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A B S T R A C T   

Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy 
metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementa-
tion, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low- 
methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomi-
tants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an 
approach to prolong lifespan which has been validated extensively in various animal models, such as Caeno-
rhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in 
oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one 
of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the 
association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of 
MR on lifespan, age-related implications, comorbidities, and diseases are discussed.   

1. Introduction 

Disturbed redox homeostasis is closely related to aging and meta-
bolic dysfunction and is influenced by diet and energy intake, with the 
organism adapting to changes in nutrients available in the environment. 
A network of nutrients and nutrient-sensing pathways regulates meta-
bolism, growth, and aging. As a dietary intervention, caloric restriction 
(CR), without causing malnutrition, is recognized as an experimental 
method capable of prolonging lifespan and positively affecting meta-
bolic health and various diseases of the organism, such as obesity, type 2 
diabetes, and cardiovascular disease [1], partly by reducing cellular 
oxidative stress [2–5]. However, it is difficult for individuals to stick to 
CR for decades. With increasing evidence that protein restriction (PR) 

may extend lifespan and reduce the risk of age-related diseases, 
numerous studies have focused on investigating the role of amino acids 
in the diet [6–8]. Studies have shown that restriction of a specific amino 
acid, methionine restriction (MR), has similar physiological effects as CR 
and is related to longevity, metabolic health but also cognitive disorders. 

The restriction of methionine seems to be related to a reduction of 
oxidative stress, through mechanisms not yet discovered, but these 
changes of the redox status seem to be one of the underlying mechanisms 
of life-span prolongation [9] and beneficial health effects [10,11]. Pro-
posed mechanisms for reducing a pro-oxidative environment by 
methionine restriction are multifold and include (i) induction of auto-
phagy in particular mitophagy and, therefore, the enhanced removal of 
reactive oxygen species (ROS)-producing, non-functional mitochondria 
[12], (ii) a reduction of ROS production within the mitochondria [13] 
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and effects on the transsulfuration and glutathione (GSH) pathways [14, 
15]. 

This review will give an overview on the possible interaction of the 
methionine pathways with the redox status of cells, and in particular the 
effects of methionine restriction. 

2. Methionine metabolism 

Methionine is an amino acid that occurs in two chiral forms. While D- 
methionine hardly occurs in nature, L-methionine is a component of 
most proteins. Besides cysteine, methionine is the only proteinogenic 
amino acid containing sulfur [16]. Due to the thioether group, Methi-
onine is less reactive than cysteine, whose sulfur atom is located in a 
sulfhydryl group. As an essential amino acid, methionine cannot be 
synthesized endogenously and must be provided by the diet [17]. In 
metabolism, methionine is a supplier of methyl groups (-CH3) and 
necessary for cell growth and normal cell function [18]. Furthermore, 
methionine is involved in the metabolism of polyamines, and GSH plays 

an important role in oxidative stress resistance [17,19]. Methionine 
metabolism can be divided into three connected pathways: the methi-
onine cycle, the transsulfuration pathway and the salvage pathway [20] 
(Fig. 1). 

In the methionine cycle, methionine is converted to the universal 
methyl-donor S-adenosylmethionine (SAM) by the enzyme methionine 
adenosyltransferase (MAT) [21]. In this reaction, all three phosphates 
are removed from ATP, indicating the “high-energy” nature of this sul-
fonium ion. As a principal methyl donor, SAM is involved in different 
methylation processes of DNA, RNA, and proteins [22]. After donating a 
methyl group, S-adenosylhomocysteine (SAH) is generated, which is a 
product inhibitor of SAM-dependent methylation reactions. SAH hy-
drolase (SAHH/AHCY) catalyzes the reversible hydrolysis of SAH to 
adenosine and L-homocysteine. The methionine cycle is closed by the 
followed remethylation of homocysteine to methionine. This process can 
be conducted via the folate cycle with 5-methyltetrahydrofolate as a 
methyl donor or by the betaine homocysteine methyltransferase 
(BHMT) requiring betaine as a methyl donor [23]. 

ABBREVIATIONS 

Acox1 acyl-coenzyme A oxidase 1 
AD Alzheimer’s disease 
ADF alternate day fasting 
AGE advanced glycation endproduct 
ATF4 activating transcription factor 4 
Aβ beta-amyloid 
B2M β2-microglobulin 
BAT brown adipose tissue 
BBB blood-brain barrier 
BDNF brain-derived neurotrophic factor 
BHMT betaine homocysteine methyltransferase 
C. elegans Caenorhabditis elegans 
CBS cystathionine-β-synthase 
CGL cystathionine-γ-lyase 
CNS central nervous system 
CO carbon monoxide 
Cpt1a carnitine palmitoyltransferase 
CVD cardiovascular disease 
DACD diabetes-associated cognitive decline 
dcSAM decarboxylated SAM 
E. coli Escherichia coli 
EOD every-other-day 
ER endoplasmic reticulum 
FGF fibroblast growth factor 
FGFRs fibroblast growth factor receptors 
GPx glutathione peroxidases 
GSH glutathione 
GSTP glutathione S-transferase 
H2S hydrogen sulfide 
HDL-C high-density lipoprotein cholesterol 
HFD high-fat diet 
HO-1 hemoxygenase-1 
HPA hypothalamic-pituitary-adrenal 
IBD inflammatory bowel disease 
IER intermittent energy restriction 
IR insulin resistance 
IUGR intrauterine growth restriction 
Keap1 Kelch-like ECH-associated protein 1 
LDL-C low-density lipoprotein cholesterol 
LOVs lacto-ovo vegetarians 
LPD low-protein diet 
MAPK mitogen-activated protein kinase 

MAT methionine andenosyltransferase 
MCI mild cognitive impairment 
MCM methionine cycle metabolites 
MD methionine deprivation 
MDA malondialdehyde 
Met methionine 
MPO myeloperoxidase 
MR methionine restriction 
MTA 5′-methylthioadenosine 
mTOR mammalian target of rapamycin 
mTORC1 mammalian target of rapamycin complex 1 
mtROS mitochondrial ROS 
Nfe2l2 hepatic Nrf2 
Nfe2l2fl/(Alb) liver-specific deletion of Nfe2l2 
NFκB nuclear = factor ’kappa-light-chain-enhancer’ of activated 

B-cells 
NO nitric oxide 
Nrf2 nuclear factor erythroid 2-related factor 2 
3-NT 3-Nitrotyrosine 
ob/ob leptin-deficient obese 
OCM one-carbon metabolism 
PEPCK phosphoenolpyruvate carboxykinase 
Ppargc1a peroxisome proliferator-activated receptor γ coactivator 

1-α 
PVN paraventricular nucleus 
ROS reactive oxygen species 
SAH S-adenosylhomocystein 
SAHH/AHCY S-adenosylhomocystein hydrolase 
SAM S-adenosylmethionine 
SCN suprachiasmatic nucleus 
SNA sympathetic nerve activity 
SOD superoxide dismutase 
SRB sulfate-reducing bacteria 
STZ streptozotocin 
sWAT subcutaneous white adipose tissue 
T2D type 2 diabetes 
TASIR1/TASIR3 taste 1 receptor member 1 and 3 
TC total cholesterol 
TG triglyceride 
TMAO trimethylamine-N-oxide 
TRF time-restricted fasting 
TSAA total sulfur amino acid 
WAT white adipose tissue 
WD western diet  
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Besides the remethylation pathway homocysteine can be utilized in 
the transsulfuration pathway [23]. In this metabolic pathway the 
transfer of sulfur from homocysteine to cysteine occurs and is the only 
route for biosynthesis of cysteine. The rate-limiting cys-
tathionine-β-synthase (CBS) synthesizes cystathionine through the 
condensation of homocysteine and serine. Cystathionine can be hydro-
lyzed by the cystathionine-γ-lyase (CGL) to produce cysteine, which is 
involved in the synthesis of proteins, GSH, and taurine [20]. GSH, a 
tripeptide of cysteine, glutamic acid and glycine, is one of the most 
important thiol redox buffers and can scavenge ROS. After scavenging 

ROS, GSH is reversibly oxidized to GSSG [20,24] or S-nitro-
soglutathione, the reaction product of •NO and GSH that can be restored 
by the enzyme S-nitrosoglutathione reductase (GSNOR) in a 
NADH-consuming manner [25]. 

