenon that the correlation is re-
duced when the sample has a restricted range of scores (29). In 
addition, the degrees of freedom to estimate the additive effects of 
SNPs in the inbred population depend on the number of lines, but 
in the case of hybrids, on the number of parents. Thus, the increased 
degrees of freedom allowed a more precise estimation of the additive 
effects to predict grain yields in experimental series VI compared 
with the other series. This, together, explains why the prediction 

Fig. 2. Grain yield performance assessed in multienvironmental field trials. (A) Broad-sense heritability values for hybrids and lines within experimental series 
are shown as bars and across experimental series as vertical lines. Light and dark gray refer to hybrids and lines, respectively. (B) Assessing a potential bias in grain 
yield estimates triggered by merging nonorthogonal phenotypic data across experimental series. Grain yield was estimated on the basis of the combined phenotypic 
data of all but one overlapping genotypes. For this genotype, grain yield was then estimated separately for experimental series (Exp.) I or VI and a combined set of experi-
mental series II, III, IV, and V. Repeating this procedure for all overlapping genotypes resulted in two sets of estimates. The correlations between these estimates are 
plotted. ***P < 0.001. (C) Distribution of best linear unbiased estimations for grain yield (Mg ha−1) of the genotypes included in the six experimental series.
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ability of 0.69 in experimental series VI is almost as high as the 
average value of 0.73, which was observed for the T2 scenario in 
experimental series I, II, and III (Fig. 3A).

Interactions between genotypes and experimental series 
affect across series prediction ability
The ability to predict the hybrid performance from one experiment 
to another across experimental series I, II, III, or IV was lower (0.16; 
table S6 and Fig. 3B) compared with the prediction ability observed 
for the T0 scenario within experimental series (Fig. 3A). This decrease 
cannot be explained by an increased genetic distance between the 
parental lines of experimental series I, II, III, and IV compared with 
the distance of the T0 scenarios within experimental series (table S5 
and fig. S6).

The prediction abilities from one experimental series to another 
varied almost 10-fold (0.035 to 0.330; table S6 and Fig. 3B). In sev-
eral instances, values for the prediction abilities across experimental 
series outperformed the mean value of 0.25, which had been observed 
for the T0 scenario within experimental series I, II, and III (Fig. 3A). 
As shown in table S7, the different experimental series shared certain 
fractions of parental lines leading to T1 and in rare cases to T2 
hybrids; on average, 16% of the predicted hybrids across experimental 
series are corresponding to a T1 scenario. Thus, it is tempting to 
speculate that the variation in relatedness provides an explanation 

for the variation in prediction ability across experimental series, but 
the proportion of T1 hybrids between pairs of experimental series 
was not significantly correlated (r = 0.12; P > 0.1) with the predic-
tion abilities from one experimental series to another. Instead, the 
lower prediction abilities across two experimental series (table S6 
and Fig. 3B) compared with the prediction ability observed for the 
T0 scenario within individual experimental series (Fig. 3A) may re-
flect genotype-by-experiment interaction effects (Fig. 2B). To assess 
this in more detail, only experimental series II was used as training 
set to predict the performance of 148 previously untested hybrids that 
had both parental lines in common with experimental series II 
(T2 hybrids). These 148 hybrids were phenotyped in a separate 
validation experiment for grain yield in eight environments, which 
had not been used for experimental series II. The prediction ability 
for these previously untested T2 hybrids tested in a different set of 
environments reached only 0.54 (fig. S7), whereas within experimental 
series II, a prediction ability of 0.68 had been observed for the T2 scenario 
(Fig. 3A). This demonstrates the pronounced impact of interaction 
between genotypes and experimental series on the prediction ability.

By using experimental series VI as the training population and 
the remaining experimental series as test populations, the prediction 
ability for the parental lines (0.36; table S8) was on average 77% higher 
than for the hybrids (0.20; table S6 and Fig. 3B). The use of a com-
prehensive population of inbred lines as training set, as experimental 

Fig. 3. Prediction abilities and the effective population size within and across the six experimental series. (A) Prediction ability within experimental series (Exp.) was 
estimated for related or unrelated training populations by using a chessboard-like cross-validation in experimental series I, II, and III or by fivefold cross-validation based 
on random sampling of genotypes (random scenario) in experimental series IV, V, and VI. (B) Prediction abilities across different experimental series. For each of the training 
populations shown on the x axis, the prediction abilities for the different test populations are displayed as colored bars. (C) Increase in prediction ability combining incremental 
data across experimental series. The lengths of the colored boxes in each bar represent the proportions of the genotypes of the different experimental series used as 
training sets. (D) Effective population size within and across the experimental series. The different experimental series are color coded according to the key in (A).
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series VI, cannot account for the general heterosis effect observed in 
hybrids (Fig. 2C). Nonetheless, the highest average prediction ability 
of hybrid performance from one experiment to another was ob-
served using the comprehensive line training data (0.20; table S6), 
i.e., experimental series VI. This finding illustrates the potential to 
increase the predictive power for hybrids by exploiting the precision 
of estimating additive effects in the large population of inbred lines.

