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The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and
telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic
and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred
lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating
data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted
across individual experimental series. Our results suggest that combining data across breeding programs is a
particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm
shift can contribute to increasing yield and resilience, which is needed to feed the growing world population.

INTRODUCTION

Wheat is one of the most important crops providing one-fifth of the
world’s food calories and proteins (I). To supply an estimated world
population of 9 billion in 2050, global wheat production must be
increased by 60% compared with 2005-2007 levels (2). Hybrid breed-
ing has the potential to become a critical factor in increasing grain
yield and resilience of wheat (3). A key challenge in hybrid breeding
is to predict the most promising combination of parents leading to
a high-yielding hybrid (4, 5).

The genetic basis of hybrid grain yield in wheat is complex and
determined by many quantitative trait loci and their interactions,
each of which has little impact on the phenotypic variation (3, 6).
Genome-wide prediction, which was initially implemented in animal
breeding (7) but is now also routinely used in plant breeding (1) and
human genetics (8), is the method of choice for hybrid prediction of
complex traits such as grain yield (9). The success of genome-wide
prediction depends on accurate prediction equations, especially for
new lines that have not yet been evaluated in the field, i.e., out-of-
sample scenarios. For example, threefold higher prediction accuracies
were observed for wheat hybrids, which had both parents in common
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with the training set that had been assessed regarding phenotype
and genotype than for hybrids that that did not share a single parent
with the lines that were evaluated in the training set (6). The low
prediction accuracies that were observed in previous studies for
out-of-sample scenarios are of concern as these impede due to
decreasing relatedness with ongoing selection the long-term selection
gains in recurrent genomic selection programs (10), which are
crucial for the success of hybrid wheat breeding (11). Consequently,
there is an urgent need to develop reliable prediction models for
out-of-sample scenarios that are commonplace in continuously
operating breeding programs. Theoretical and empirical results have
shown that prediction abilities rise with a combination of increasing
heritability of traits (12, 13), increasing ratio of sample size to effec-
tive population size (14, 15), marker density (16), and the genetic and
also environmental similarity between training and test datasets (6).
The development of accurate predictive models using comprehen-
sive data was convincingly demonstrated in the UK Biobank cohort
study consisting of half a million participants (13). It appears, there-
fore, meaningful to assemble also for crop plants large and diverse
training populations for which high-quality phenotypic and genomic
data are available, but this is hardly feasible or cost-effective for
small- to medium-scale hybrid breeding programs. So far, the grain
yield performance of hybrids has been predicted in populations
based on a maximum of 2000 single crosses and up to 700 parents
(6, 17-19). Wheat breeding organizations, often in joint efforts in
public-private partnerships, have generated extensive phenotypic
and genomic data in individual studies with many of these studies
(6, 18-20) focusing on hybrid wheat breeding in Europe. It remains
to be explored whether the integration of these different datasets
may permit the development of reliable prediction models as the
aggregation of several medium-sized datasets for different popula-
tions of wheat lines and/or hybrids into a large one is challenging
for several reasons. First, different types of genomic data need to be
integrated. Owing to the availability of a high-quality reference
genome for wheat, this can be efficiently realized (21). Second, marker
density needs to be adjusted to the population size (16). Considering
the genetic relatedness between lines, the genome size of wheat, and
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the sizes of the individual populations, marker density does not rep-
resent a major limiting factor for genome-wide prediction studies
of individual datasets (22), as sufficient marker coverage of more
than 10,000 single-nucleotide polymorphisms (SNPs) can be achieved
by using high-density SNP chips, genotyping-by-sequencing, or
exome capture sequencing (23, 24). Third, the integrated analyses
of phenotypic data pose problems because of their unbalanced and
often noisy structure: The individual experimental series usually lack
proper links across experimental series and/or environments.

The aggregation of several medium-sized experimental series into
alarge dataset has features in common with the dimensions volume,
velocity, variety, and veracity that have been used to characterize
“big data” and which depend on advanced analysis approaches for
the generation of new insights or the optimization of processes (25).
Here, we report on the collection and integration of large-scale
genomic and/or phenotypic data of 12,858 wheat entries, consisting
of 6575 single-cross hybrids and 6283 inbred lines, which were
investigated in six experimental series in multienvironmental yield
trials. The six experimental series were based on different crossing
designs comprising factorial mating and topcross designs and in-
clude not only a very broad genetic diversity of the European wheat
breeding pool but also plant genetic resources. We have used this
comprehensive dataset to explore the challenges and potentials of
entering the era of big data in crop breeding. The low overlap be-
tween common genotypes in the six experimental series resulting
from the intrinsic structure when aggregating several medium-sized
datasets clearly caused challenges because of interaction effects
between genotypes and experimental series. Accordingly, hybrid
prediction across two different experimental series resulted in low
prediction abilities, but twofold higher values were achieved by
integrating data from several experimental series into the training
populations. This finding calls for the compilation of comprehen-
sive datasets to train models for hybrid prediction.