GSH is found free or protein bound in eukaryotic cells. Since the GSH 
reductase is constitutively active and inducible during oxidative stress, 
free GSH is almost only present in its reduced form. Therefore, the GSH: 
GSSG ratio is a key redox sensor and can be used as a marker of oxidative 
stress. Under normal conditions in mammalian cells the molar GSH: 
GSSG ratio exceeds 100:1 whereas in various oxidative stress models 

Fig. 1. Schematic methionine metabolism (modified according to Parkhitko et al. [15]). The methionine metabolism can be divided into three main parts. In the 
methionine cycle the essential amino acid methionine is converted by methionine adenosyltransferase to S-adenosylmethionine (SAM), a principal methyl donor. 
SAM can be demethylated to S-adenosylhomocysteine and hydrolized to homocysteine by the S-adenosylhomocysteine hydrolase. Homocysteine can be either 
remethylated back to methionine through the folate cycle or by betaine homocysteine methyltransferase. Another pathway is the transsulfuration of homocysteine. In 
this route homocysteine is needed for the synthesis of L-cystathionine by cystathionine-β-synthase. L-cystathionine can be hydrolyzed by the cystathionine-γ-lyase to 
cysteine, a precursor for taurine, pyruvate and glutathione, which is important for the redox balance. As side product of both enzymes, hydrogen sulfide is built. 
Another possibility to regenerate methionine is through the salvage pathway. Thereby SAM is decarboxylated and serves as aminopropylgroup donor for the synthesis 
of polyamines like spermidine and spermine. For this synthesis putrescine is formed in parallel through arginase and ornithine decarboxylase activity and then 
synthesized to spermine and spermidine. The needed decarboxylated SAM here is thereby converted to 5′-methylthioandenosine and synthesized back to methionine. 
AdoMet = S-adenosylmethionine, ARG = arginase, BHMT = betaine homocysteine methyltransferase, CBS = cystathionine-β-synthase, CGL = cystathionine-γ-lyase, 
dcSAM = decarboxylated SAM, GSH = glutathione, GSSG = glutathione disulfide, H2S = hydrogen sulfide, MAT = methionine adenosyltransferase, MS = methionine 
synthase, MT = methyltransferase, MTA = 5′-methylthioandenosine, ODC = ornithine decarboxylase, SAH = S-denosylhomocysteine, SAHH/AHCY = S-adeno-
sylhomocysteine hydrolase, SAM = S-adenosylmethionine, SMS = spermine synthase, SRM = spermidine synthase. 
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decreased ratios of 10:1 or even 1:1 have been observed [26,27]. The 
extracellular GSH/GSSG ratio and Cys/cystine ratio in plasma can be 
used to quantify oxidative stress associated with a number of unhealthy 
risk factors [28]; in addition, the GSH/GSSG ratio and the Cys/cystine 
ratio can be influenced by the SAA content of meals [29]. Furthermore, 
in an SAA-deficient diet, additional intake of drugs, such as therapeutic 
doses of acetaminophen, may alter SAA metabolism to maintain plasma 
cysteine/cystine redox potential (E(h)CySS) [30]. 

It has been shown that an activation of the transsulfuration pathway 
also promotes the production of the signaling molecule hydrogen sulfide 
(H2S) [31]. As a side product of cystathionine-β-synthase and cys-
tathionine-γ-lyase H2S is generated and has been recognized as the third 
gaseous signaling molecule together with nitric oxide (NO) and carbon 
monoxide (CO) [32]. Although it is toxic in high concentrations, under 
physiological conditions, low concentrations of endogenous H2S have a 
protective effect. It protects cells from oxidative stress by modulating 
neuronal transmission, smooth muscle relaxation, release of insulin, and 
the inflammatory response [33,34]. Since transsulfuration modulates 
several physiological processes and plays a central role in maintaining 
redox balance, dysregulation of this pathway can lead to deleterious 
effects. Cysteine and H2S participate in a multitude of signaling pro-
cesses and need to be highly regulated for normal cellular processes with 
multi-level controls (details on regulators of transsulfuration can be 
found in Ref. [31]). 

To regenerate methionine, the transsulfuration pathway intersects 
with the transmethylation pathway, where homocysteine can be reme-
thylated back to methionine as already mentioned above. However, 
impaired homocysteine remethylation and aberrancy in methyl-
transferase reactions can lead to methionine deficiency and homocys-
teine elevation, a process that seems to be associated to NAFLD, 
metabolic syndrome and cardiovascular risk as well as inflammation, 
oxidative stress, unfolded protein response, and cell death [35–41]. 

Another way to regenerate methionine is through the salvage 
pathway, also known as 5′-methylthioadenosine (MTA) cycle, which 

regenerates methionine through SAM and is involved in the production 
of polyamines [42]. Briefly, SAM is decarboxylated by adenosylme-
thionine decarboxylase to dcSAM (decarboxylated SAM) and can serve 
as an aminopropyl group donor. In parallel, arginine is converted to 
ornithine by arginase and then decarboxylated by ornithine decarbox-
ylase to putrescine. Putrescine is involved in the production of spermi-
dine and spermin through spermidine synthase and spermin synthase, 
which use dcSAM as aminopropyldonor. Meanwhile, dcSAM is con-
verted to MTA and through multiple enzymatic steps synthesized back to 
methionine [20]. Polyamines produced by this route are thought to play 
a dual role in maintaining redox balance. Polyamines may act protec-
tively as free radical scavenger of hydroxyl radicals formed by 
fenton-like reactions, but not against superoxide radicals [43]. 

In addition, they may influence autophagy and interact with 
signaling pathways that modulate cellular responses [19]. While low 
polyamine levels promote growth cessation, high concentrations are 
associated with rapid proliferation or cancer. Dysregulated polyamine 
metabolism could lead to an imbalanced metabolic redox state. There-
fore, maintaining intracellular polyamine homeostasis seems to be very 
important [44]. 

In addition to these three major pathways, several paralogous 
pathways contribute to methionine metabolism, as described by 
Sekowska et al. [45]. Studies show that chronic high exposure to 
methionine can lead to increased oxidative stress and contribute to 
multiple diseases and methionine metabolism dysregulation [17]. Di-
etary interventions such as methionine restriction could therefore 
contribute to the pathogenesis of multiple diseases as well as life span 
extension [17,23,46–49]. 

3. Methionine restriction (MR), aging, and diseases 

3.1. Aging/lifespan 

Life expectancy has been rising in most countries over the past 

Fig. 2. The possible mechanism of methionine on mTORC1 activity and autophagy. A: Methionine can lead to higher circulating SAM concentrations. This is 
sensed by SAMTOR leading to an activation of mTORC1. Also intracellular SAM can methylate phosphatase 2A which activates mTORC1. Activated mTORC1 
supresses the activity of the ULK1 complex through a specific phosphorylation on SER757 resulting in autophagy inhibition. This can lead to higher levels of damaged 
cell organelles such as mitochondria producing more ROS. B: Under methionine restricition SAM levels are altered leading to a supressed mTORC1 activity. The ULK1 
complex is active and promotes autophagy. Also the suppressed mTORC1 can lead to higher H2S production, a radical scavenger leading to lower ROS levels. Besides, 
the possible upregulation of the salvage pathway in the methionine cycle by methionine restriction leads to higher levels of polyamines, able to stimulate cyto-
protective autophagy. mTORC1 = mammalian target of rapamycin complex 1, SAM = S-adenosylmethionine, ROS = radical oxygen species. 
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decades, as well as the prevalence of aging-associated pathological 
conditions [50]. It is suggested that a long-term, low-fat, whole-food 
vegan diet may increase life expectancy in humans by 
down-regulating IGF-I activity [51]. The influence of dietary in-
terventions and restrictions, including CR and PR, on (metabolic) health 
and aging, has been investigated for more than 60 years [52,53]. Recent 
evidence shows that especially the quantity, source, and amino acid 
composition are strongly associated with the positive effects on lifespan 
extension and metabolic health [54]. 

Dietary methionine restriction prolongs mammalian lifespan [55], 
although it should be noted that Western diets contain methionine at 
levels many times higher than dietary requirements [56]. The adverse 
effects of this amino acid on lifespan have been strongly related to the 
disadvantageous ability of methionine to promote oxidative stress by 
several mechanisms, which might promote the aging process. 

Methionine restriction (MR) was first reported by Dr. Norman 
Orentreich in 1993 [55]. They restricted the essential amino acid 

L-methionine from 0.86 to 0.17% of the diet, resulting in a 30% longer 
lifespan of male Fischer 344 rats. Similar results have been demon-
strated in other models of yeast [57], Drosophila [58], Caenorhabditis 
elegans (C. elegans) [59], mice [60,61] and rats [55,62,63]. Richie et al. 
were able to show that 80% MR in Fisher 344 rats resulted in a 44% 
increase of lifespan compared to controls [63]. In a mouse model of 
BALB/cJ × C57BL/6J F1 mice, a diet with 0,15% methionine compared 
to 0,43% methionine led to lifespan extension [60]. The positive effects 
on lifespan extension are associated with favorable metabolic responses 
on low-methionine diet in rodents [64,65]. Studies in other species 
under specific growth conditions support these results. For example, 
Carbreiro et al. demonstrated that metformin-induced altered methio-
nine metabolism in Escherichia coli (E. coli) led to MR in E. coli, resulting 
in a prolongation of lifespan in their host C. elegans [59]. Drosophila fed 
with MR also had longer lifespans, but only under conditions of a low 
amino acid status,while a high amino acid status prevented the effect 
[58]. In cell culture experiments in human diploid fibroblast by Koziel 

Table 1 
Antioxidant effects of MR.  

Studied 
condition 

Model/Species/ 
Strains 

Age Diet composition/ 
MR content 

Intervention 
duration 

Effects Ref. 