The potential of big data for hybrid prediction
One of the important tasks in hybrid wheat breeding is to predict 
for new environments the single-cross performance of parental lines 
that have not yet been evaluated in other hybrids. Despite the large 
number of hybrids evaluated in each experimental series in our 

study (table S2), the average prediction ability was low (0.17) when 
predicting the hybrid performance from one experimental series to 
another (table S6), but the prediction ability was doubled when in-
tegrating data across experimental series in the training population 
in a leave-one-experimental-series-out scenario (table S9 and Fig. 3C). 
In accordance to quantitative genetic theory (16), this increase re-
flects the ratio of the number of parental components/inbred lines 
versus the effective population size (N:Ne), which ranged from 3.5 
to 9.7 for experimental series I to V but amounted to 47.4 in the 
total population (table S2 and Fig. 3D). We assessed the relevance of 
N:Ne in more detail by randomly sampling subpopulations out of 
experimental series VI representing a range of N:Ne from 2 to 60 
(Fig. 4, A and B) and observed a nonlinear increase in the prediction 

Fig. 4. Relationship between prediction ability and effective population size (Ne) in experimental series VI. (A) Biplot of observed prediction ability and the ratio of sample 
population size (N) versus the effective population size (Ne) in 500 subsamples ranging from N = 100 to N = 3100 drawn randomly out of experimental series VI. (B) Association 
between observed and estimated prediction accuracies in 500 subsamples drawn randomly out of experimental series VI. (C) Projection of prediction ability for population 
size N from 200 to 20,000 and Ne from 2 to 200; the red line corresponds to the square root of heritability, which represents the upper limit of the prediction ability.
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ability with increasing N:Ne, with the largest increase occurring in 
the range of N:Ne between 2 and 40. We used a nonlinear regression 
based on data from experimental series VI, estimated relevant 
parameters, and extrapolated the prediction abilities for N from 200 
to 20,000 and Ne from 2 to 200 (Fig. 4C). The trend not only high-
lights the potential to increase substantially the prediction ability by 
accumulating more data but also shows the limit determined by the 
heritability of the phenotypic data of the training population. The 
latter represents a major obstacle, as plant breeding programs use 
multistage selection: In the first stages, a large number of individuals 
are phenotyped in few environments to maximize the selection 
intensity, and only in the last stage are a small number of individuals 
evaluated in a large number of environments to maximize heritability. 
Thus, to assemble a large training population that has been inten-
sively phenotyped, data must be collected across years or even across 
breeding programs.

We further studied whether marker density is a major limiting 
factor for the prediction ability by resampling subsets of markers in 
the entire dataset comprising experimental series I to VI. The five-
fold cross-validation showed a substantial increase in prediction 
abilities when the number of markers was increased from 106 (1%) 
to 3508 (33.3%), but the increase flattened out when the number of 
markers exceeded 5261 (50%; fig. S8). The marker density, therefore, 
is not a major limiting factor in our study. In summary, the compi-
lation and integration of comprehensive datasets for the training of 
models for hybrid prediction not only have the potential to improve 
out-of-sample hybrid prediction ability but also challenge current 
breeding practices.