RESULTS
Genetic structure of the meta-population
We fingerprinted a subset of 5042 unique inbreds (Fig. 1A and figs.
S1and S2) out of 6283 winter wheat lines and parents of single-cross
hybrids that were used for six large-scale field experimental series
(table S1) with marker arrays derived from a public 90,000 SNP chip
(26), resulting in 10,522 high-quality markers. The lines of experi-
mental series I, II, III, IV, and VI represented a comprehensive
selection of the current elite bread wheat breeding pool developed
for Central Europe, i.e., Germany, Poland, Denmark, Switzerland,
Austria, Northern France, Netherlands, Czech Republic, and Slovakia,
and were provided by 14 wheat-breeding companies (18). Experi-
mental series VI encompassed lines only (table S1), whereas exper-
imental series I to V included lines and hybrids. Three different
crossing schemes shown in fig. S3 were used to generate in total
5643 single-cross hybrids from current elite lines (experimental
series I to IV in table S1). This panel was supplemented by 267 former
elite varieties from the last five decades and 357 genetic resources
preserved at the IPK gene bank in Gatersleben (experimental series V).
The former elite cultivars and genetic resources were crossed with
elite lines and produced 932 hybrids (experimental series V in table S1
and fig. $4).

The effective population size was estimated using the marker
data and amounted to 95 for the analysis across the six experimental
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series with a range within experimental series from 23 (experimental
series IV) to 70 (experimental series VI; table S2). The larger effec-
tive population size of experimental VI in comparison to the other
series comprising elite lines and derived hybrids only is also reflected
in the results of the principal coordinate analysis (Fig. 1A and
fig. S2). Lines of experimental series V were separated from current
elite lines as emphasized by an average fixation index of Fsr of 0.06
(Fig. 1B), which was further supported by the results of the principal
coordinate analysis (Fig. 1A), distribution of genetic distances within
experimental series V and across the different experimental series
(Fig. 1C), and overall lower linkage disequilibrium (LD) phases
observed for experimental series V as compared with the other
five experimental series (Fig. 1D). In summary, we assembled a
diverse sample of plant material for this study.

Integrated analysis highlights the quality

of the phenotypic data

Extensive grain yield data were compiled by evaluating not only
hybrids but also inbred lines in field trials in 125,422 plots in Central
Europe. The phenotypic data were collected in six experimental
series. We evaluated the quality of the raw data of the individual
experimental series (fig. S1) and removed 519 plots as outliers (27),
resulting in estimates of broad-sense heritability for grain yield in
the range 0.64 to 0.92 for the individual experimental series (table
S1and Fig. 2A). The different experimental series were linked by up
to 37 overlapping genotypes detected by genomic data (table S3).
Pairwise Rogers’ distances between all genotypes were calculated,
and genotypes with Rogers’ distances less than 0.03 were considered
to be overlapping genotypes. The set of overlapping genotypes
allowed an integrated analysis.

We used the grain yield data from overlapping genotypes to as-
sess the presence of potential biases and reduced correlations due to
interaction effects between genotypes and environments in estimating
the performance across the six experimental series. To detect a
potential bias between experimental series, a sufficient number of
common genotypes need to be present in the different pairs of envi-
ronments to obtain reliable data, but it is equally important that
experimental series do not have too many environments in com-
mon because this may lead to a systematic underestimation of a
potential bias. Contrasting experimental series I and VI with the
combined set of experimental series II, IIL, IV, and V fulfilled these
requirements. Using the combined phenotypic data, we selected a
genotype that was common in at least one of the pairs of experi-
mental sets described above (I versus II-V and VI versus II-V) and
coded it differently in the two sets. Grain yield was then estimated
and recorded for the selected common genotypes for experimental
series I and VI and the combined set of experimental series II, III,
IV, and V. Repeating this procedure for all overlapping genotypes
resulted in two sets of yield estimates. The correlation between the
two estimates for all overlapping genotypes was high and amounted
to 0.68 (P < 0.001) with a regression coefficient of 1.001, which was
not significantly (P = 0.81) different from 1 (Fig. 2B). This clearly
suggests absence of a systematic bias; nonetheless, the reduced cor-
relation (Fig. 2B) provides evidence for interaction effects between
genotypes and experimental series.

The integrated phenotypic analysis resulted in 4491 lines and
6246 high-quality hybrids (figs. S1, S3, and S4) for which marker
profiles were available (table S2) or, in the case of hybrids, could be
derived from their parents’ information. The hybrids and lines were
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Fig. 1. Population genomic analyses of parental lines grouped into six experimental series. (A) Principal coordinate analysis of the inbred lines based on Rogers’
distances matrix. Percentages in parentheses refer to the proportion of genotypic variance explained by the first and second principal coordinates (PCs). (B) Neighbor-
joining tree based on the results of Fgr statistics for the six experimental series (Exp.). (C) Distribution of Rogers’ distances for inbred lines within and across experimental
series. In each histogram plot, the range of Rogers'distances is displayed on the x axis; on the y axis the percentage of line pairs is provided. (D) Persistence of the LD phase
between the six experimental series.
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Fig. 2. Grain yield performance assessed in multienvironmental field trials. (A) Broad-sense heritability values for hybrids and lines within experimental series
are shown as bars and across experimental series as vertical lines. Light and dark gray refer to hybrids and lines, respectively. (B) Assessing a potential bias in grain
yield estimates triggered by merging nonorthogonal phenotypic data across experimental series. Grain yield was estimated on the basis of the combined phenotypic
data of all but one overlapping genotypes. For this genotype, grain yield was then estimated separately for experimental series (Exp.) | or VI and a combined set of experi-
mental series II, lll, IV, and V. Repeating this procedure for all overlapping genotypes resulted in two sets of estimates. The correlations between these estimates are
plotted. ***P < 0,001. (C) Distribution of best linear unbiased estimations for grain yield (Mg ha™") of the genotypes included in the six experimental series.

evaluated on average in 9.3 and 5.4 environments resulting in broad-
sense heritability estimates of 0.81 and 0.87 (Fig. 2A and table S4),
respectively. Within experimental series, hybrids outperformed their
parents and checks by on average 9.4% (Fig. 2C). This was also
observed when inspecting the results across experimental series:
hybrids (9.7 Mg ha™") outyielded on average all lines and checks by
5.5% (9.2 Mg ha™), indicating the potential to increase wheat yield
by implementing hybrid breeding programs.