Obesity (M) C57BL/6J mice 14 weeks old HFD: 24% Fat; 
SD: 0.86% Met; 
MR: 0.17% Met 

22 weeks Body weight ↓; fat mass ↓; lean mass per BW ↑; 
tissue mass per BW ↑; serum/liver ROS, GSH/GSSG ↑; 
serum/liver MDA ↓; liver GSH ↓; 
hepatic Nrf2, HO-1 and NQO-1 genes ↑ 

[83] 

Obesity (M) C57BL/6J mice 29 weeks old HFD: 24% Fat; 
SD: 0.86% Met; 
MR: 0.17% Met 

15 weeks Plasma SOD ↑; plasma MDA ↓; 
heart Nrf2, HO-1 and NQO-1 genes ↑ 

[86] 

Healthy (M) Wistar rats 7 weeks old SD: 0.86% Met; 
MR: 0.34% Met 

7 weeks Kidney 8-oxodG -; brain 8-oxodG ↓; 
kidney/brain GSA, AASA, CEL, CML, MDAL ↓ 

[92] 

Obesity (M) ob/ob mice 10 weeks old SD: 0.86% Met; 
MR: 0.12% Met 

14 weeks Body weight ↓; adiposity ↓; lean body weight ↓; 
plasma total cholesterol and LDL ↓; hepatic TG ↓; VLDL ↑; 
serum ALT and AST ↓; hepatic Scd1 gene↓; hepatic FAO ↑ 

[113] 

Obesity (M and F) C57BL/ 
6J mice 

18 weeks old WD: 42% high-fat, 
high-sucrose 
SD: 8.2 g/kg Met; 
MD: 0% Met 

5 weeks Body weight ↓; WAT UCP-1 gene in males ↑; 
Acc1 and Fasn in females ↑; skeletal muscle mTORC1 ↓ 

[116] 

Healty (M) F-344 rats 6–7 weeks old SD: 0.86% Met; 
MR: 0.17% Met 

Short-term study 2 
weeks and 4 weeks; 
long-term study: 1–6 
months 

Plasma 8-OHdG, 8-isoprostane, protein-bound GSH in long- 
term study↓; free GSH in long-term study↑; liver and kidney 
GSH in short-term study ↓; 
brain GSH in short-term study -; brain GSSG reductase in both 
short-term study and long-term study; liver GSH peroxidase in 
both short-term study and long-term study↓; 
kidney GSH peroxidase in both short-term study and long-term 
study↑; brain GSH peroxidase in both short-term study and 
long-term study; 
liver total SOD activity, Mn-SOD in long-term study 

[123] 

Obesity (M) C57BL/6J mice 5 weeks old HFD: 20% Fat; 
SD: 0.86% Met; 
MR: 0.17% Met 

22 weeks Body weight ↓; body fat rate ↓; plasma lipid levels ↓; 
colon MDA ↓; colon/ileum GSH-Px ↑; 
colon/ileum GSH/GSSG ↑ 

[119] 

Healty (M) C57BL/6J mice 6 weeks old SD: 0.86% Met; 
MR: 0.17% Met 

8 weeks Insulin sensitivity ↑; hepatic glucose production ↓; 
hepatic FGF21 ↑; HepG2 cells GSH, GSSG ↓ 

[139] 

Healthy (M) Wild-type, 
Gcn2− /−

5 weeks old 
(Exp. 1) 
7 weeks old 
(Exp. 5&6) 

SD: 0.86% Met; 
MR: 0.17% Met 

14 weeks 
(Exp. 1) 
8 weeks 
(Exp. 5&6) 

Insulin, glucose ↓(Exp. 1); energy expenditure ↑(Exp. 1); GSH 
(Exp. 5&6)↓; 
hepatic NQO-1 gene ↑(Exp. 5&6); targets of Nrf2 (Exp. 5&6)↑ 

[150] 

Healthy (M) Wild Type, 
Nfe2l2fl/(Alb) 

8 weeks old SD: 0.86% Met; 
MR: 0.17% Met 

8 weeks Energy expenditure ↑; hepatic Nfe2l2 gene -; 
serum FGF21 ↑; Nfe2l2 target genes - 

[152] 

Healthy (M) Wistar rats 10 weeks old SD: 0.86% Met; 
MR: 0.17% Met 

7 weeks Brain 8-oxodG, GSA, AASA, CEL, CML ↓ [173] 

Aging (M) Wistar rats 8 months and 
26 months 

SD: 0.86% Met; 
MR: 0.17% Met 

8 weeks Peroxisomal β-oxidation, GSA, 2-SC ↓ [174] 

Glioma The human glioma 
cell lines U87 and 
U251 

N/A, cell 
culture 

Met-Cys 
double deprivation 

96 h GSH ↓; ROS ↑; LC3-II ↑ [175] 

Aging (M) C57BL/6J mice 2, 12, and 15 
months old 

SD: 0.86% Met; 
MR: 0.34% Met 

3 months Brain NQO-1, HO-1 genes ↑; brain MDA ↓; 
serum/liver/brain FGF21 ↑ 

[263] 

IBD (M) ICR mice Not mentioned SD: 0.8% Met; 
MR: 0.14% Met 

7 days Colon MPO ↓; colon SOD, CAT, GPx ↑; 
colonic nuclear Nrf2 ↑ 

[251] 

a Symbol: ↑ means increase; ↓ means decrease; - means no effects. 
b M means male; F means female. 
c HFD means high fat diet; SD means standard diets; MR means methionine restriction; MD means methionine deprivation; WD means western diet. 
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et al., it was observed that under MR conditions, the replicative lifespan 
was extended while cellular senescence was postponed [66]. 

The underlying mechanisms of the beneficial effects of MR on aging 
are very complex and not yet fully understood [18]. One possibility 
could be through influencing insulin/IGF-1 and mTORC1 (mammalian 
target of rapamycin complex 1) signaling, which regulated longevity 
across species in other dietary restriction and protein restriction models 
[67–69]. Like growth factors, insulin, and amino acids, methionine can 
contribute to mTORC1 activation, a complex with several subunits and 
central regulator of cell functions [70]. Activated mTORC1 is sup-
pressing autophagy by inactivation of Ulk1 (Ser757) through phos-
phorylation [71] (Fig. 2A). However, autophagy plays an important role 
in the removal of damaged organelles such as mitochondria. Interest-
ingly, recent data from Plummer et al. suggest that the autophagic ac-
tivity underlying the lifespan extension by MR could be specifically that 
of mitophagy (the autophagy-dependent degradation of mitochondria), 
but not non-specific bulk macroautophagy or any other known form of 
selective autophagy [12]. Damaged mitochondria produce more ROS 
[72], therefore mitophagy is important to maintain mitochondrial 
quality. 

Suppression of mTORC1 signaling pathways by MR could therefore 
extend chronological and replicative lifespan by reducing oxidative 
stress caused of damaged organelles [49] (Fig. 2B). Studies show that 
methionine can influence the mTORC1 activity via multiple pathways. 
On the one hand, SAM, a metabolite of methionine, is sensed by SAM-
TOR, resulting in mTORC-1 activation and autophagy suppression. On 
the other hand, intracellular SAM can methylate protein phosphatase 
2A, which also activates mTORC1 [18,70]. MR is thought to alter SAM 
availability and thereby contribute to lifespan extension by suppressing 
mTORC1 activity [20]. Also, extracellular methionine is sensed by the 
taste 1 receptor member 1 and 3 (TASIR1/TASIR3) resulting in mTORC1 
activation through phospholipase C, increase in intracellular calcium, 
and mitogen-activated protein kinase (MAPK) activation [18,73]. Lower 
extracellular methionine levels could therefore suppress this activation. 
Further, the induction of autophagy is closely related to the salvage 
cycle described in chapter 2 [19]. 

In addition, methionine is indirectly involved in the synthesis of 
polyamines, as the dcSAM formed in the methionine cycle serves as an 
aminopropyl donor for polyamine synthesis [20]. Polyamines like 
Spermidine stimulate cytoprotective autophagy, and it could be shown 
that supplementation with spermidine could extend lifespan across 
species [74–77]. Controversially, although methionine is required for 
the synthesis of spermidine, MR actually resulted in a 10-fold increase in 
spermidine in studies by Barcena et al. in progeroid mice, leading to an 
increase in lifespan [61]. The upregulation of the salvage pathway in MR 
could be a possible target for the positive effect [18]. Another mecha-
nism on lifespan extension could be through the positive effect of MR on 
aging-associated metabolic diseases. In adult mice fed MR, the negative 
effects of aging on body mass, obesity, and insulin resistance were 
reversed by induction of fibroblast growth factor (FGF) 21 in the liver 
[78]. 

The positive effects of MR on lifespan extension are partially medi-
ated through reducing oxidative stress, which is closely related to aging 
and aging-associated diseases. Induction of autophagy, H2S production, 
and reduction in free radical leakage from mitochondria seem to 
contribute there [18]. An increased flux via the transsulfuration 
pathway has been described in different MR models and is postulated as 
contributing factor for lifespan extension [79,80]. It could be caused by 
an enhanced cystathionine y-lyase expression when sulfur-containing 
amino acids are restricted [81]. Human studies in centenarians also 
revealed a specific plasma profile associated with an enhanced trans-
sulfuration pathway and highly regulated methionine metabolism [80]. 
Contributing to the beneficial aging effect appears to be enhanced H2S 
synthesis as a byproduct of this pathway. H2S can act as a ROS scavenger 
and upregulate antioxidant defense mechanisms [18]. 

Suppression of the mTOR pathway by MR can also lead to increased 

H2S production, as mentioned above [71]. In vivo and in vitro studies by 
Wang et al. demonstrated that MR can effectively delay senescence 
through higher H2S production and mTOR suppression by AMPK in 
renal aging [82]. This is supported by various studies across species 
observing an enhanced H2S production by MR [83–86]. In addition, the 
transsulfuration pathway is required for the synthesis of GSH, an 
important regulator of redox balance [24]. The antioxidant effects of MR 
are summarized in Table 1. Studies have shown that an 80% MR in-
creases the GSH content in erythrocytes of rats, which correlates with a 
reduction in age-related diseases and life expectancy [63,87]. However, 
it was also observed that GSH was reduced by MR in the liver and several 
tissues, although oxidative stress was not enhanced [63,65,87–89]. The 
low levels of hepatic GSH could be compensated by increased oxidative 
capacity [89]. GSH decrease and GSSG:GSH ratio increase are possible 
to contribute to extend lifespan by MR [62]. However, the influences 
and mechanisms of MR on GSH and GSH:GSSG ratio are still unclear, 
and further studies are needed. 

