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Abstract
Nondestructive proximal sensors can be an efficient source of information of N sta-

tus in crops for localized and rapid adjustment of fertilization applications. The aim

of this study was to compare two transmittance/reflectance-based sensors (SPAD,

ASD) and a florescence-based sensor (Multiplex) in their ability to measure N con-

tent in corn (Zea mays L.), spring and winter barley (Hordeum vulgare L.), and rye

(Secale cereale L.), both at the leaf and canopy level. Measurements of leaves and

canopies from six fertilization field trials in 2019 and 2020 were analyzed to estab-

lish relationships between sensor information and laboratory-determined N content

in crops. Analyses included linear regression for single sensor variables and machine

learning for multivariate approaches, to assess the relative accuracy of the proximal

sensors to measure N. The ASD is time-intensive and requires post hoc analyses of

the spectra. However, the spectral outputs of this device were clearly correlated with

the N status of leaves and canopies. At the leaf level, SPAD showed higher accuracy

than any of the single Multiplex variables to predict plant N. Multiplex performance

could be improved by combining three of its variables. At the canopy level, inter-

polated SPAD values and the best-performing Multiplex variables showed similar

accuracy. It could be concluded that the relationship sensor-N status is species spe-

cific. Despite the high standard deviation recorded in some raw Multiplex variable,

the derived indices showed a comparable low standard deviation. At both, leaf and

canopy levels an integrated sensor solution would combine the multidimensionality

of Multiplex and ASD, and the accuracy and practicality of SPAD.

Abbreviations: FLAV, flavonoid index; GPR, Gaussian processes

regression; NBI, nitrogen balance index; NRMSE, normalized root mean

square error.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2022 The Authors. Agronomy Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy.

1 INTRODUCTION

Fast and reliable ways of measuring N content in plants are

necessary to monitor plant development and to efficiently

manage crop production, especially in the case of precision
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agriculture. While in traditional agriculture a general knowl-

edge of the field suffices to optimize crop production,

precision agriculture needs efficient methods to determine the

needs for resources at multiple sites on the field and at differ-

ent times. To this end, non-destructive proximal sensors seem

particularly suited for efficient assessment of crops’ N status,

for local, rapid adjustment of fertilization applications. Fol-

lowing this, the measuring device, Multiplex (Force-A), based

on leaf fluorescence was developed and commercialized.

Multiplex was designed to estimate plant chlorophyll (Chl)

and other pigments by measuring fluorescence directly on

leaves or fruits, or on parts of the canopy. SPAD (SPAD-502,

Konica Minolta Sensing, Inc.) is a well-known, nondestruc-

tive Chl meter, widely used for N measurements in plants

(Padilla, Gallardo, et al., 2018). Given the small size of

SPAD’s sampling area, however, the sensor is very sensitive to

leaf irregularities, veins and spots, and therefore, some expe-

rience and multiple measurements are necessary to obtain a

reliable reading that can be compared with other situations. In

this context, the development of new analytical methods offers

an opportunity to explore the performance of such devices.

The focus of this study was to determine the relative accu-

racy of Multiplex to estimate N in crops by applying the device

in the so-called leaf and canopy mode. Based on the principle

that the production of pigments in plants is intimately corre-

lated to the N content, and therefore, that lower amounts of

the former is a good indicator of N deficiencies, it is worth

exploring if this dynamic is depicted when the measurement

target differs.

Previous studies have tested Multiplex as a predictor of

N content in turfgrass species (Agati et al., 2013), rice

(Oryza sativa L.) (Li et al., 2013), corn (Zea mays L.)

(Longchamps & Khosla, 2014), wheat (Triticum aestivum L.)

(Martinon et al., 2011; Zecha et al., 2017), sweet pepper (Cap-
sicum spp.) (Padilla, de Souza, et al., 2018) and cucumber

(Cucumis sativus L.) (Padilla et al., 2016), in different set-

tings, with different objectives and varied results. One of the

challenges with previous studies is the lack of clear con-

trast between canopy and leaf level measurements, which

makes it difficult to understand the exact conditions at which

Multiplex can be most efficient. In this study, whenever pos-

sible, we analyzed both targets of measurements, leaf and

canopy.

Most studies assume some Multiplex indices, such as the

Nitrogen Balance Index, the Simple Chlorophyll Fluores-

cence Ratio, and the Flavonoid Index, to be the best correlated

with N content and consequently measuring accuracy tests are

based on one or more of these indices. These assumptions

tend to disregard the potential use of any of the remaining

12 or more parameters provided in Multiplex readings. In this

study, the possibility of combining variables and indices is

considered to fully exploit Multiplex’s potential. Secondly, the

objective was to test the accuracy and applicability of SPAD

Core Ideas
∙ Results confirm crop-specific relations between

sensor signals and total N content.