Prediction ability of hybrid grain yield is determined mainly
by relatedness
Because each of the parents in experimental series L, II, and III was
tested in several hybrid combinations, we investigated the ability to
predict hybrid grain yield performance using a genomic-based un-
biased prediction model incorporating both additive and dominance
genomic relationships and a chessboard-like cross-validation with
three different level of relatedness: T, T, and Ty (fig. S5). The vali-
dation in test set T, which included only hybrids originating from
the same group of parents as the hybrids in the training set, showed
the highest prediction ability of 0.73 averaged over experimental
series I, II, and III (Fig. 3A). This value decreased to 0.25 for the test
set T, which contained only hybrids that did not share parents with
the training set. Thus, the decreasing trend in prediction ability
reflected the diminishing relatedness from the T} to the Ty scenario.
The declines in prediction ability observed in our wheat experiments
were more pronounced than in maize (28). This can be explained by a
lower effective population size for a single maize breeding program
compared with the diversity panels sampled across multiple wheat
breeding programs in our study.

The topcross mating design of experimental series IV with
only four tester lines (fig. S3) and of experimental series V with
an average of two tester lines (fig. S4) prevented chessboard-like
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cross-validation, and we, therefore, applied random fivefold cross-
validation (fig. S5). The prediction ability was 0.61 for experimental
series IV and 0.71 for experimental series V (Fig. 3A). This, as
expected, corresponds to the values observed for the T, scenario in
experimental series I, II, and III and highlights again that within-
experimental series relatedness is the driving force of the prediction
ability for hybrid grain yield in our study.

Analysis of a comprehensive inbred line population

Experimental series VI was the most comprehensive series in our
study, with 3448 lines being genotyped and phenotyped (table S2).
It represented grain yield data from a commercial line breeding
program. The fivefold cross-validation showed a high prediction
ability of 0.69 and thus approached the mean value of 0.73, which
had been established for the T, scenario of experimental series I, II,
and IIT (Fig. 3A). At first glance, this may appear unexpected because
the genetic distance between training and test populations was higher
in experimental series VI (average 5% quantile of genetic distances
equaled 0.22) than the average value observed for the other five ex-
perimental series (average 5% quantile of genetic distances equaled
0.16; table S5 and fig. S6). Nevertheless, the observed range of phe-
notypic values in experimental series VI was much larger than that
in experimental series I, II, and III (Fig. 2C). Thus, the prediction
ability in experimental series I, II, and III might have been suppressed
due to range restriction, a phenomenon that the correlation is re-
duced when the sample has a restricted range of scores (29). In
addition, the degrees of freedom to estimate the additive effects of
SNPs in the inbred population depend on the number of lines, but
in the case of hybrids, on the number of parents. Thus, the increased
degrees of freedom allowed a more precise estimation of the additive
effects to predict grain yields in experimental series VI compared
with the other series. This, together, explains why the prediction
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ability of 0.69 in experimental series VI is almost as high as the
average value of 0.73, which was observed for the T, scenario in
experimental series I, II, and III (Fig. 3A).

Interactions between genotypes and experimental series
affect across series prediction ability

The ability to predict the hybrid performance from one experiment
to another across experimental series I, IL, IIL, or IV was lower (0.16;
table S6 and Fig. 3B) compared with the prediction ability observed
for the Ty scenario within experimental series (Fig. 3A). This decrease
cannot be explained by an increased genetic distance between the
parental lines of experimental series I, I, III, and IV compared with
the distance of the T, scenarios within experimental series (table S5
and fig. S6).

The prediction abilities from one experimental series to another
varied almost 10-fold (0.035 to 0.330; table S6 and Fig. 3B). In sev-
eral instances, values for the prediction abilities across experimental
series outperformed the mean value of 0.25, which had been observed
for the T scenario within experimental series I, II, and III (Fig. 3A).
As shown in table S7, the different experimental series shared certain
fractions of parental lines leading to T; and in rare cases to T,
hybrids; on average, 16% of the predicted hybrids across experimental
series are corresponding to a T scenario. Thus, it is tempting to
speculate that the variation in relatedness provides an explanation
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for the variation in prediction ability across experimental series, but
the proportion of T, hybrids between pairs of experimental series
was not significantly correlated (r = 0.12; P > 0.1) with the predic-
tion abilities from one experimental series to another. Instead, the
lower prediction abilities across two experimental series (table S6
and Fig. 3B) compared with the prediction ability observed for the
Ty scenario within individual experimental series (Fig. 3A) may re-
flect genotype-by-experiment interaction effects (Fig. 2B). To assess
this in more detail, only experimental series II was used as training
set to predict the performance of 148 previously untested hybrids that
had both parental lines in common with experimental series II
(T, hybrids). These 148 hybrids were phenotyped in a separate
validation experiment for grain yield in eight environments, which
had not been used for experimental series II. The prediction ability
for these previously untested T hybrids tested in a different set of
environments reached only 0.54 (fig. S7), whereas within experimental
series II, a prediction ability of 0.68 had been observed for the T, scenario
(Fig. 3A). This demonstrates the pronounced impact of interaction
between genotypes and experimental series on the prediction ability.