DISCUSSION
The characteristics of big data differ between crop and animal breed-
ing in comparison to human genetics. In crop and animal breeding, 
heritability can be increased by massive phenotyping of progenies 
(30, 31), the effective population sizes are much smaller compared 
with human genetics (20, 32), and genetic variance among offspring 
is the key source exploited in selection programs (8). In human 
genetics, on the other hand, the heritability of a particular trait often 
depends on nonrepeated observations and can hardly be influenced 
by the experimenter, populations with large effective size and unre-
lated individuals are often used, while genetic variance within fam-
ilies is considered as noise (8, 12). The latter assumption is now also 
relevant for crop breeding when recurrent speed-breeding programs 
with several selection cycles per year are implemented, resulting in 
a decrease in relatedness between training and test populations (33). 
Recent results in not only human genetics but also animal breeding 
(8) have shown that big data lead to a substantial reduction in the 
gap between trait heritability and the genotypic variance, which can 
be explained with a genomic predictor. Accordingly, our study, as an 
attempt to aggregate medium-sized datasets of around 2000 geno-
types into big data of around 13,000 genotypes in wheat breeding, 
showed that it was possible to increase the prediction ability of the 
hybrid performance by 34% when comparing the average value for the 
T0 scenario within individual experimental series (Fig. 3, A and C) 
with those across several experimental series (table S9). The predic-
tion abilities that were achieved in our study exceeded those expected 
based on studies simulating individual breeding programs (34). 
This can be explained by the higher heritability and the larger train-
ing population in our study compared with the simulation study. 

However, the assumed heritability in the simulation study is based 
on the optimal allocation of resources in multistage selection pro-
grams, and thus, much higher heritabilities in individual breeding 
programs are unlikely. This suggests that it is a particular adequate 
strategy to combine data across individual breeding programs to 
fully exploit the potential of predictive plant breeding. Likewise, 
increasing the ratio between the number of parents tested on grain 
yield in hybrid backgrounds and the effective population size is a 
promising approach to improve the prediction ability of the hybrid 
performance. In this context, incomplete factorial mating designs 
with balanced missing hybrid patterns, as used in experimental 
series II and III (fig. S3), or topcross designs, as used in experimental 
series IV and V, are efficient and can be optimized by maximizing 
the connectivity and diversity between training and test populations 
(35). Moreover, comprehensive line datasets such as experimental 
series VI can also provide valuable data for increasing the predic-
tion abilities of hybrids at least in the transitional phase from line to 
hybrid breeding.

Reliable genome-wide prediction models based on extensive train-
ing populations allow the exploration of a large potential genetic 
space by predicting the performance of millions of single-cross 
hybrids (4–6, 36). For example, this is fundamental for genome-based 
establishment of heterotic groups (6). Moreover, genome-wide pre-
dictions can boost the selection intensity in hybrid breeding and, 
thus, the selection gain (5). We have illustrated the latter point by 
predicting the grain yield of all 10,082,295 potential single hybrids 
of the 4491 lines of experimental series I to V (fig. S9). In total, 3591 
untested single-cross hybrids had a predicted yield higher than that 
of the best predicted parental line. The best predicted hybrid not 
tested to date is expected to exceed with 11.7 Mg ha−1 the parental 
line with the highest predicted yield of 11.2 Mg ha−1.

The era of genome-wide selection using big data could further 
benefit from a revision of the genetic (6, 35) as well as experimental 
designs of grain yield trials presently in use. The current medium-
sized datasets in plant breeding often reflect sequential experimental 
phenotyping series that lead to a block(experiment)–wise missing 
value structure in the integrated phenotypic dataset: A subset of 
genotypes is evaluated in a subset of environments with a small 
number of overlapping entries (table S3). The latter allow an esti-
mation of the main effects of the environments but do not allow 
separation of the genotype main effects from the interaction effects 
between genotype and environmental series for those genotypes, 
which have not been evaluated across series. A key challenge in 
further improving prediction ability is, therefore, to reduce the in-
fluence of interaction effects between genotypes and experimental 
series. The pronounced interaction effects between genotypes and 
experimental series are most likely the result of a reduced represen-
tation of the environmental diversity in the different experimental 
series during phenotyping. On the basis of data of experimental 
series II, a simple approach to increase the environmental diversity 
while keeping the number of plots in a very similar range is shown 
(Fig. 5, A to C). As a baseline, we randomly sampled grain yield data 
of all lines and hybrids for 3 of the 12 environments, corresponding 
to 6072 plots, and estimated the correlation between grain yield 
estimates for the data of the subsets and the total 12 environments 
(Fig. 5, A and D). The correlation varied widely with a 25% quantile 
of r = 0.66, revealing the pronounced variation due to a low envi-
ronmental diversity in the subset of three environments. This vari-
ation in correlation is very much reduced, albeit at a lower mean 
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value, when testing a core set of 10% of the lines and hybrids and 
11 check varieties in all 12 environments and the remaining 90% of 
lines and hybrids in six groups of equal size in 2 environments, 
requiring 6465 plots (Fig. 5, B and D). Reducing the variation of 
correlations at a comparable mean value to the base line model is, 
however, possible by dividing the lines and hybrids into 10 subgroups, 
each of which is tested in only three environments, with the restric-
tion that two environments overlap with those of the next group. 
All environments are linked with 11 check varieties, giving a total of 
6455 plots (Fig. 5, C and D). Further improvement may be possible 
by selecting the subgroups of hybrids in such a way that a close 
relationship (T2 scenario) between the different subgroups is ensured, 
and this relationship is taken into account in the phenotypic data 
analyses. Alternatively, innovations in phenotyping can be used 
to identify environmental drivers for interaction effects between 
genotypes and environments (37). The information on the environ-
mental drivers can then be integrated as covariables into the statis-
tical analyses to obtain more accurate estimates of the genotype main 
effects, thus reducing the estimation bias caused by interaction 
effects between genotypes and experimental series (38, 39). In sum-
mary, an optimized design of multienvironment yield trials in the 
era of genomic selection coupled with innovations in an integrated 
analysis of field trials promises to increase the accuracy of predictive 
plant breeding based on big data.