∙ Results show clear differences in this relation

between leaf and canopy level.

∙ To exploit the total output of Multiplex a multivari-

ate approach is recommended.

∙ At leaf level SPAD reflects most accurately crop N

status, but requires an active user involvement and

knowledge.

∙ At canopy level SPAD and Multiplex seem simi-

larly accurate, although Multiplex measures faster

and more reliable.

and Multiplex to measure N. Besides measurement accuracy,

the sensor applicability is closely linked to the target of mea-

surement sensors are designed for. For example, Multiplex

can measure both individual leaves and canopies, whereas

SPAD is only designed for leaf measurements. A question

that follows is whether SPAD measurements can be effec-

tively interpolated to estimate canopy N values. In this study,

relationships between sensors and N content were addressed

for leaf and canopy levels separately. Exemplarily, the perfor-

mance of a field spectrometer was assessed for comparison at

selected trials.

2 MATERIAL AND METHODS

2.1 Sensors

The Multiplex sensor (Force-A) (Ben Ghozlen et al., 2010)

was used to measure leaf and canopy fluorescence and deter-

mine its relationship with crop N content. Multiplex records

fluorescence at three different wavelengths, blue-green, red,

and infrared, which can be excited with ultraviolet, blue,

green, and red wavelengths, producing an excitation-emission

matrix of 12 basic or “raw” variables. Additionally, Mul-

tiplex provides several band combinations or indices: two

chlorophyll indices, a flavonoid index, a “FER” index, two

anthocyanin indices, and two variants of the Nitrogen Balance

Index (Ben Ghozlen et al., 2010). Due to an acquisition time of

more than 250 measurements per second, standard deviations

of all parameters are also provided in the Multiplex outputs.

Leaf measurements were done by placing leaves’ adaxial side

up on a black background (which was previously used as ref-

erence for calibration) and resting the device on each leaf.

The Multiplex sensor also allows for canopy measurements

by holding the sensor unit horizontally (90˚ from nadir) to the
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ROSSO ET AL. 3319

T A B L E 1 Overview of trials and available data at the leaf and canopy level; trial names are explained in Section 2.2

Feature MUCO19 MACO20 MUCO20 MUSB19 MUWB19 MAWR19
Trial Corn Corn Corn Spring barley Winter barley Winter rye

3 treatments (0, 120,

and 160 kg N

ha−1)

4 treatments

(0, 70, 140, and

160 kg N ha−1)

1 treatment

(120 kg ha−1)

2 treatments

(0 and 90 kg N

ha−1)

2 treatments

(0 and 80 kg N

ha−1)

4 treatments

(0, 90, 120, and

160 kg N ha−1)

Measurements Multiplex, SPAD,

ASD, N

Multiplex, SPAD,

N

Multiplex, SPAD,

N

Multiplex, SPAD,

ASD

Multiplex, SPAD,

ASD

Multiplex, N

Leaf level N = 75 (5 leaves x 5

plots x 3

treatments)

N = 16 (2 leaves,

pooled x 4

plots x 4

treatments)

N = 6 (2 leaves,

pooled x 6

plots)

N = 40 (20 leaves

per treatment)

N = 20 (10 leaves

per treatment)

—

Canopy level N = 15 (5 plots x 3

treatments)

— — N = 8 (2

replicates x 4

treatments)

N = 4 (2

replicates x 2

treatments)

N = 12 (3 samples

x 4 treatments)

standing crops with a measuring distance of approximately

10 cm. Canopy measurements were conducted stationary at

different locations per plot. Sampling approaches varied with

respect to the settings and plot sizes of considered field trials

(see following sections).

The SPAD-502 device (Konica Minolta Sensing, Inc.)

(Parry et al., 2014) measures leaf photosynthetically active

radiation transmittance through a sensor that comes into con-

tact with both sides of the leaf, providing a unit-less value

correlated with leaf chlorophyll content (Frampton et al.,

2013). Measurements on selected leaves were done midway

between the base and the tip of each leaf, avoiding leaf

veins. SPAD values were interpolated to a canopy by sim-

ply calculating the average out of single leaf measurements

to allow for a comparison of SPAD and Multiplex values at

the canopy level.