By using experimental series VI as the training population and
the remaining experimental series as test populations, the prediction
ability for the parental lines (0.36; table S8) was on average 77% higher
than for the hybrids (0.20; table S6 and Fig. 3B). The use of a com-
prehensive population of inbred lines as training set, as experimental
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series VI, cannot account for the general heterosis effect observed in
hybrids (Fig. 2C). Nonetheless, the highest average prediction ability
of hybrid performance from one experiment to another was ob-
served using the comprehensive line training data (0.20; table S6),
i.e., experimental series VI. This finding illustrates the potential to
increase the predictive power for hybrids by exploiting the precision
of estimating additive effects in the large population of inbred lines.

The potential of big data for hybrid prediction

One of the important tasks in hybrid wheat breeding is to predict
for new environments the single-cross performance of parental lines
that have not yet been evaluated in other hybrids. Despite the large
number of hybrids evaluated in each experimental series in our
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in a leave-one-experimental-series-out scenario (table S9 and Fig. 3C).
In accordance to quantitative genetic theory (16), this increase re-
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total population (table S2 and Fig. 3D). We assessed the relevance of
N:N. in more detail by randomly sampling subpopulations out of
experimental series VI representing a range of N:N. from 2 to 60
(Fig. 4, A and B) and observed a nonlinear increase in the prediction
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ability with increasing N:N,, with the largest increase occurring in
the range of N:N. between 2 and 40. We used a nonlinear regression
based on data from experimental series VI, estimated relevant
parameters, and extrapolated the prediction abilities for N from 200
to 20,000 and N from 2 to 200 (Fig. 4C). The trend not only high-
lights the potential to increase substantially the prediction ability by
accumulating more data but also shows the limit determined by the
heritability of the phenotypic data of the training population. The
latter represents a major obstacle, as plant breeding programs use
multistage selection: In the first stages, a large number of individuals
are phenotyped in few environments to maximize the selection
intensity, and only in the last stage are a small number of individuals
evaluated in a large number of environments to maximize heritability.
Thus, to assemble a large training population that has been inten-
sively phenotyped, data must be collected across years or even across
breeding programs.

We further studied whether marker density is a major limiting
factor for the prediction ability by resampling subsets of markers in
the entire dataset comprising experimental series I to VI. The five-
fold cross-validation showed a substantial increase in prediction
abilities when the number of markers was increased from 106 (1%)
to 3508 (33.3%), but the increase flattened out when the number of
markers exceeded 5261 (50%; fig. S8). The marker density, therefore,
is not a major limiting factor in our study. In summary, the compi-
lation and integration of comprehensive datasets for the training of
models for hybrid prediction not only have the potential to improve
out-of-sample hybrid prediction ability but also challenge current
breeding practices.

DISCUSSION

The characteristics of big data differ between crop and animal breed-
ing in comparison to human genetics. In crop and animal breeding,
heritability can be increased by massive phenotyping of progenies
(30, 31), the effective population sizes are much smaller compared
with human genetics (20, 32), and genetic variance among offspring
is the key source exploited in selection programs (8). In human
genetics, on the other hand, the heritability of a particular trait often
depends on nonrepeated observations and can hardly be influenced
by the experimenter, populations with large effective size and unre-
lated individuals are often used, while genetic variance within fam-
ilies is considered as noise (8, 12). The latter assumption is now also
relevant for crop breeding when recurrent speed-breeding programs
with several selection cycles per year are implemented, resulting in
a decrease in relatedness between training and test populations (33).
Recent results in not only human genetics but also animal breeding
(8) have shown that big data lead to a substantial reduction in the
gap between trait heritability and the genotypic variance, which can
be explained with a genomic predictor. Accordingly, our study, as an
attempt to aggregate medium-sized datasets of around 2000 geno-
types into big data of around 13,000 genotypes in wheat breeding,
showed that it was possible to increase the prediction ability of the
hybrid performance by 34% when comparing the average value for the
Ty scenario within individual experimental series (Fig. 3, A and C)
with those across several experimental series (table S9). The predic-
tion abilities that were achieved in our study exceeded those expected
based on studies simulating individual breeding programs (34).
This can be explained by the higher heritability and the larger train-
ing population in our study compared with the simulation study.
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However, the assumed heritability in the simulation study is based
on the optimal allocation of resources in multistage selection pro-
grams, and thus, much higher heritabilities in individual breeding
programs are unlikely. This suggests that it is a particular adequate
strategy to combine data across individual breeding programs to
fully exploit the potential of predictive plant breeding. Likewise,
increasing the ratio between the number of parents tested on grain
yield in hybrid backgrounds and the effective population size is a
promising approach to improve the prediction ability of the hybrid
performance. In this context, incomplete factorial mating designs
with balanced missing hybrid patterns, as used in experimental
series I and III (fig. S3), or topcross designs, as used in experimental
series IV and V, are efficient and can be optimized by maximizing
the connectivity and diversity between training and test populations
(35). Moreover, comprehensive line datasets such as experimental
series VI can also provide valuable data for increasing the predic-
tion abilities of hybrids at least in the transitional phase from line to
hybrid breeding.

Reliable genome-wide prediction models based on extensive train-
ing populations allow the exploration of a large potential genetic
space by predicting the performance of millions of single-cross
hybrids (4-6, 36). For example, this is fundamental for genome-based
establishment of heterotic groups (6). Moreover, genome-wide pre-
dictions can boost the selection intensity in hybrid breeding and,
thus, the selection gain (5). We have illustrated the latter point by
predicting the grain yield of all 10,082,295 potential single hybrids
of the 4491 lines of experimental series I to V (fig. S9). In total, 3591
untested single-cross hybrids had a predicted yield higher than that
of the best predicted parental line. The best predicted hybrid not
tested to date is expected to exceed with 11.7 Mg ha™' the parental
line with the highest predicted yield of 11.2 Mg ha™".