MATERIALS AND METHODS
Plant materials and field trials
The study includes plant material and phenotypic data from six ex-
perimental series. Experimental series I was based on 135 elite winter 
bread wheat lines and their 1604 single-cross hybrid progenies. 

Details of the plant material and phenotypic data have been pub-
lished in a previous study (6). Parental lines have been chosen to 
reflect a wide range of the diversity that exists in Central Europe. 
The lines were divided into a female pool of 120 lines and a male 
pool of 15 lines, depending on pollination capacity, plant height, and 
flowering time. A factorial mating design was used to produce 1604 
single-cross hybrids (fig. S3). The 135 parental lines, 1604 hybrids, 
and 10 other check varieties were tested for grain yield (Mg ha−1) in 
11 environments (5 sites in 2012 and 6 sites in 2013) in Germany 
(table S10). In each environment, the experimental design consisted 
of three trials. In each trial, a partially replicated alpha lattice design 
was used. Different genotypes were evaluated in different trials linked 
by 10 common checks. Plot sizes ranged from 5 to 7.4 m2.

Experimental series II was based on 226 elite winter bread wheat 
lines and their 1815 single-cross hybrid progenies. Details of the 
plant material and phenotypic data have been published in a previous 
study (18). Briefly, parental lines have been chosen to reflect a wide 
range of the diversity that exists in Central Europe. The lines were 
divided into a female pool of 185 lines and a male pool of 41 lines, 
depending on pollination capacity, plant height, and flowering time. 
A factorial mating design was used to produce 1815 single-cross 
hybrids (fig. S3). The 226 parental lines, 1815 hybrids, and 11 common 
checks were tested for grain yield (Mg ha−1) in 12 environments 
(6 sites in 2016 and 6 sites in 2017) in Germany (table S10). In each 
environment, the experimental design consisted of three trials. In 
each trial, an unreplicated alpha lattice design was used. Different 
genotypes were evaluated in different trials linked by the 11 common 
checks. Plot sizes ranged from 5.70 to 10.00 m2.

Experimental series III was based on 236 elite winter bread wheat 
lines and their 1744 single-cross hybrid progenies. Parental lines 
have been chosen to reflect a wide range of the diversity that exists 

Fig. 5. Optimized field designs to reduce genotype-by-environment interaction effects exemplified on the basis of yield trials of experimental series II in 
12 environments. (A) In scenario I, all lines and hybrids are tested in a subset of three environments (Env). (B) In scenario II, a core of 10% of the lines and hybrids is 
sampled and tested in all 12 environments together with 11 check varieties (yellow color). The remaining 90% of lines and hybrids are divided into six groups of equal size 
and tested in two environments. (C) In scenario III, the lines and hybrids are divided into 10 subgroups, each of which is tested in only three environments, with the 
restriction that two environments overlap with those of the next group. All 12 environments are linked with 11 check varieties (yellow color). (D) Correlation between 
grain yield estimates for the data of the subsets of scenario I, II, and III and those for all 12 environments.
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in Central Europe. The lines were divided into a female pool of 196 
lines and a male pool of 40 lines, depending on pollination capability, 
plant height, and flowering time. A factorial mating design was used 
to produce 1744 single-cross hybrids (fig. S3). The 236 parental 
lines, 1744 hybrids, and 11 additional check varieties were evaluated 
for grain yield (Mg ha−1) in six sites in 2018 in Germany (table S10). 
In each environment, the experimental design consisted of three trials. 
In each trial, an unreplicated alpha lattice design was used. Different 
genotypes were evaluated in different trials linked by the 11 com-
mon checks. Plot sizes ranged from 5.70 to 9.00 m2.