In addition, methionine seems to stimulate mitochondrial ROS pro-
duction. Mitigation of mitochondrial ROS (mtROS) by MR is another 
mechanism that contributes to the maintenance of a redox balance for 
healthy aging [18]. Sanz et al. demonstrated that 80% MR decreased 
mtROS production of complexes I and III in the liver and heart, similar to 
the results of Caro et al. [90–92]. Lifespan extension could be partially 
mediated by attenuating mtROS overproduction. The underlying 
mechanism appears to be a direct and rapid effect of methionine or 
methionine metabolites on mitochondrial complexes [13]. It has been 
reported that the reaction of methionine with hydroxyl radicals pro-
duces methionine radicals as intermediates and methanethiol as the 
final gaseous product [93]. Intermediate radicals or methanethiol itself 
may react with complex I or III in mitochondria, leading to over-
production of mtROS. 

In summary, reduction of oxidative stress, induction of autophagy 
(mitophagy), and activation of the transsulfuration pathway seems to 
contribute most to lifespan extension by MR, but the mechanisms are 
very complex and not yet fully understood. 

3.2. Cardiovascular disease and associated risk factors 

Cardiovascular disease (CVD) is the leading cause of morbidity and 
mortality in the world and aging is the dominat risk factor for CVD. 
Aging has remarkable effects on the heart and arterial system, leading to 
an increase in CVD including atherosclerosis, hypertension, myocardial 
infarction, and stroke [94]. Inappropriate diet contributes to “unsuc-
cessful” aging and aging-related diseases [95] and is also a major risk 
factor for CVD, which can thus also be seen as a diet-associated disease. 
Diets rich in red meat, such as western diet (WD) correlate with 
increased CVD risk. One reason for the increased CVD risk observed in 
high red meat diets is thought to be linked to gut microbiota-dependent 
generation of trimethylamine-N-oxide (TMAO) from L-carnitine, a 
nutrient abundant in red meat [96]. TMAO is pro-inflammatory, able to 
impair vascular function and structure, and may up-regulate scavenger 
receptors and inhibit reverse cholesterol transport. 

In general, a westernized diet, such as high fat diet (HFD) is char-
acterized by a high proportion of saturated fat. Increased intake of fat, 
especially saturated fat, is associated with the increase in car-
diometabolic diseases and obesity [97]. In fact, obesity is another in-
dependent risk factor for CVD [98]. Obesity is a multifactorial disease 
caused by the interaction of multiple factors such as genetics, environ-
ment, and biology, leading to the expansion of adipose tissue. Both sexes 
and all ethnic groups are affected by obesity at all ages [99] and obesity 
is associated with lower life expectancy because of a dramatic increase 
in the risk of comorbidities such as diabetes and CVD, including hy-
perglycemia, hypertension, and dyslipidemia. Furthermore, 
obesity-related diseases appear to accelerate cellular processes also 
observed in normal aging [100]. MR may delay the occurrence of CVD 
and associated risk factors. A diet high in animal protein/methionine 
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increases total homocysteine and methionine concentrations and thus 
the risk of CVD [101,102], whereas a low-fat vegetarian and vegan diet 
is associated with a reduction in cardiovascular risk factors [103]. 
Notably, MR can induce hyperhomocysteinemia in rats, which is a risk 
factor for the development of CVD [104]. However, Ables et al. [105] 
consider that MR may improve cardiac adaptability despite 
hyperhomocysteinemia. 

It has been reported that total fat mass increases with age and its 
distribution changes, especially in the abdominal region [106]. In 
particular, abdominal obesity is a risk factor for CVD worldwide [107]. 
MR to alleviate obesity, such as reducing body weight and abdominal fat 
deposition and increasing energy expenditure, has been extensively 
studied. 

MR was able to prevent weight gain and fat accumulation in both 
mouse and human studies [108,109]. Restricting methionine content 
from 0.86% to 0.17% can effectively increase total energy expenditure 
and core temperature and regulate metabolic flexibility, as shown in 
F344 rats. Dietary MR produced a persistent increase in uncoupling 
protein 1 expression in brown and white adipose tissue in combination 
with decreased leptin and increased adiponectin serum levels [110]. 
Compared with HFD-induced obese mice, 22-week MR (0.17% Met) 
significantly increased average heat production during the light and 
dark cycle [111]. Interestingly, MR also seems to be able to restore the 
circadian misalignment induced by a HFD. MR (0.17% Met; control diet 
0.86% Met) improved the HFD-disrupted cyclical fluctuations of lip-
idolysis genes and the circulating lipid profile in C57BL/6 J mice. Also, 
MR improved the expression of clock-controlled genes in the liver and 
the brown adipose tissue [112]. 

In addition, obesity may affect heart function through risk factors 
such as dyslipidemia. MR has been evidenced to improve lipid meta-
bolism. The plasma levels of triglyceride, total cholesterol, and low- 
density lipoprotein cholesterol were decreased, while high-density li-
poprotein cholesterol was increased significantly in HFD-fed mice after 
MR [84,111]. Similar effects were shown in leptin-deficient obese 
(ob/ob) mice after 14 weeks of 0.12% MR treatment [113], suggesting 
that MR can effectively improve the dyslipidemia of obese mice. 

Lipid metabolism is a driving force for the pathological changes in 
CVD, and remodeling lipid metabolism by MR and reducing fat mass 
could therefore reduce a risk factor for CVD. 

A 2011 study showed in 26 obese adults randomized to MR (2 mg 
Met/kg body weight/day) or control diet (35 mg Met/kg body weight/ 
day) that MR intervention increased fat oxidation and decreased car-
bohydrate oxidation and resulted in a decrease in intrahepatic lipid 
content. Comparable weight loss was observed in both groups [114]. 

In F344 rats it was shown that MR induced a coordinated down-
regulation of lipogenic genes in the liver, resulting in a corresponding 
reduction in the capacity of the liver to synthesize and export lipids 
[115]. In this study, MR also remodeled the morphology of adipocytes in 
all three depots (epididymal, visceral and subcutaneous WAT), 
increased mitochondrial density in two depots (visceral and subcu-
taneous), increased TCA flux, and increased the capacity of subcutane-
ous WAT to oxidize palmitate. Changes in gene expression within WAT 
and liver reveals that dietary MR produced fundamentally different re-
sponses between the tissues with respect to lipid metabolism, however 
the coordinated remodeling of lipogenic gene expression between liver 
and WAT induced by dietary MR resulted in a significant decrease in 
circulating and hepatic lipid levels, beneficial to the overall metabolic 
profile of the animal. 

In addition, MR also upregulated genes related to mitochondrial 
β-oxidation, further reversing hepatic steatosis in ob/ob mice [113]. In a 
short-term methionine deprivation (MD), genes involved in hepatic fatty 
acid β-oxidation, including peroxisome proliferator-activated receptor γ 
coactivator 1-α (Ppargc1a), carnitine palmitoyltransferase (Cpt1a), and 
acyl-coenzyme A oxidase 1 (Acox1), were significantly upregulated in 
female C57BL/6J mice, but not in male ones [116]. Consistent with that, 
greater changes in lipogenic gene expression in the WAT of female mice 

compared to male mice were detected in that study. An important note 
from the authors is that they studied only young mice, and the question 
arises whether the sex-specific effects of MR persist in older animals 
after the levels of sex hormones, that drive many sexually dimorphic 
phenotypes, have declined. 

In addition to fat deposition and impaired lipid metabolism, systemic 
oxidative stress appears to be an important link between CVD, associ-
ated risk factors, and aging. Chronic or long-lasting oxidative stress may 
cause cell damage by oxidizing cellular components such as proteins, 
lipids, and DNA [117], and is closely related to antioxidant enzymes like 
GSH, glutathione peroxidases (GPx), and superoxide dismutase (SOD) 
[118]. MR is able to reduce oxidative stress and oxidation-derived 
damage. In HFD-fed mice it was shown that MR is able to improve in-
testinal barrier function, inflammatory response, and oxidative stress by 
regulating the intestinal microbiota and its metabolites [119]. Improved 
gut homeostasis may be also associated with decreased body weight, 
body fat rate, blood glucose and plasma lipid levels by MR. 

Furthermore, the nuclear factor erythroid 2-related factor 2/Kelch- 
like ECH-associated protein 1 (Nrf2/Keap1) pathway plays a role in 
stress response [120]. Nrf2 is a master regulator of multiple antioxidant 
enzymes, modulates cellular redox balance and senses the status of 
cellular oxidative stress. This is done by stimulating the activity of 
components of antioxidant defense, such as SOD, GPx, heme 
oxygenase-1 (HO-1), glutathione reductase, thioredoxin reductase, 
ferritin, and NAD(P)H:quinone oxidoreductase (NQO1). Inducing HO-1 
in obesity provides an antioxidant environment that can decrease the 
formation of adipocytes by reducing visceral adipose precursor prolif-
eration, contributing to hyperplastic adipose tissue expansion [121, 
122]. A diet restricting methionine to 80% (0.17% Met) significantly 
increases plasma SOD and decreases MDA levels while increasing mRNA 
expression of Nrf2, HO-1, and NQO-1 in the heart of HFD-fed mice with 
cardiovascular impairment [86]. 

In F344 rats MR was associated with a reduction in oxidative stress 
biomarkers, including plasma 8-hydoxydeoxyguanosine (8-OHdG), 8- 
isoprostane and erythrocyte protein-bound GSH after one month with 
levels remaining low for at least six months. However, no changes in the 
activities of GSH reductase in liver and kidney and SOD in liver were 
observed as a result of MR feeding, indicating that oxidative stress is 
reduced by MR feeding in rats, but this effect cannot be explained by 
changes in the activity of antioxidant enzymes [123]. 