The era of genome-wide selection using big data could further
benefit from a revision of the genetic (6, 35) as well as experimental
designs of grain yield trials presently in use. The current medium-
sized datasets in plant breeding often reflect sequential experimental
phenotyping series that lead to a block(experiment)-wise missing
value structure in the integrated phenotypic dataset: A subset of
genotypes is evaluated in a subset of environments with a small
number of overlapping entries (table S3). The latter allow an esti-
mation of the main effects of the environments but do not allow
separation of the genotype main effects from the interaction effects
between genotype and environmental series for those genotypes,
which have not been evaluated across series. A key challenge in
further improving prediction ability is, therefore, to reduce the in-
fluence of interaction effects between genotypes and experimental
series. The pronounced interaction effects between genotypes and
experimental series are most likely the result of a reduced represen-
tation of the environmental diversity in the different experimental
series during phenotyping. On the basis of data of experimental
series II, a simple approach to increase the environmental diversity
while keeping the number of plots in a very similar range is shown
(Fig. 5, A to C). As a baseline, we randomly sampled grain yield data
of all lines and hybrids for 3 of the 12 environments, corresponding
to 6072 plots, and estimated the correlation between grain yield
estimates for the data of the subsets and the total 12 environments
(Fig. 5, A and D). The correlation varied widely with a 25% quantile
of r = 0.66, revealing the pronounced variation due to a low envi-
ronmental diversity in the subset of three environments. This vari-
ation in correlation is very much reduced, albeit at a lower mean
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Fig. 5. Optimized field designs to reduce genotype-by-environment interaction effects exemplified on the basis of yield trials of experimental series Il in
12 environments. (A) In scenario |, all lines and hybrids are tested in a subset of three environments (Env). (B) In scenario Il, a core of 10% of the lines and hybrids is
sampled and tested in all 12 environments together with 11 check varieties (yellow color). The remaining 90% of lines and hybrids are divided into six groups of equal size
and tested in two environments. (C) In scenario lll, the lines and hybrids are divided into 10 subgroups, each of which is tested in only three environments, with the
restriction that two environments overlap with those of the next group. All 12 environments are linked with 11 check varieties (yellow color). (D) Correlation between
grain yield estimates for the data of the subsets of scenario |, Il, and Ill and those for all 12 environments.

value, when testing a core set of 10% of the lines and hybrids and
11 check varieties in all 12 environments and the remaining 90% of
lines and hybrids in six groups of equal size in 2 environments,
requiring 6465 plots (Fig. 5, B and D). Reducing the variation of
correlations at a comparable mean value to the base line model is,
however, possible by dividing the lines and hybrids into 10 subgroups,
each of which is tested in only three environments, with the restric-
tion that two environments overlap with those of the next group.
All environments are linked with 11 check varieties, giving a total of
6455 plots (Fig. 5, C and D). Further improvement may be possible
by selecting the subgroups of hybrids in such a way that a close
relationship (T scenario) between the different subgroups is ensured,
and this relationship is taken into account in the phenotypic data
analyses. Alternatively, innovations in phenotyping can be used
to identify environmental drivers for interaction effects between
genotypes and environments (37). The information on the environ-
mental drivers can then be integrated as covariables into the statis-
tical analyses to obtain more accurate estimates of the genotype main
effects, thus reducing the estimation bias caused by interaction
effects between genotypes and experimental series (38, 39). In sum-
mary, an optimized design of multienvironment yield trials in the
era of genomic selection coupled with innovations in an integrated
analysis of field trials promises to increase the accuracy of predictive
plant breeding based on big data.

MATERIALS AND METHODS

Plant materials and field trials

The study includes plant material and phenotypic data from six ex-
perimental series. Experimental series I was based on 135 elite winter
bread wheat lines and their 1604 single-cross hybrid progenies.

Zhao et al., Sci. Adv. 2021; 7 : eabf9106 11 June 2021

Details of the plant material and phenotypic data have been pub-
lished in a previous study (6). Parental lines have been chosen to
reflect a wide range of the diversity that exists in Central Europe.
The lines were divided into a female pool of 120 lines and a male
pool of 15 lines, depending on pollination capacity, plant height, and
flowering time. A factorial mating design was used to produce 1604
single-cross hybrids (fig. S3). The 135 parental lines, 1604 hybrids,
and 10 other check varieties were tested for grain yield (Mgha™) in
11 environments (5 sites in 2012 and 6 sites in 2013) in Germany
(table S10). In each environment, the experimental design consisted
of three trials. In each trial, a partially replicated alpha lattice design
was used. Different genotypes were evaluated in different trials linked
by 10 common checks. Plot sizes ranged from 5 to 7.4 m®.

Experimental series II was based on 226 elite winter bread wheat
lines and their 1815 single-cross hybrid progenies. Details of the
plant material and phenotypic data have been published in a previous
study (18). Briefly, parental lines have been chosen to reflect a wide
range of the diversity that exists in Central Europe. The lines were
divided into a female pool of 185 lines and a male pool of 41 lines,
depending on pollination capacity, plant height, and flowering time.
A factorial mating design was used to produce 1815 single-cross
hybrids (fig. S3). The 226 parental lines, 1815 hybrids, and 11 common
checks were tested for grain yield (Mg ha ") in 12 environments
(6 sites in 2016 and 6 sites in 2017) in Germany (table S10). In each
environment, the experimental design consisted of three trials. In
each trial, an unreplicated alpha lattice design was used. Different
genotypes were evaluated in different trials linked by the 11 common
checks. Plot sizes ranged from 5.70 to 10.00 m>.