Experiment IV was based on 128 elite winter bread wheat lines 
and their 480 single-cross hybrid progenies. Parental lines have been 
chosen to reflect a wide range of the diversity that exists in Central 
Europe. The lines were divided into a female pool of 8 lines and a 
male pool of 120 lines, depending on pollination capability, plant 
height, and flowering time. A factorial mating design was used to 
produce 480 single-cross hybrids (fig. S3). The 128 parental lines 
and 480 hybrids were split into two series linked by 16 common 
checks. Series 1 was evaluated for grain yield (Mg ha−1) in 11 envi-
ronments (6 sites in 2016 and 5 sites in 2017) in Germany (table S10). 
Series 2 was also evaluated for grain yield (Mg ha−1) in 12 environ-
ments (6 sites in 2017 and 6 sites in 2018) in Germany (table S10). 
An unreplicated alpha lattice design was used. Plot sizes ranged from 
5.7 to 10.50 m2.

Experimental series V included 932 hybrids between elite lines 
and historic varieties or accessions obtained from the gene bank of 
the IPK Gatersleben. Six hundred sixty-seven hybrids were produced 
by crossing 45 elite winter bread wheat lines adapted to the growing 
conditions of Central Europe with 361 diverse accessions. Here, the 
elite lines were used as females in hybrid seed production. The 
accessions were used as male parents and were selected by screening 
a sample of 4575 gene bank accessions from the gene bank of IPK 
Gatersleben for pronounced anther extrusion. According to already 
published passport data (40) and information directly obtained 
from the Genebank Information System of IPK Gatersleben (GBIS: 
https://gbis.ipk-gatersleben.de/gbis2i/; 41), the acquisition date of ~47% 
of these accessions predates the year 1970, and more than 60 world-
wide origins were represented in this gene bank sample. In addition, 
265 hybrids were produced by crossing 258 historic varieties with 
plants originating from four different seed mixtures, each including 
either two or three elite male lines (fig. S4). Elite lines with good 
anther extrusion but which showed different flowering times were 
combined in the four mixtures and used as male crossing partners 
to optimize the hybrid seed production by an almost perfect match 
of flowering time between male and female lines and to guarantee 
the unambiguous identification of hybrids. The historic varieties 
originated from all over Europe from the past four decades and were 
characterized by a short plant height. The parental lines, 932 hybrids, 
and 28 to 32 additional common checks were evaluated for grain 
yield (Mg ha−1) in up to five sites in three trials in Germany (table 
S10). Trials 1, 2, and 3 included 621, 618, and 500 entries evaluated 
in the years 2016, 2017, and 2018, respectively. An unreplicated 
alpha lattice design was used. Plot sizes ranged from 6 to 9 m2.

Experimental series VI was based on 4972 Central European elite 
winter wheat lines of the breeding program of KWS LOCHOW 
GmbH (Bergen, Germany). Part of the phenotypic data of the lines 
evaluated in it have been published in a previous study (20). Briefly, 
the lines were evaluated in the years 2012, 2013, 2014, and 2015 for 
grain yield in up to 10 sites in Germany. The lines were divided into 

13 to 18 individual trials connected through five to six common 
checks. The experimental design for each trial followed an alpha de-
sign with one to three replications per site, with the number of 
entries per trial ranging from 30 to 306. Plot size ranged from 6.05 
to 17.25 m2. In all six experimental series, harvesting was performed 
mechanically, and the harvest was adjusted to a moisture content of 
140 g H2O kg−1.

Curation of phenotypic data
A linear mixed model was used including the effects of genotypes, 
trials, replications nested within trials, and blocks nested within trials 
and replications. All data were screened for outliers (fig. S1) using 
the method 4 “Bonferroni-Holm with rescaled median absolute 
deviation standardized residuals” as suggested previously (27). Outliers 
were removed, and best linear unbiased estimations (BLUEs) of the 
genotypes in each environment were obtained as outlined in detail 
elsewhere (18) and served as the input for the subsequent analyses. 
All linear mixed models were implemented using the software 
ASReml-R 3.0 (42).