The mechanism by which MR ameliorates oxidative stress during 
CVD may be the activation of autophagy and hepatic H2S generation 
[85,124]. Activating transcription factor 4 (ATF4) is considered a master 
regulator of metabolism and is essential for the autophagy gene tran-
scription program [125]. 

Although ATF4 is not required for many responses to MR, including 
body weight reduction and body composition shift (towards leanness), it 
is required for maintenance of redox homeostasis through the trans-
sulfuration pathway leading to production of endogenous H2S [126]. In 
C. elegans, the ATF4/CTH2/H2S pathway also increases stress resistance 
by suppressing mTORC1 [127]. Furthermore plasma H2S levels are 
negatively correlated with adiposity [128] and H2S modulates Sirt1, 
which in turn is able to interact with mTOR to suppress oxidative stress 
[129]. In addition, oxidative stress triggers disruption of signaling 
pathways associated with metabolism and epigenetics, including 
microRNAs [130]. Similarly, MR regulates miR-328-3p, a type of 
microRNA that directly targets CGL and modulates endogenous H2S 
levels, thereby relieving oxidative stress and ER stress and improving 
homeostasis and metabolic efficiency in HFD-fed mice [83]. In conclu-
sion, MR can reduce body weight, increase energy expenditure, and 
balance redox status. However, on the one hand, MR may induce 
hyperhomocysteinemia, but on the other hand, it may improve cardiac 
adaptability. Since a sex-specific response to MR has been demonstrated 
in young C57BL/6J [116], it is important from a translational perspec-
tive to also conduct studies at older ages, especially if we want to 
investigate and better understand the effects of MR on age-related 
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diseases such as CVD and associated risk factors. 

3.3. Type 2 diabetes/insulin resistance 

Insulin resistance (IR) is a set of clinical manifestations resulting 
from a decrease in the sensitivity of target tissue cells in liver, muscle, 
and adipose tissue to insulin, leading to a decrease in the efficiency of 
glucose uptake and utilization. IR, in addition to progressive pancreatic 
islet beta-cell loss, is part of the pathogenesis of type 2 diabetes (T2D). 
T2D is generally manifested after the age of 40 and is thereby regarded 
as typical age-related disease [131]. Indeed, recent data from Fazeli 
et al. [132] suggest as already other data before, that aging is an inde-
pendent risk factor for T2D and this disorder is closely related to the 
aging process. 

Vegan and vegetarian diets contain lower concentrations of methi-
onine compared to omnivorous diets and this could explain the reduced 
incidence of diabetes in humans following the former diets [48]. Cas-
taño-Martinez et al. [48] found that vegans had increased insulin 
sensitivity. 

An elevated concentration of circulating fibroblast growth factor 21 
(FGF21) has been implicated as a potential underlying mechanism. 
Although plant based and animal based foods have different amino acid 
compositions and the beneficial effects of a vegetarian diet have been 
reported, a study in mice shows that total protein, not amino acid 
composition, has healthy metabolic effects [133]. Nevertheless, litera-
ture data concerning effects of animal and plant protein are contradic-
tory. Pivovarova-Ramich et al. showed in a randomized clinical trial in 
individuals with T2D, that both plant and animal protein based diets 
(30% of energy coming from protein in both groups) similarly reduce 
oxidative stress markers malondialdehyde (MDA) and protein carbonyls, 
but led to an increase in 3-nitrotyrosine (3-NT) in plasma, related to 
changes in fasting insulin and insulin resistance [134]. In contrast, it was 
shown that replacement of red meat with soy protein reduced plasma 
MDA and increased plasma total antioxidant capacity [135], a beneficial 
effect that couldn’t be confirmed by another study [136]. In accordance 
with epidemiological studies on red meat intake, a high-methionine diet 
in rats showed an increased level of MDA and 3-NT in the liver [137]. 
However, the animal protein based diet in the study from 
Pivovarova-Ramich et al. was rich in white meat and dairy food and the 
methionine content of the diet is unknown. 

In various animal models, numerous studies have shown that MR 
improves systemic glucose homeostasis and insulin signaling in pe-
ripheral tissues [46,60,138]. MR has beneficial effects on glucose ho-
meostasis in some tissues and organs of the body. In the liver, MR 
(0.17%) enhanced the inhibitory effect of insulin on glucose production 
in C57BL/6J mice during the 8-week intervention, which was related to 
the increase in Akt phosphorylation [139]. Methionine deprivation also 
rapidly restored normal glucose tolerance and improved 
insulin-stimulated glucose uptake and suppression of hepatic gluco-
neogenesis in both female and male mice fed a continuous high-fat, 
high-sugar diet [116]. 

In addition, NZO mice treated with MR showed a decreased hepatic 
glycogen content and increased hepatic phosphoenolpyruvate carbox-
ykinase (PEPCK) protein expression, indicating increased gluconeo-
genesis [48]. MR resulted in a significant decrease in circulating and 
hepatic lipid levels through the coordinated transcriptional restructur-
ing of fat metabolism between the liver and WAT, which may also 
improve insulin sensitivity, shown in F344 rats [115]. 

In skeletal muscle, MR improved expression and transport of GLUT4 
and glycogen levels and increased the expression of glycolysis-related 
genes (HK2, PFK, PKM) in HFD-fed mice [140]. This suggests that MR 
alleviates insulin resistance and improves glucose utilization by pro-
moting glucose uptake and glycogen synthesis, glycolysis, and aerobic 
oxidation in skeletal muscle. MR can also increase insulin sensitivity by 
enhancing mitochondrial biogenesis with increased mtDNA copy num-
ber, TFAM, and PGC1-α mRNA level in HFD-fed mice [140]. In the renal 

cortex and HK-2 cells (a type of proximal tubule cells of the human 
kidney) of Gnmt-deficient mice, a low-protein diet (LPD) also had 
beneficial effects on diabetic kidney disease [141]. LPD protected the 
kidney by inhibiting mTORC1, which was related to the lower SAM 
levels caused by low methionine intake in the diabetic mice. 

Because MR can maintain systemic glucose homeostasis, it is thought 
to be a preventive or complementary feeding pattern. Intrauterine 
growth restriction (IUGR) is prone to the development of T2D. An MR 
diet reduced hyperglycemia in pigs with IUGR by promoting hepatic 
protein kinase B signaling and glycogen synthesis [142], suggesting that 
MR may be a potential dietary strategy to prevent T2D in humans with 
IUGR. 

Chronic inflammation and oxidative stress triggered by obesity and 
often as a result of inactivity/sedentary lifestyle over years, lead to IR 
and eventually to T2D [143], which also accelerates aging. Signaling 
molecules, including hydrogen peroxide, are involved in the regulation 
of cellular functions. Reactive molecules can lead to abnormal changes 
in intracellular signaling and cause chronic inflammation and IR [144]. 
MR improves insulin sensitivity possibly by activating FGF21-mediated 
antioxidant signaling pathways. FGF21 is a novel target involved in 
metabolic regulation and has significant effects on enhancing insulin 
sensitivity. FGF21 and its receptors (FGFRs) are widely distributed in 
liver, adipose tissue, and pancreas, and FGF21 is a key target and 
endocrine mediator of the metabolic phenotype induced by dietary MR. 
MR can increase the expression of hepatic FGF21 by activating 
GCN2/ATF4/PPARα signaling in liver cells, thereby improving insulin 
sensitivity, accelerating energy expenditure, and promoting fat oxida-
tion and glucose metabolism [145]. 

MR also enhances insulin-stimulated phosphorylation of PKB/Akt 
and S6 in kidneys of 10-month-old mice to lower blood glucose levels 
[146]. Moreover, MR was able to decrease GSH in HepG2 cells, thereby 
regulating the activation state of protein tyrosine phosphatases such as 
PTEN. A lowered presence of GSH limits the GSH-responsive degrada-
tion of PIP3 by PTEN, thereby enhancing the PIP3-dependent activation 
of Akt [139]. Consequently, a decrease of GSH by MR also triggers 
upregulation of glutathione S-transferase (GSTP), which appears to be 
initiated by the ERK-AP-1 pathway [147]. 

It has been reported that upregulation of renal FGF21 expression in a 
T1D mouse model resulted in renal protection, possibly because of the 
activation of the Nrf2 antioxidative pathway mediated by PI3K/Akt/ 
GSK3β/Fyn [148]. In FGF21− /− mice, MR failed to increase energy 
expenditure and reduce serum triglycerides, suggesting that FGF21 is 
essential in energy metabolism [138,149]. In GCN2− /− mice, MR simi-
larly improved insulin sensitivity and activated hepatic PERK via the 
GSH-dependent PERK-eIF2-ATF4-Nrf2 pathway [150], implying that 
FGF21 rather than GCN2 may be essential for the antioxidative effects of 
MR. 

However, MR-activated hepatic Nrf2 (Nfe2l2) possibly also co-
operates with hepatic ATF4 to activate various antioxidant stress 
response reactions [151]. 

Interestingly, Nfe2l2 does not appear to be essential for mediating 
the metabolic effects of dietary MR. It was shown that mice with liver- 
specific deletion of Nfe2l2 (Nfe2l2fl/(Alb)) treated with MR had no ef-
fect on the ability of the MR diet to increase FGF21, reduce body weight 
and adiposity, and increase energy expenditure [152]. Moreover, 
although FGF21 has been reported to induce adiponectin expression and 
secretion in WAT [153,154], the beneficial effects on glucose meta-
bolism induced by MR in HFD-fed mice may also be independent of 
adiponectin and FGF21 [155]. These results could be due to different 
animal models, different tissues and organs, sex differences, and dura-
tion of MR intervention. 