The FieldSpec 4 field spectrometer (ASD Inc.) was used to

measure leaf and canopy reflectance in wavelengths from 350

to 2500 nm. For leaf measurements, a leaf clip was attached to

the sensor to provide an enclosed environment with artificial

illumination. The device was set to provide the average of 10

automatic readings per leaf sample (previously calibrated with

a white reference enclosed in the leaf clip). Proximal canopy

reflectance was measured by holding the FieldSpec’s optic

perpendicular to the ground surface at approximately 50 cm

above the canopy. Field spectrometer measurements were

conducted only at selected trials for exemplary comparison

with SPAD and Multiplex (see below).

2.2 Field trials and total N

Sensor measurements were conducted on six field trials, cov-

ering four crops (corn, spring and winter barley [Hordeum
vulgare L.], and winter rye [Secale cereale L.]) at up to four

different N fertilization levels. Data was gathered during the

vegetation period of 2019 and 2020 and together with the

corresponding sensor measurement leaf and biomass samples

were collected for analyzing the reference total N content of

the crop by applying a general elemental analysis method.

Throughout the text it is referred to as crop N as well as

canopy or leaf N content, depending on the respective tar-

get of sensor measurements. For comparison with leaf-based

measurements a specified number of representative leaves has

been collected, measured directly with sensors, and prepared

for N analysis. For comparison with canopy-based measure-

ments aboveground biomass samples were taken, weighted,

and prepared for N analysis. Due to varying settings and plot

sizes of field trials the sampling approach differed. Detailed

information is provided in the following subsections and

Table 1 provides an overview of the data finally available

for evaluation.

2.2.1 Long-term field experiment
Muencheberg (MUCO19)

The long-term field experiment (LTFE) at experimental sta-

tion Muencheberg, Germany, consists of 168 plots of 5 by 5 m

size each, treated with randomly assigned levels of mineral

and organic N fertilization (Ellerbrock et al., 2016; Ellerbrock

et al., 1999; Rogasik et al., 1997). Treatments sampled in this

study included: no N fertilization (“zero”), 120 kg ha−1 kg

of mineral N fertilization (“conventional”), and 160 kg ha−1

of mineral N fertilization plus 12.8 t ha−1 manure (“high”).

In 2019, when corn was grown, 15 plots at the three fer-

tilization levels (five plots each) were randomly chosen and

Multiplex measurements in canopy mode were carried out by

taking five readings at the center of each plot. Five plants

from the central rows of each plot were selected, and from

them the most recent, fully expanded healthy leaf was har-

vested (15 × 5 = 75) and measured directly with Multiplex
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3320 ROSSO ET AL.

in leaf mode and SPAD. Out of the 15 plots, a subsample of

nine plots, three from each of the treatment levels was taken

to measure leaf spectra with ASD FieldSpec spectrometer

(5 leaves× 9 plots= 45 spectra). All 75 leaves were then taken

to the lab for total N analysis.

2.2.2 Field trial project I4S (MAWR19 and
MACO20)

The field trial at experimental station Marquardt, Germany,

was established within the I4S project (BMBF BonaRes pro-

gram 031B0513I) in 2017 to observe the effects of mineral N

fertilization on different crops. The entire 0.3 ha large field is

divided into 16 plots of 12 × 4.5 m size at four different fer-

tilization levels (“zero”, “low”, “conventional”, “high”) with

four repetitions. In 2019, winter rye was grown at four fer-

tilization levels: no N input, 90, 120, and 160 kg ha−1 N.

Multiplex measurements were taken five times along a central

transect of each plot in the canopy mode. A sample of above-

ground biomass at two central, regularly spaced quadrats of

0.50 m2 was taken at each of the 16 plots, pooled per plot and

taken to the lab for N analysis (MAWR19).

In 2020, silage corn was grown and each of the four rep-

etitions was fertilized with 0, 70, 140 and 160 kg ha−1 N.

At mid-season, when corn was about 1 m tall, one point at

each plot was randomly placed to collect the most recent,

fully expanded healthy leaf from two plants to be measured

with Multiplex in leaf mode and SPAD. After measure-

ments, each leaf pair was pooled and taken to the lab for N

analysis (MACO20).

2.2.3 Field trials project BarleyIT
(MUSB19 and MUWB19)

Two barley field trials established within the BarleyIT project

at ZALF experimental station Muencheberg, Germany, were

used for measurements. Eight spring barley plots of 15 × 15 m

each were selected for measurements, two without fertilizer,

two with 30 kg ha−1, two with 60 kg ha−1, and two with

90 kg ha−1 mineral N. The corresponding treatments are

named “zero”, “conventional” (30 and 60 kg N ha−1 plots

merged), and “high”, respectively. Additionally, four winter

barley plots, 30 × 20 m each, two with no fertilization (“zero”

treatment) and two with 80 kg ha−1(“conventional” treatment)

of mineral N were selected. At each of the 12 plots, 10 read-

ings of Multiplex in canopy mode at the central part of the

plot were taken. Also, three ASD FieldSpec canopy measure-

ments were taken at the center of the same plots. Then at

each plot, all plants from four regularly spaced quadrats of

0.25 m2 were harvested, pooled per plot and taken to the lab

for N analysis. For the Multiplex leaf mode measurements, the

most recent, fully expanded healthy leaf from 10 plants from

each described spring and winter barley plot was randomly

collected. Leaves were read additionally with SPAD and with

the ASD FieldSpec spectrometer.