Experimental series III was based on 236 elite winter bread wheat
lines and their 1744 single-cross hybrid progenies. Parental lines
have been chosen to reflect a wide range of the diversity that exists

80of 13

T20Z ‘v'T aunc uo /B1o’Bewsdusios saoueApe//:dny wolj papeojumod


http://advances.sciencemag.org/

SCIENCE ADVANCES | RESEARCH ARTICLE

in Central Europe. The lines were divided into a female pool of 196
lines and a male pool of 40 lines, depending on pollination capability,
plant height, and flowering time. A factorial mating design was used
to produce 1744 single-cross hybrids (fig. S3). The 236 parental
lines, 1744 hybrids, and 11 additional check varieties were evaluated
for grain yield (Mg ha™') in six sites in 2018 in Germany (table S10).
In each environment, the experimental design consisted of three trials.
In each trial, an unreplicated alpha lattice design was used. Different
genotypes were evaluated in different trials linked by the 11 com-
mon checks. Plot sizes ranged from 5.70 to 9.00 m”.

Experiment IV was based on 128 elite winter bread wheat lines
and their 480 single-cross hybrid progenies. Parental lines have been
chosen to reflect a wide range of the diversity that exists in Central
Europe. The lines were divided into a female pool of 8 lines and a
male pool of 120 lines, depending on pollination capability, plant
height, and flowering time. A factorial mating design was used to
produce 480 single-cross hybrids (fig. S3). The 128 parental lines
and 480 hybrids were split into two series linked by 16 common
checks. Series 1 was evaluated for grain yield (Mg ha™') in 11 envi-
ronments (6 sites in 2016 and 5 sites in 2017) in Germany (table S10).
Series 2 was also evaluated for grain yield (Mg ha™') in 12 environ-
ments (6 sites in 2017 and 6 sites in 2018) in Germany (table S10).
An unreplicated alpha lattice design was used. Plot sizes ranged from
5.7 to 10.50 m”.

Experimental series V included 932 hybrids between elite lines
and historic varieties or accessions obtained from the gene bank of
the IPK Gatersleben. Six hundred sixty-seven hybrids were produced
by crossing 45 elite winter bread wheat lines adapted to the growing
conditions of Central Europe with 361 diverse accessions. Here, the
elite lines were used as females in hybrid seed production. The
accessions were used as male parents and were selected by screening
a sample of 4575 gene bank accessions from the gene bank of IPK
Gatersleben for pronounced anther extrusion. According to already
published passport data (40) and information directly obtained
from the Genebank Information System of IPK Gatersleben (GBIS:
https://gbis.ipk-gatersleben.de/gbis2i/; 41), the acquisition date of ~47%
of these accessions predates the year 1970, and more than 60 world-
wide origins were represented in this gene bank sample. In addition,
265 hybrids were produced by crossing 258 historic varieties with
plants originating from four different seed mixtures, each including
either two or three elite male lines (fig. S4). Elite lines with good
anther extrusion but which showed different flowering times were
combined in the four mixtures and used as male crossing partners
to optimize the hybrid seed production by an almost perfect match
of flowering time between male and female lines and to guarantee
the unambiguous identification of hybrids. The historic varieties
originated from all over Europe from the past four decades and were
characterized by a short plant height. The parental lines, 932 hybrids,
and 28 to 32 additional common checks were evaluated for grain
yield (Mg ha™') in up to five sites in three trials in Germany (table
S10). Trials 1, 2, and 3 included 621, 618, and 500 entries evaluated
in the years 2016, 2017, and 2018, respectively. An unreplicated
alpha lattice design was used. Plot sizes ranged from 6 to 9 m”.

Experimental series VI was based on 4972 Central European elite
winter wheat lines of the breeding program of KWS LOCHOW
GmbH (Bergen, Germany). Part of the phenotypic data of the lines
evaluated in it have been published in a previous study (20). Briefly,
the lines were evaluated in the years 2012, 2013, 2014, and 2015 for
grain yield in up to 10 sites in Germany. The lines were divided into
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13 to 18 individual trials connected through five to six common
checks. The experimental design for each trial followed an alpha de-
sign with one to three replications per site, with the number of
entries per trial ranging from 30 to 306. Plot size ranged from 6.05
to 17.25 m”. In all six experimental series, harvesting was performed
mechanically, and the harvest was adjusted to a moisture content of
140 g H,O kg ™.

Curation of phenotypic data

A linear mixed model was used including the effects of genotypes,
trials, replications nested within trials, and blocks nested within trials
and replications. All data were screened for outliers (fig. S1) using
the method 4 “Bonferroni-Holm with rescaled median absolute
deviation standardized residuals” as suggested previously (27). Outliers
were removed, and best linear unbiased estimations (BLUEs) of the
genotypes in each environment were obtained as outlined in detail
elsewhere (18) and served as the input for the subsequent analyses.
All linear mixed models were implemented using the software
ASReml-R 3.0 (42).