Overall, MR could be a preventive nutritional strategy to treat 
metabolic diseases by improving glucose homeostasis and insulin 
sensitivity and accelerating energy expenditure. The exact mechanisms 
by which MR improves these factors need further investigation. MR 
appears to partially reduce prooxidant factors through FGF21 and 
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thereby regulate insulin signaling. However, this hypothesis should be 
further explored in various animal models, taking into account many 
factors, including sex differences. Whether other signaling pathways 
synergize with FGF21 to improve insulin resistance after MR remains to 
be elucidated. 

3.4. Brain aging and cognitive disorders 

Aging seems to be the greatest risk factor for most neurodegenerative 
diseases due to the ever-increasing life expectancy and aging of pop-
ulations. Aging leads to lipid alteration [156], insulin resistance [157], 
and complex vascular phenotypic changes [158] that render the brain 
prone to diseases. 

The most common neurodegenerative diseases accompanied with 
cognitive disorders, Alzheimer’s disease (AD) and Parkinson’s disease 
(PD), are predominantly observed in elderly individuals, and the risk of 
these diseases increases with age [159]. A low-protein and 
low-methionine plant based diet in vegans and vegetarians has been 
associated with lower risk of ischemic stroke and neurotransmitter 
metabolism in addition to the cardiovascular and metabolic disease 
benefits already described [160–165]. 

A study in Chinese older adults (≥60 years) showed that methionine 
cycle metabolites (MCMs) elevated by omnivorous diets can lead to mild 
cognitive impairment (MCI) [166], suggesting a benefit of avoidance of 
red meat, especially processed meat. 

On the one hand, a restricted diet prolongs lifespan in several spe-
cies; on the other hand, studies have shown that dietary restrictions, 
such as CR and IF, and improved brain function during aging are asso-
ciated [167–169]. 

MR has the potential to affect brain physiology. Brain-derived neu-
rotrophic factor (BDNF) is widely and highly expressed in the brain and 
plays a critical role in brain and neuron function. In in vitro experiments, 
MR promoted the level of BDNF in C2C12 cells (a kind of mouse 
myoblast cells) partly by enhancing glycolysis and lactic acid production 
[170]. Similarly, it is possible that MR stimulates the production of 
BDNF in the brain and protects neurons from damage. In addition, direct 
evidence shows that MR can regulate the physiological functions of the 
brain. 

As mentioned above, MR may lead to weight reduction, but at the 
same time, individuals will have a stronger appetite simultaneously. The 
central mechanisms are unclear but involve sympathetic nervous 
signaling [171]. 

The level of methionine as a methyl donor nutrient affects DNA 
methylation in one-carbon metabolism. In C57BL/6J mice, it was shown 
that a diet with reduced methionine content during the developmental 
phase led to a direct downregulation of genes in the brain that are 
related to one-carbon metabolism (DNA methyltransferases), reducing 
anxiety-like behaviors that persist into adulthood [172]. 

Moreover, MR appears to be an antioxidant strategy for brain redox 
homeostasis. MR enhances mitochondrial activity and attenuates 
endogenous oxidative damage in the rat brain (frontal cortex), including 
fatty acids peroxidizability index, protein oxidation (GSA, CML, CEL, 
MDAL, AASA, and 2-SC), and mitochondrial DNA oxidation [173,174]. 
Mitochondrial ROS production, mitochondrial protein oxidation, and 
glycoxidation were also decreased in brain, whereas mitochondrial 
oxidative phosphorylation capacity was increased [92]. 

Double deprivation of methionine and cystine both in vitro and in vivo 
resulted in a decrease in GSH content, an increase in ROS levels, and an 
induction of autophagy in glioma cells [175], suggesting that MR has 
effects on the oxidative balance of neurons. 

The above studies have shown that MR can alter physiological 
functions of the brain. How MR might mediate the improvement in 
cognitive functions via FGF21 and H2S will be discussed in the next two 
subsections. 

3.4.1. FGF21 and brain function 
The initial descriptions of FGF21 provided evidence that it is a 

powerful metabolic regulator in the context of glucose homeostasis, 
lipid metabolism, and energy balance as already described, but it re-
mains controversial how FGF21 signaling is anatomically organized to 
produce its diverse physiological effects. FGF21 can act on the different 
brain regions. Hepatic FGF21 crosses the blood brain barrier (BBB) and 
acts on the hypothalamus, and the activation of the hypothalamic- 
pituitary-adrenal (HPA) axis triggers gluconeogenesis [145]. In that 
process, FGF21 may play a role in the paraventricular nucleus (PVN) or 
suprachiasmatic nucleus (SCN) of the hypothalamus through ERK1/2 
signaling [176]. Moreover, FGF21 enhanced sympathetic nerve activity 
(SNA) on BAT to induce UCP-1 expression and lipolysis through the 
central nervous system (CNS) [177]. Interstingly, by using genetic tools 
to delete FGF21 signaling in the CNS (Klbfl/(CamK2a)mice), little evi-
dence was found that FGF21 signaling plays a significant role in 
increasing energy expenditure [178]. In contrast, the same study shows 
that deletion of FGF21 signaling in the brain fully blocked the ability of 
MR to increase food intake and energy expenditure. However, the au-
thors point out that it is not clear were exactly FGF21 signaling is deleted 
in the brain of Klbfl/(CamK2a) mice and that is is likely that FGF21 may 
signal in multiple brain areas through redundant systems to coordinate 
its response. 

A neuroprotective role of FGF21, was demonstrated in obese and 
insulin-resistant rats. HFD-fed male Wistar rats developed obesity- 
related insulin resistance and cognitive decline with impaired hippo-
campal synaptic plasticity, decreased dendritic spine density, brain 
mitochondrial dysfunction, and increased brain cell apoptosis [179]. 
These obese and insulin-resistant rats were found to have impaired 
FGF21 signaling in the brain. Treatment with recombinant human 
FGF21 was observed to improve peripheral insulin sensitivity, increase 
synaptic plasticity in the hippocampus, increase dendritic spine density, 
restore mitochondrial function in the brain, decrease brain cell 
apoptosis, and increase FGF21 signaling in the brain, resulting in pre-
vention of cognitive decline. 

Furthermore, in vitro and in vivo AD models demonstrated that FGF21 
treatment attenuated neuronal apoptosis in the hippocampus and 
reduced ROS and 8-OHdG levels [180]. Sirt1, an NAD+-dependent 
protein deacetylase, can be upregulated by MR and alters the methio-
nine metabolic pathway in kidney and liver [47,146]. Sirt1 may also 
promote systemic FGF21 signaling by increasing its supply from the liver 
and increasing the expression of β-klotho in target organs [181]. 
Furthermore, FGF21 can activate Nrf2 signaling via the FGFR/β-klotho 
receptor [182]. 

The above demonstrates that FGF21 and its co-receptors, which are 
upregulated by MR, are closely related to improved brain function and 
reduced levels of oxidative stress in the brain. The antioxidant mecha-
nism of FGF21 may regulate NFκB (nuclear factor ’kappa-light-chain- 
enhancer’ of activated B-cells) and AMPKα/Akt signaling pathways to 
increase antioxidant enzyme activity and also decrease the production of 
advanced glycation endproducts (AGEs) [183,184]. It is speculated that 
inhibition of the NFκB pathway could be a potential target for the 
treatment of AD [185]. 

The complex interplay of Nrf2 and NFκB signaling pathways can 
alter the balance of antioxidative or inflammatory responses [186]. 
Activation of Nrf2 increases NQO-1 and HO-1 expression, which effi-
ciently neutralize ROS and detoxify toxic chemicals, thereby inhibiting 
ROS-mediated NFκB activation [187]. NFĸB binds with 
cAMP-response-element-binding protein (CBP) in a competitive manner 
and inhibits the binding of CBP with Nrf2, resulting in inhibition of Nrf2 
transactivation [188]. MR regulates NFκB [189], suggesting that MR 
may alter Nrf2 and NFκB signaling through activation of FGF21 to target 
oxidative stress and neuroinflammation in cognitive disorders. 

On the other hand, brain alterations and mood disorders such AD and 
depression are often accompanied by insulin resistance in the brain 
[190,191]. The increase of oxidative stress markers is correlated with 
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insulin receptor activation [192]. Elevated insulin levels can cause 
oxidative stress, which in turn further aggravates insulin resistance 
[193]. Akt/GSK-3β has previously been reported to play a key role in 
regulating insulin/glucose homeostasis, both in peripheral tissues and in 
the brain [194–197]. 

FGF21 may also be a potential regulator for the treatment of insulin 
resistance in the brain. Recombinant human FGF21 promoted Akt/GSK- 
3β signaling in the hippocampus of HFD-fed mice to sustain neuro-
genesis [198]. Moreover, Akt/GSK-3β/Fyn signaling increases Nrf2 ac-
tivity to resist the beta-amyloid (Aβ)-evoked oxidative stress [199]. As 
mentioned above, MR acts on Akt to regulate insulin homeostasis, but 
whether MR can further regulate downstream signaling of Akt or other 
insulin/glucose-related signaling in the brain is unclear. 

The above studies suggest that MR improves brain insulin resistance 
and oxidative stress associated with cognitive disorders. On the one 
hand, FGF21 acts directly on the brain as an endocrine hormone via the 
BBB to balance the disturbed redox homeostasis; on the other hand, 
FGF21 indirectly reduces systemic oxidative stress and thus exerts 
neuroprotective effects. However, much additional work will be needed 
to understand how FGF21 mediates the these important neuroprotective 
responses. 