Genomic data analyses
The genomic profiles of 5042 lines were determined using 15,000 or 
90,000 SNP arrays based on an Illumina Infinium assay (26). The 
number of markers in each experimental series ranged from 11,736 
to 81,489. To reduce the risk of a high proportion of missing values 
in the integrated data, we used only common SNP markers across 
all six experiments. For the remaining 10,564 common SNP markers, 
we observed that the missing values were less than 10%, and these 
missing data were imputed with software IMPUTE2 (43). After im-
putation, we removed the monomorphic markers, and the remaining 
10,522 SNP markers were used for subsequent analyses. Marker 
profiles of the hybrids were deduced from the corresponding parental 
lines. On the basis of the SNP profiles, a principal coordinate analysis 
was performed for 5042 lines, for which both phenotypic and geno-
typic data were available and/or if they represented parental lines of 
hybrids. The FST statistic for each pair of experiments was estimated 
using the method of Weir and Cockerham (44) as implemented in 
the R package “hierfstat” (45) and visualized by a neighbor-joining 
tree using the R package “ape” (46). LD between all pairs of SNP 
markers within each chromosome was calculated as the squared 
Pearson correlation coefficient (r2) between vectors of SNP alleles 
using the 5042 lines. The persistence of linkage phase between the 
experiments was inferred by analyzing how similar or dissimilar the 
correlations between pairs of markers were following the approach 
suggested previously (47). Briefly, as the r2 values do not allow to 
differentiate between a positive and a negative correlation, we 
calculated LD among all pairs of markers with a physical distance 
smaller than 100 Mbp as the correlation coefficient r, where r can 
take values between −1 and 1. The squared correlation between r values 
of two different experiments was defined as LD phase and plotted 
against the physical map distance to fit natural smoothing splines.

Broad-sense heritability for grain yield
A two-step procedure was applied to analyze the grain yield data 
across environments (48). In the first step, the data for each envi-
ronment were analyzed separately. A linear mixed model was used 
including the effects of genotypes, trials, replications nested within 
trials, and blocks nested within trials and replications. BLUEs of 
the genotypes in each environment were obtained and served as the 
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input of the second step, where a linear mixed model was applied 
including the effects of environments and genotypes. Fixed geno-
typic effects were assumed to obtain the BLUEs of the genotypic 
values of the hybrids and their parents. Within each experimental 
series, broad-sense heritability was calculated with a one-step model. 
For each experimental series, a submodel of the following general 
model was applied, and only those factors relevant to the experi-
mental design and the population used in a certain experimental 
series were retained

	​ Yield~Group + Env + Env : Trial + Env : Trial : Block + Line +  
                 ​GCA​ F​​ + ​GCA​ M​​ + SCA + Env : Line + Env : ​GCA​ F​​ + Env :  
                 ​GCA​ M​​ + Env : SCA + residual(Env)​	 (1)

While the “Group” effect included specific means of hybrids and 
lines, “Env,” “Trial,” and “Block” were the effects of environments, 
trials, and blocks, respectively. The main effect of lines was denoted 
as “Line”. The main effect of hybrids was decomposed into “GCAF”, 
“GCAM”, and “SCA” effects, which refer to the general combining 
ability (GCA) effects of females and males, and specific combining 
ability (SCA) effect of hybrids, respectively. The following terms were 
genotype-by-environment interaction effects. For integrated analysis 
across experimental series, the broad-sense heritability was calcu-
lated on the basis of the BLUEs within each environment with model

	​Yield~Group + Exp + Env + Line + ​GCA​ F​​ + ​GCA​ M​​ + SCA + Env : 
Line + Env : ​GCA​ F​​ + Env : ​GCA​ M​​ + Env : SCA + residual(Env)​	 (2)

While “Exp” refers to the effects of the experimental series, the 
other parameters are the same as model 1. All effects except “Group” 
and “Exp” are set as random effects, and we use a heterogeneous 
variance model for the residuals in each environment. All linear mixed 
models were implemented using the software ASReml-R 3.0 (42).

Combining phenotypic and genomic data
Groups of genotypes with pairwise Rogers’ distances below 0.03 were 
defined to be duplicates and merged for the integrated phenotypic 
data analyses. Together, 484 duplicate groups were identified rep-
resenting 1168 lines or hybrids. These included 78 groups of hy-
brids and 406 groups of lines. The final genomic dataset comprised 
10,737 unique lines (4491) and hybrids (6246); the latter were de-
rived by crossing 456 male and 720 female lines. This population of 
10,737 genotypes for which 10,522 high-quality SNP markers had 
been assessed was used for the genome-wide prediction analyses.