Genomic data analyses

The genomic profiles of 5042 lines were determined using 15,000 or
90,000 SNP arrays based on an Illumina Infinium assay (26). The
number of markers in each experimental series ranged from 11,736
to 81,489. To reduce the risk of a high proportion of missing values
in the integrated data, we used only common SNP markers across
all six experiments. For the remaining 10,564 common SNP markers,
we observed that the missing values were less than 10%, and these
missing data were imputed with software IMPUTE2 (43). After im-
putation, we removed the monomorphic markers, and the remaining
10,522 SNP markers were used for subsequent analyses. Marker
profiles of the hybrids were deduced from the corresponding parental
lines. On the basis of the SNP profiles, a principal coordinate analysis
was performed for 5042 lines, for which both phenotypic and geno-
typic data were available and/or if they represented parental lines of
hybrids. The Fgr statistic for each pair of experiments was estimated
using the method of Weir and Cockerham (44) as implemented in
the R package “hierfstat” (45) and visualized by a neighbor-joining
tree using the R package “ape” (46). LD between all pairs of SNP
markers within each chromosome was calculated as the squared
Pearson correlation coefficient (*) between vectors of SNP alleles
using the 5042 lines. The persistence of linkage phase between the
experiments was inferred by analyzing how similar or dissimilar the
correlations between pairs of markers were following the approach
suggested previously (47). Briefly, as the r* values do not allow to
differentiate between a positive and a negative correlation, we
calculated LD among all pairs of markers with a physical distance
smaller than 100 Mbp as the correlation coefficient r, where r can
take values between —1 and 1. The squared correlation between r values
of two different experiments was defined as LD phase and plotted
against the physical map distance to fit natural smoothing splines.

Broad-sense heritability for grain yield

A two-step procedure was applied to analyze the grain yield data
across environments (48). In the first step, the data for each envi-
ronment were analyzed separately. A linear mixed model was used
including the effects of genotypes, trials, replications nested within
trials, and blocks nested within trials and replications. BLUEs of
the genotypes in each environment were obtained and served as the
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input of the second step, where a linear mixed model was applied
including the effects of environments and genotypes. Fixed geno-
typic effects were assumed to obtain the BLUEs of the genotypic
values of the hybrids and their parents. Within each experimental
series, broad-sense heritability was calculated with a one-step model.
For each experimental series, a submodel of the following general
model was applied, and only those factors relevant to the experi-
mental design and the population used in a certain experimental
series were retained

Yield~Group + Env + Env:Trial + Env:Trial:Block + Line +
GCAF + GCApy + SCA + Env:Line + Env:GCAF + Env:
GCAp + Env:SCA + residual(Env) (1)

While the “Group” effect included specific means of hybrids and
lines, “Env,” “Trial,” and “Block” were the effects of environments,
trials, and blocks, respectively. The main effect of lines was denoted
as “Line”. The main effect of hybrids was decomposed into “GCAy”,
“GCA\”, and “SCA” effects, which refer to the general combining
ability (GCA) effects of females and males, and specific combining
ability (SCA) effect of hybrids, respectively. The following terms were
genotype-by-environment interaction effects. For integrated analysis
across experimental series, the broad-sense heritability was calcu-
lated on the basis of the BLUEs within each environment with model

Yield~Group + Exp + Env + Line + GCAg + GCApy + SCA + Env:
Line + Env:GCAFf + Env:GCAy + Env:SCA + residual(Env)  (2)

While “Exp” refers to the effects of the experimental series, the
other parameters are the same as model 1. All effects except “Group”
and “Exp” are set as random effects, and we use a heterogeneous
variance model for the residuals in each environment. All linear mixed
models were implemented using the software ASReml-R 3.0 (42).

Combining phenotypic and genomic data

Groups of genotypes with pairwise Rogers’ distances below 0.03 were
defined to be duplicates and merged for the integrated phenotypic
data analyses. Together, 484 duplicate groups were identified rep-
resenting 1168 lines or hybrids. These included 78 groups of hy-
brids and 406 groups of lines. The final genomic dataset comprised
10,737 unique lines (4491) and hybrids (6246); the latter were de-
rived by crossing 456 male and 720 female lines. This population of
10,737 genotypes for which 10,522 high-quality SNP markers had
been assessed was used for the genome-wide prediction analyses.

Genomic prediction and validation scenarios

of the prediction ability

We used a genomic best linear unbiased prediction model (G-BLUP)
including additive and dominance effects. The G-BLUP model has
the following form

Y=T+Ga+Gp+e (3)

where T is a fixed effect of the overall means within the experimen-
tal series or effect of the type of genotype (either lines or hybrids)
across the experimental series, and G, corresponds to the additive
genetic values and Gp refers to the dominance genetic values. The
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additive genetic value was modeled as G4 ~ N(0,A c2), with the
ww'

DY W= C,Za, and
C, is the centering matrix, n is the number of genotypes, Z, is
design matrix for additive markers, py is the allele frequency of k-th
marker, and p is the number of markers. The dominance genetic
values were modeled as Gp ~ N(0,D GZ), with the dominance rela-
ﬁ;ﬁ_mz, and V is the general or-
thogonal design matrix for dominance marker effects (49). Details
of the method can be found in (6). The above models were imple-
mented using the R package BGLR (50) with 30,000 iterations, with
the first 3000 iteration used as burn-in.

We used chessboard-like (experimental series I, II, and III) and
random fivefold cross-validations (experimental series IV, V, and V1)
to evaluate the prediction ability of genomic prediction within ex-
perimental series (fig. S5). Basically, data were divided into two sets,
a training set and a test set. The G-BLUP model was trained using
genomic and phenotypic data of the training set. The genomic data
of the test set were used to predict the genetic values of hybrids and
lines. The prediction ability for each test set was estimated as the
Pearson correlation coefficient between the predictions and the ob-
served phenotypic values.