3.4.2. H2S and brain function 
As mentioned previously, H2S is formed in the transsulfuration 

pathway and has potential neuroprotective effects as an endogenous gas 
with physiological activity [200–202]. 

H2S could alleviate the impairment of cognition in part by vaso-
protection, promotion of autophagy, and reduction of apoptosis. Cere-
brovascular aging leads to cognitive impairment, whereas it is possible 
that H2S could protect cerebrovascular vessels from aging [203]. H2S is a 
vasoactive factor that plays a role in vascular contractility [204]. MR 
leads to increased H2S levels, which may partially inhibit mitochondrial 
electron transport and oxidative phosphorylation before mediating 
proangiogenic effects [205]. 

Damage to cerebral vessels can lead to activation of astrocytes and 
microglial cells [206]. H2S effectively inhibited reactive glial responses 
and synaptic damage and induced autophagic flux, thus improving 
behavioral outcomes [207]. NaHS as an H2S donor ameliorated 
diabetes-associated cognitive decline (DACD) and postoperative cogni-
tive dysfunction, with involved mechanisms being improvement of 
autophagic flux [208], regulation of mitochondria-mediated apoptotic 
pathways [209], suppression of endoplasmic reticulum (ER) stress 
[210], enhancement of synaptic plasticity, and neurogenesis in the 
hippocampus [211]. 

In addition, H2S attenuates cognitive dysfunction induced by the 
systemic pro-aging factor β2-microglobulin (B2M) [211]. Furthermore, 
in the same study it was shown that the H2S donor NaHS recovered 
autophagic flux in the hippocampus of B2M-exposed Sprague-Dawley 
rats, as evidenced by decreases in the ratio of autophagosomes to 
autolysosomes and the expression of p62 protein in the hippocampus. 
NaHS, could also attenuate the development of early brain injury and 
cognitive dysfunction induced by subarachnoid hemorrhage via 
Akt/ERK-related anti-apoptosis pathway, and upregulating BDNF-CREB 
expression in Wistar rats [212]. 

In streptozotocin (STZ) induced diabetic rats H2S not only activated 
the hippocampal PI3K/AKT pathway, as evidenced by the increase of 
phosphorylated AKT, but also favorably reversed STZ-disturbed hippo-
campal neurogenesis and subsequently mediate antidepressant- and 
anxiolytic-like effects [213]. In an AD mouse model, pathological fea-
tures such as excessive Aβ accumulation [214] and tau hyper-
phosphorylation [215] were closely connected to the methionine 
metabolism. H2S as a product of methionine metabolism, decreased 
extracellular levels of Aβ40 and Aβ42, resulting in improved spatial 
learning and memory acquisition in APP/PS1 mice [216]. Presumably, 
H2S may also sulfhydrate GSK3β, inhibit tau hyperphosphorylation, and 
reduce neurotoxicity in the 3xTg-AD mouse model [217]. 

In addition, H2S attenuates oxidative stress associated with cognitive 
impairment. The exact etiology of neurodegenerative diseases is not 
understood but oxidative stress, inflammation and synaptic dysfunction 
are primary hallmarks. Oxidative stress leads to free radical attack on 
neural cells contributing to protein misfolding, glia cell activation, 
mitochondrial dysfunction, impairment of DNA repair system and 
finally cellular death [218]. In the brains of LPS-induced AD mice, H2S 
reversed the increased MDA and decreased GSH levels [219]. H2S may 
protect neurons from oxidative stress by increasing GSH levels and 
inhibiting ROS overproduction in both primary cortical neuronal cells 
and glial cells [220,221]. 

Furthermore, it is possible that the Nrf2 system is involved in 
cognitive decline in multiple diseases [222]. Nrf2 regulates, among 
others, the catalytic and modifying subunit of glutamate cysteine ligase 
(GCL) to increase GSH levels [223]. Interestingly, it was observed that 
the expression of CGL, the biosynthetic enzyme for H2S, was reduced in 
the cerebral cortex and hippocampus of 3xTg-AD and human postmor-
tem samples [217,224]. Similarly, brain H2S levels, CBS, and CGL are 
also significantly decreased and peroxidative markers are increased in 
chronic hypobaric hypoxia-, chronic osteoarthritis pain- [225] and 
hyperhomocysteinemia-induced cognitive dysfunction [226]. H2S can 
modulate the Nrf2 and glutathione systems in the kidney-brain axis 
[227], suggesting that H2S regulates Nrf2 to maintain redox balance in 
the brain. Also, Hyperhomocysteinemia in late postnatal life is often 
associated with severe oxidative stress, leading to developmental dis-
orders and lower H2S and CBS levels in the offspring. Surprisingly, H2S 
donors are able to prevent anxiety-like behaviors, spatial memory 
decline, and oxidative stress (lipid peroxidation and activity of gluta-
thione peroxidase) in the offspring [228]. 

A specific H2S concentration as well as activated H2S synthesizing 
enzymes may be also a potential biomarker for Alzheimer’s disease and 
other dementias [229]. Total plasma H2S was shown to be a strong in-
dicator for AD, and partially drove the relationship between cognitive 
dysfunction and white matter lesion volume, an indicator of microvas-
cular disease. 

Changes in dietary patterns appear to activate H2S production. Late- 
life every-other-day (EOD) intermittent fasting drives renal H2S pro-
duction, and may modulate age-related frailty, including cognitive 
deficits [230]. 

In conclusion, increasing H2S levels by MR may have certain bene-
ficial effects on cognition and emotion, which may depend on the 
antioxidant and autophagic flux-promoting properties of H2S. 

4. Dietary recommendations for MR and future studies 

4.1. Dietary recommendations for MR 

Methionine is found in higher levels in animal foods such as pork, 
beef, dairy products and eggs compared to a plant based diet. The 
average daily requirement of methionine is 10.4 mg/kg body weight/ 
day [231]. Both excessive and too low methionine in the diet can cause 
adverse effects. 

The digestion efficiency of plant protein is lower than that of animal 
protein. In general, the utilization rate of animal protein is at least 90%, 
whereas it is only 80% for plant protein [232–235]. Consequently, 
omnivores have a higher protein/methionine intake than vegeta-
rians/vegans. This means MR can be achieved with vegan or Mediter-
ranean diets in particular, but there are some recommended foods and 
supplements. For vegans, isolated soy protein is of high nutritional 
quality, comparable to that of animal protein sources, and the methio-
nine content is not limiting for adult protein maintenance [234]. 

Dietary recommendations for MR should be based on individual 
health status. Certain populations, such as pregnant women, adoles-
cents, and athletes, are not advised to restrict methionine. Methionine, 
as a nutrient of one-carbon metabolism (OCM), is involved in the 
methylation pathway. 

Y. Zhang et al.                                                                                                                                                                                                                                   



Redox Biology 57 (2022) 102464

11

Although there is no evidence that OCM nutrient intake has signifi-
cant effects on fetal growth [235], pregnant women are not recom-
mended to use MR. However, the rate of transsulfuration of methionine 
appears to be higher in the first trimester, suggesting a higher demand 
for methionine. The high rate of transsulfuration could be also aimed at 
providing cysteine and glutathione for the fetus [236]. 

Brain methionine levels increase physiologically after eating as a 
result of changes in the serum amino acid pattern [237]. Plasma 
methionine levels tend to be naturally lower when dietary methionine 
intake is restricted. School-aged children (9.1 ± 2.2 years old) had 
similar total sulfur amino acid (TSAA) requirements as adults [238]. 
Moreover, the TSAA levels of children with chronic renal failure did not 
differ from those of healthy children; in fact, the minimum requirement 
for methionine was higher in children with chronic renal failure (7.3 
mg/kg/day) [239]. This implies that humans may not benefit from a 
low-methionine diet during development. 

Although MR may improve skeletal muscle health in obese and aging 
mice and, when combined with endurance training, may increase 
intrinsic bone strength [240,241], this dietary pattern is not recom-
mended for athletes. Methionine intake appears to be positively asso-
ciated with lower limb muscular fitness in men [242]. Carnitine is 
necessary for muscle development during exercise [243] and methio-
nine plays a role in endogenous carnitine synthesis and is not sufficiently 
present in the MR diet to meet the requirement. 

In addition, osteoporosis is a significant problem in aging. MR has 
been shown to improve cognitive impairment in aging mice, while it also 
decreases bone mass, trabecular bone volume, bone mineralization 

activities, and bone mineral content in rats with a decrease in serum 
osteocalcin and C-terminal telopeptide of type 1 [241]. MR may there-
fore negatively affect the bone growth and development process. To 
prevent the development of osteoporosis, MR should also be used with 
caution in the elderly. But as described in the previous chapters, animal 
studies show that MR has beneficial effects on disorders of glucose and 
lipid metabolism (obesity, diabetes, CVD), cognitive decline, and life 
expectancy; therefore, MR should be considered in certain pathological 
conditions, but with consideration of the adverse effects. More impor-
tantly, micronutrient supplementation is required during MR. Dietary 
vitamin B12 intake was reduced after a 6-month MR intervention [244] 
and in ovo-lacto vegetarians/vegans [245]. Vitamin B12 should be 
supplemented at the same time since it is mainly derived from milk, 
dairy products, meat, and fatty fish [246]. Some vegan cases show that 
iron intake may be inadequate as well [247]. In addition, a plant based 
diet tends to result in lower calcium intake [248]. In conclusion, the 
above factors should be considered by vegans/vegetarians and the 
principles of a reasonable diet and balanced nutrients must be followed 
when performing MR. 