Genomic prediction and validation scenarios 
of the prediction ability
We used a genomic best linear unbiased prediction model (G-BLUP) 
including additive and dominance effects. The G-BLUP model has 
the following form

	​ Y  =  T + ​G​ A​​ + ​G​ D​​ + e​	 (3)

where T is a fixed effect of the overall means within the experimen-
tal series or effect of the type of genotype (either lines or hybrids) 
across the experimental series, and GA corresponds to the additive 
genetic values and GD refers to the dominance genetic values. The 

additive genetic value was modeled as ​​G​ A​​  ∼  N(0, A ​​a​ 2 ​)​, with the 
additive relationship matrix being ​A  = ​   W ​W​​ T​ _ 

2​∑ k=1​ p  ​​ ​p​ k​​(1 − ​p​ k​​)
​​, W = CnZA, and 

Cn is the centering matrix, n is the number of genotypes, ZA is 
design matrix for additive markers, pk is the allele frequency of k-th 
marker, and p is the number of markers. The dominance genetic 
values were modeled as ​​G​ D​​  ∼  N(0, D ​​d​ 2 ​)​, with the dominance rela-
tionship matrix being ​D  = ​   V ​V​​ T​ ___________ 

4​∑ k=1​ p  ​​ ​​p​ k​​​​ 2​ ​(1 − ​p​ k​​)​​ 2​
​​, and V is the general or-

thogonal design matrix for dominance marker effects (49). Details 
of the method can be found in (6). The above models were imple-
mented using the R package BGLR (50) with 30,000 iterations, with 
the first 3000 iteration used as burn-in.

We used chessboard-like (experimental series I, II, and III) and 
random fivefold cross-validations (experimental series IV, V, and VI) 
to evaluate the prediction ability of genomic prediction within ex-
perimental series (fig. S5). Basically, data were divided into two sets, 
a training set and a test set. The G-BLUP model was trained using 
genomic and phenotypic data of the training set. The genomic data 
of the test set were used to predict the genetic values of hybrids and 
lines. The prediction ability for each test set was estimated as the 
Pearson correlation coefficient between the predictions and the ob-
served phenotypic values.

In addition, we tested the prediction ability across experimental 
series using different combinations of training sets. In the first 
scenario, we used one out of the six experimental series as training 
set. Each of the other experimental series was used as test set. The 
prediction ability for each test set was estimated as the Pearson cor-
relation coefficient between the predicted and the observed hybrid 
performances. In the second scenario, we used either experimental 
series I, II, or III as test set. For the training sets, we incrementally 
added the experimental series except the one used as test set. The 
prediction ability for each test set was estimated again as the Pearson 
correlation coefficient between the predicted and the observed 
hybrid performances.

Effective population size and estimation of prediction ability
We estimated the effective population size Ne as

	​​ N​ e​​  = ​   k ─ 
3 * ​(​​​  ​r​​ 2​​ − ​ 1 _ n​​)​​

 ​​	 (4)

where n is the harmonic mean of the sample size, ​​  ​r​​ 2​​​ is the expected 
LD between unlinked loci, and k = 1 for monoecious and k = 2 for 
dioecious plants (51, 52).

When the heritability (h2) is known, the estimated prediction 
ability ​​​(​​​  ​p​ est​​ ​​)​​​​ is the square root of heritability multiplied by the esti-
mated prediction accuracy (​​  ​r​ est​​ ​​). The estimated prediction accuracy 
depends on the heritability of the trait and the ratio between the 
effective number of segments in the genome and the number of 
individuals in the training population (16)

	​​ ​

⎧
 

⎪
 ⎨ 

⎪
 

⎩
​​​
​̂   ​r​ est​​​  = ​ √ 
_

 ​  ​h​​ 2​ ─ 
​h​​ 2​ + ​4 ​N​ e​​ Lv _ N  ​

 ​ ​
​  

​̂  ​p​ est​​​  =  h * ​  ​r​ est​​​

 ​ ​​	 (5)

where L denotes the genome size in Morgan, 4NeLv is the effective 
number of segments in the genome assuming an infinitesimal model, 
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and N is the size of the training population. From Eq. 5, it can be 
concluded that if heritability and marker density are fixed, the ability 
of genome-wide prediction is positively correlated with ​​ N _ ​N​ e​​