In addition, we tested the prediction ability across experimental
series using different combinations of training sets. In the first
scenario, we used one out of the six experimental series as training
set. Each of the other experimental series was used as test set. The
prediction ability for each test set was estimated as the Pearson cor-
relation coefficient between the predicted and the observed hybrid
performances. In the second scenario, we used either experimental
series I, II, or III as test set. For the training sets, we incrementally
added the experimental series except the one used as test set. The
prediction ability for each test set was estimated again as the Pearson
correlation coefficient between the predicted and the observed
hybrid performances.

additive relationship matrix being A =

tionship matrix being D =

Effective population size and estimation of prediction ability
We estimated the effective population size N, as

_ k
RNy W

where 7 is the harmonic mean of the sample size, r* is the expected
LD between unlinked loci, and k = 1 for monoecious and k = 2 for
dioecious plants (51, 52).

When the heritability (h?) is known, the estimated prediction
ability (Pest ) is the square root of heritability multiplied by the esti-
mated prediction accuracy (7est ). The estimated prediction accuracy
depends on the heritability of the trait and the ratio between the
effective number of segments in the genome and the number of
individuals in the training population (16)

o n?
Test = \jh2+4NeLV (5)

N

— o~
Dest = h*rest

where L denotes the genome size in Morgan, 4N.Lv is the effective
number of segments in the genome assuming an infinitesimal model,
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and N is the size of the training population. From Eq. 5, it can be
concluded that if heritability and marker density are fixed, the ability
of genome-wide prediction is positively correlated with Ee, where Nﬂeis
the ratio between the size of the training population and the effec-
tive population size. We randomly sampled 500 subpopulations from
experiments VI with N ranging from 100 to 3100 and a range in the
ratio of N/N, from 2 to 60 between the different subsets. For each
subpopulation, a fivefold cross-validation was applied to obtain the
observed prediction ability pobs. We also calculated the broad-sense
heritability of each subpopulation and used Eq. 5 to obtain peg. The
correlation between pobs and Aﬂ,e or between Pobs and Peg was analyzed.
Moreover, we used a nonlinear regression model pops = a+ b*In
(Nﬁ) + € (53) to estimate the relationship between I\—I}7 and Pops. All
the above analyses use software R version 3.6.0 (54).

Optimized field designs to reduce genotype-by-environment
interaction effects

On the basis of the data of experimental series II, we tested in silico
three scenarios of field designs, each requiring a similar number of
plots. The full data of experimental series II included 11 checks,
226 elite lines, and 1815 single-cross hybrid progenies. In scenario
I, a balanced missing design was considered in which all lines and
hybrids were tested in three randomly selected environments,
corresponding to 6072 plots. We analyzed all 220 combinations of
three environments and estimated the across environment BLUEs
in each subset. In scenario II, a core of 10% of the elite lines and 10%
of hybrids were sampled and tested in all 12 environments with
11 checks. The remaining 90% of elite lines and hybrids were divided
into six groups of equal size and tested in two environments. The
random sampling was run for 220 times as in scenario I, and the
average number of plots used in this scenario was 6465. In scenario III,
all lines and hybrids were divided into 10 subgroups, each of which
was tested in only three environments, with the restriction that two
environments overlapped with those of the next group. The 11 checks
were tested in all environments to estimate the environmental effects,
and the average number of plots used in this scenario corresponded
to 6455. The model used to estimate BLUESs for all three scenarios
was Y=u+ G+ G* E + ¢, where 1 is overall mean, G is the genotypic
effect of lines and hybrids, G * E is the genotype-by-environment
interaction effect, and e corresponds to the residuals. The Pearson
correlation between BLUEs from subsets of scenarios I, II, and III,
and the total data including 12 environments were used to estimate
the precision of the estimates of the genotype effects.

Validation experiment to estimate the role of interactions
between genotypes and experimental series

To assess the role of interactions between genotypes and experimental
series, we generated 148 previously untested T hybrids that had both
parental lines in common with experimental series II but were not
tested in experimental series II. We selected the 148 hybrids out of
the 23,610 potential hybrids using the predicted grain yield perfor-
mance and further information on producibility of single-cross
hybrids, i.e., anther extrusion, plant height, and flowering time.
Ninety-six of the 148 hybrids belong to the highest yielding hybrids
(>90% quantile), and 30 belong to the lowest yielding hybrids
(< 10% quantile). The yield of the other 22 hybrids is somewhere in
between these two groups. The 148 hybrids were phenotyped in a
separate validation experiment for grain yield in eight environments
in Germany in the year 2019. We estimated the BLUE:s as outlined
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above and studied their correlation with the predicted hybrid per-
formance using data from experimental series II.

Predicting the yield performance of all potential single-cross
hybrids from the 4491 lines

We used the complete dataset and a ridge regression BLUP model
with additive and dominance marker effects to predict the hybrid
performance of all potential single-cross hybrids between the 4491
inbred lines. The model is as follows

Y=T+Zya+Zpd+e (6)

where Z4 and Zp, are the design matrices for additive and dominance
markers, the elements of Z are —1, 0, 1, while the homozygotes are
coded as —1 and 1, and the heterozygotes are coded as 0. The
elements of Zp are 0 and 1, while the two homozygote classes are
coded as 0, and the heterozygotes are coded as 1. We use the ridge
regression BLUP model in this section because it is not efficient to
predict all 10,082,295 potential hybrids using GBLUP.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/24/eabf9106/DC1

View/request a protocol for this paper from Bio-protocol.
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