4.2. Future studies 

There have been many reports regarding the benefits of MR in health 
and longevity, but despite many studies, the mechanisms of lifespan 
regulation by CR and PR remain incompletely understood. Interestingly, 
lifespan of Drosophila melanogaster was extended by MR under condi-
tions of low amino acid status, while MR did not work under conditions 

Table 2 
Effects of MR in human studies.  

Studied condition n 
value 

Met concentration Age (yr) Sex (M/F) BMI (kg/ 
m2) 

Intervention 
duration 

Effects Ref. 

Obese subjects 26 33 mg Met/kg body 
weight/day 

44–53 6/20 32.9–38.9 16 wks Fat oxidation ↑; 
intrahepatic lipid content ↓; 
energy expenditure - 

[114] 

Adenocarcinoma of the 
colon or rectum 

11 Free 48–78 8/3 24.6 ± 3.1 8 wks Fed state plasma methionine ↓; 
BMI -; plasma albumin -; 
plasma prealbumin 
concentration - 

[258] 

Metastatic solid tumors 12 2 mg Met/kg/day Not 
mentioned 

Not 
mentioned 

Not 
mentioned 

8–39 wks Plasma methionine ↓; BMI ↓; 
plasma albumin - 

[264] 

Healthy, normal-weight 
subjects 

14 0.93 g Met/Cys for 
women, 
1.19 g Met/Cys for 
men 

20–40 4/10 20–25 7 days Plasma methionine ↓; 
urinary cysteine and taurine ↓; 
plasma SCD -; total cholesterol ↓ 

[265] 

Overweight or obese 
subjects 

20 Met/Cys 1.6 g/day 23–40 0/20 24.7–34.7 7 days Subcutaneous adipose tissue ↓; 
serum FGF21 ↑ 

[266] 

Healthy, normal-weight 
subjects 

14 0.93 g Met/Cys for 
women, 
1.19 g Met/Cys for 
men 

20–38 4/10 21.0–26.6 7 days Fatty acids ↑; 
median glucose concentrations ↓ 

[267] 

Healthy subjects 6 2.92 mg/kg/day 49–58 1/5 27.6 ± 4.32 3 wks Plasma methionine, 
NAC and glutathione ↓ 

[259] 

Overweight and obese 
subjects 

23 1.4 g Met/day 37.8–42.2 6/17 30.3–31.1 6 months Vitamin B12 intake ↓; 
folate intake ↑; 
homocysteine concentrations - 

[244] 

Normal-weight subjects 72 Vegan/vegetarian 
diets 

32–46 36/36 21.9–26.1 At least 1 yr Plasma FGF21 ↑; 
leptin/adiponectin 
concentrations - 

[48] 

T2D 37 Plant protein diets 62.2–66.4 24/13 28.4–31.8 6 wks Uric acid ↓; 
glycated haemoglobin ↑; 
diastolic blood pressure ↑; 
fasting non-esterified fatty acid ↑; 
insulin sensitivity -; 
fasting glucose - 

[102] 

Not mentioned 48 Lacto-ovo vegetarians 19.8–37 16/32 Not 
mentioned 

2–29 yrs Erythrocyte SOD activity ↓; 
serum vitamin B12 ↓; 
serum MDA ↓ 

[268] 

Healthy subjects 61 Lacto-ovo 
vegetarians/vegan 

25.3–43.9 61/0 19.8–26.4 Not mentioned Plasma homocysteine ↑; 
plasma vitamin B12 ↓ 

[245] 

a Symbol: ↑ means increase; ↓ means decrease; - means no effects. 
b M means male; F means female. 
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of high amino acid status, from which may be concluded that certain 
conditions must be met for the beneficial effects of MR [58]. For that 
reason, future studies may benefit from the use of diverse combinations 
of methionine and other nutrients. In addition, further studies are 
needed to better understand the molecular mechanisms involved and 
apply these principles to human nutrition to positively impact aging 
and/or age-related chronic diseases. 

However, humans have considerable difficulties remaining 
compliant to strict dietary changes. MR is usually implemented with 
diets consisting of elemental amino acids (AA) that reduce methionine 
content to ~0.17%. Therefore, practical implementation of MR with 
diets based on elemental AA is difficult because of poor palatability. The 
development of methods for the production of highly palatable, low- 
methionine proteins is a better and innovative approach, as it will 
solve the problem of compliance and should therefore be a future task. 
Additionally, a comparison of the physiological responses to different 
dietary methionine levels or incremental restriction should be a future 
objective, since it was reported that MR also produces hyperphagia 
[110,249]. 

Another experimental strategy to better understand the complex 
responses to MR is to study the temporal response. In addition, a better 
understanding of how MR improves tissue-specific and overall insulin 
sensitivity should also be a focus. The overall metabolic phenotype eli-
cited by MR appears to be the product of a number of responses that 
require further investigation. 

Furthermore, the protective effects of dietary MR on age-related gut 
barrier dysfunction still remain mainly unclear. Interestingly, the gut 
microbiome can rapidly respond to diet alterations [250] and has the 
potential to modulate inflammation and oxidative stress. Inflammatory 
bowel disease (IBD) is often associated with a severe imbalance of redox 
homeostasis in the intestine, whereas MR is able to modulate corre-
sponding markers such as catalase (CAT), SOD, GPx activities, and 
myeloperoxidase (MPO) [251]. In addition, recent evidence suggests 
that intricate and crucial links between the gut microbiota and the brain 

involve multiple biological systems and may contribute to neurological 
disorders [252]. It was shown that time-restricted fasting (TRF) and 
intermittent energy restriction (IER) prevents colitis mice from gut 
microbiome composition disorder and gut leakage, thereby reducing 
oxidative damage in both colon and brain [253]. In addition, immune 
hemocytes act as signal transducers in the gut and brain, which may also 
affect chemokines in the brain in response to ROS stress [254]. The 
above studies show that the balance of the gut microbiome and the 
integrity of the gut barrier are closely related to redox homeostasis in the 
brain. A research focus should be on the fact that MR seems to alter gut 
microbiome/metabolites [255,256] and improve the gut barrier [257]. 
The interaction of gut and brain function has to be taken into consid-
eration in future MR research. 

More importantly, MR not only has beneficial effects on metabolism, 
but has also been shown to support the feasibility and good tolerability 
(nutritional status and toxicity) of cancer treatment regimens [258]. MR 
can specifically affect one-carbon metabolism and redox metabolism in 
tumor cells involved in chemotherapy and radiation. The response to 
MR appears to be conserved between humans and mice [259]. This is the 
basis that MR is likely to be a dietary intervention for adjuvant treatment 
of diseases such as cancer in the future. In addition, race and region 
should be better considered in clinical trials in the future. For example, 
Indian women have different serum OCM markers after methionine 
exposure than American women [260]. The effects of MR already found 
in a multitude of human studies are summarized in Table 2. 

5. Prospects 

The impact of nutrition on longevity and health will continue to be 
one of the most important issues facing society in the future. Caloric 
intake and protein intake are of crucial importance here. In the context 
of sustainability and planetary health, new factors are evolving that are 
important to be considered. This also affects protein and methionine 
intake since new protein sources are opened up [261], and new 

Fig. 3. The possible antioxidant mechanisms of 
MR in aging and aging-related diseases. [1] 
FGF21. MR may increase the expression of FGF21 by 
activating GCN2/ATF4/PPARα nutrition signaling in 
liver, thereby improving insulin sensitivity, promot-
ing fat oxidation and glucose metabolism in both liver 
and WAT. Although FGF21 has been reported to 
induce the adiponectin expression and secretion in 
WAT, the positive benefits of glucose metabolism 
induced by MR may be independent of adiponectin 
and FGF21. Circulating FGF21 released by the liver 
enters the BBB, regulates AMPK/Akt and inhibits 
NFκB, further attenuating neuroinflammation and 
oxidative stress [2]. H2S (nanomolar to micromolar 
concentrations) released by the liver. MR produces 
more H2S by enhancing the CBS/CGL in trans-
sulfuration pathway. On the one hand, H2S activates 
autophagy and inhibits oxidative stress via regulating 
Sirt1 and mTOR in the WAT. On the other hand, H2S 
increases the GSH and improves mitochondrial 
oxidative damage, including mtROS, DNA/protein 
oxidation and fatty acids peroxidizability in the brain 
[3]. Gut microbiome. MR balances the gut micro-
biome, especially suppresses the Desulfovibrionales, a 
kind of SRB, which could reduce sulfate to produce 
H2S (high micromolar to low millimolar concentra-
tions). Lower H2S decreases the inflammation and 
oxidative stress in the gut. Moreover, gut and gut 
microbiome/metabolite homeostasis affects brain 
function, which is considered as gut-brain axis. 
FGF21 = fibroblast growth factor 21, WAT = white 

adipose tissue, BBB = blood brain barrier, CBS = cystathionine-β-synthase, CGL = cystathionine-γ-lyase, H2S = hydrogen sulfide, GSH = glutathione, mtROS =
mitochondrial ROS, SRB = sulfate-reducing bacteria, CAT = catalase, SOD = superoxide dismutase, GPx = glutathione peroxidase, MPO = myeloperoxidase.   
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nutritional habitus will evolve [262]. The possible antioxidant mecha-
nisms of MR in aging and diseases are summarized in Fig. 3, which in-
volves multiple targets. However, whether this leads to a health 
promotion remains to be elucidated due to many other components of 
such a diet. One of the future developments with regard to protein and in 
particular, methionine restriction will be the investigation of the 
mechanism of action of these diets and the translation of this theoretical 
knowledge into human studies. However, it must be under the guidance 
of professionals if implemented. 
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