​​, where ​​ N _ ​N​ e​​
​​is 

the ratio between the size of the training population and the effec-
tive population size. We randomly sampled 500 subpopulations from 
experiments VI with N ranging from 100 to 3100 and a range in the 
ratio of N/Ne from 2 to 60 between the different subsets. For each 
subpopulation, a fivefold cross-validation was applied to obtain the 
observed prediction ability ​​  ​p​ obs​​​​. We also calculated the broad-sense 
heritability of each subpopulation and used Eq. 5 to obtain ​​  ​p​ est​​​​. The 
correlation between ​​  ​p​ obs​​​​ and ​​ N _ ​N​ e​​

​​ or between ​​  ​p​ obs​​​​ and ​​  ​p​ est​​​​ was analyzed. 
Moreover, we used a nonlinear regression model ​​​  ​p​ obs​​​  =  a + b * ln​
(​​ ​ N _ ​N​ e​​

​​)​​ +  ​​(53) to estimate the relationship between ​​ N _ ​N​ e​​
​​ and ​​  ​p​ obs​​​​. All 

the above analyses use software R version 3.6.0 (54).

Optimized field designs to reduce genotype-by-environment 
interaction effects
On the basis of the data of experimental series II, we tested in silico 
three scenarios of field designs, each requiring a similar number of 
plots. The full data of experimental series II included 11 checks, 
226 elite lines, and 1815 single-cross hybrid progenies. In scenario 
I, a balanced missing design was considered in which all lines and 
hybrids were tested in three randomly selected environments, 
corresponding to 6072 plots. We analyzed all 220 combinations of 
three environments and estimated the across environment BLUEs 
in each subset. In scenario II, a core of 10% of the elite lines and 10% 
of hybrids were sampled and tested in all 12 environments with 
11 checks. The remaining 90% of elite lines and hybrids were divided 
into six groups of equal size and tested in two environments. The 
random sampling was run for 220 times as in scenario I, and the 
average number of plots used in this scenario was 6465. In scenario III, 
all lines and hybrids were divided into 10 subgroups, each of which 
was tested in only three environments, with the restriction that two 
environments overlapped with those of the next group. The 11 checks 
were tested in all environments to estimate the environmental effects, 
and the average number of plots used in this scenario corresponded 
to 6455. The model used to estimate BLUEs for all three scenarios 
was Y =  + G + G * E + e, where  is overall mean, G is the genotypic 
effect of lines and hybrids, G * E is the genotype-by-environment 
interaction effect, and e corresponds to the residuals. The Pearson 
correlation between BLUEs from subsets of scenarios I, II, and III, 
and the total data including 12 environments were used to estimate 
the precision of the estimates of the genotype effects.

Validation experiment to estimate the role of interactions 
between genotypes and experimental series
To assess the role of interactions between genotypes and experimental 
series, we generated 148 previously untested T2 hybrids that had both 
parental lines in common with experimental series II but were not 
tested in experimental series II. We selected the 148 hybrids out of 
the 23,610 potential hybrids using the predicted grain yield perfor-
mance and further information on producibility of single-cross 
hybrids, i.e., anther extrusion, plant height, and flowering time. 
Ninety-six of the 148 hybrids belong to the highest yielding hybrids 
(>90% quantile), and 30 belong to the lowest yielding hybrids 
(< 10% quantile). The yield of the other 22 hybrids is somewhere in 
between these two groups. The 148 hybrids were phenotyped in a 
separate validation experiment for grain yield in eight environments 
in Germany in the year 2019. We estimated the BLUEs as outlined 

above and studied their correlation with the predicted hybrid per-
formance using data from experimental series II.

Predicting the yield performance of all potential single-cross 
hybrids from the 4491 lines
We used the complete dataset and a ridge regression BLUP model 
with additive and dominance marker effects to predict the hybrid 
performance of all potential single-cross hybrids between the 4491 
inbred lines. The model is as follows

	​ Y  =  T + ​Z​ A​​ a + ​Z​ D​​ d + e​	 (6)

where ZA and ZD are the design matrices for additive and dominance 
markers, the elements of ZA are −1, 0, 1, while the homozygotes are 
coded as −1 and 1, and the heterozygotes are coded as 0. The 
elements of ZD are 0 and 1, while the two homozygote classes are 
coded as 0, and the heterozygotes are coded as 1. We use the ridge 
regression BLUP model in this section because it is not efficient to 
predict all 10,082,295 potential hybrids using GBLUP.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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