2.2.4 Field trial ZALF corn (MUCO20)

A field (160 × 46 m) sown with silage corn at ZALF exper-

imental station Muencheberg, Germany, in 2020 was chosen

to assess the intrinsic variability in uniform corn fields (no

treatments). Six points regularly spaced, each representing an

area of 53 × 23 m were placed on the field, and on each point

the most recent, fully expanded leaf from two plants was col-

lected for Multiplex measurements in leaf mode and SPAD,

and then taken to the lab for N analysis.

2.3 Data analysis

Leaf and canopy N content was considered as the refer-

ence variable to be compared with sensor measurements. The

ASD field spectrometer measurements were used to generally

understand the reflectance properties of leaves and canopies

with different N content. The SPAD values and individual

Multiplex variables (both, raw sensor outputs and indices)

measured in crop leaves and canopies were contrasted with N

content at the leaf level. Multiplex canopy level measurements

were compared with plot averages of SPAD and N leaf mea-

surements to interpolate to the canopy level. Variables were

tested for normality using the Shapiro–Wilk test (Shapiro &

Wilk, 1965). Spearman’s correlation coefficient was chosen to

determine the tightness of relationships. Additionally, Tukey’s

HSD test was applied to determine the significance of dif-

ferences between values observed at varying N fertilization

levels. Overall, the significance level was defined by p = .05.

In case of high correlations, regression analyses were con-

ducted and the adequacy of the model was assessed by the

coefficient of determination (R2) and the residuals’ distribu-

tion. Analyses were done using the R software (R Core Team,

2014).

For the multivariate analyses to relate Multiplex outputs

with N at the leaf level, first, a ranking of relevant fluorescence

variables was established by means of the Gaussian processes

regression (GPR) algorithm, a nonparametric machine learn-

ing procedure appropriate for tests with smaller sample sizes

(Sinha et al., 2020; Upreti et al., 2019; Verrelst et al., 2015).

Relevance was determined by building N ∼ fluorescence

models first with all Multiplex variables and gradually reduc-

ing the number of variables until reaching a univariate model.

To assess the relative performance of models with different

dimensionality, alternative models were compared by the

normalized root mean square error (NRMSE) (Equation 1),
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ROSSO ET AL. 3321

F I G U R E 1 Overall variability of measured crop N content based

on the leaf level (left side: MUCO19, MUCO20, MACO20) and canopy

level (right side: MUCO19, MUSB19, MUWB19, MAWR19); boxplots

display the median, two hinges (25th and 75th percentile), and two

whiskers (minimum, maximum); red asterisk = mean value

NRMSE =

√(
𝑋pred−𝑋obs

)2
𝑁(

𝑋max −𝑋min
)
100

(1)

where Xpred, Xobs, Xmax, and Xmin are predicted, observed,

maximum, and minimum values of N, respectively, and N is

the number of observations. Once a set of best performing

models was chosen, nine machine learning algorithms were

applied on these selected models to evaluate the possibil-

ity of improving the relationship fluorescence-N by choosing

the appropriate algorithm. Algorithms used included: Bag-

ging Trees, Boosting Trees, GPR, Gradient Boosting/Boosted

Trees, Partial Least Square Regression, Principal Component

Regression, Random Forest Tree Bagger, Regression Trees,

and Relevance Vector Machine (Upreti et al., 2019; Ver-

relst et al., 2015). Model and algorithm performances were

assessed by their adjusted coefficient of determination (R2)

and the NRMSE obtained from training and validation data,

each split of 70 and 30%, respectively. A K-fold cross valida-

tion approach (with K = 10) was applied on selected models

to further assess their accuracy in a comparative way, inde-

pendently of the algorithm used to produce them. The imple-

mentation of all the MLRAs was performed with the Matlab

ARTMO Toolbox version 3.28. With respect to the canopy-

based observations, crop-related sample sizes were not

sufficient for conducting the described multivariate analysis.

3 RESULTS

3.1 Plant N content

The range of observed N content was highest for corn (both for

leaf and canopy; Figure 1), followed by winter barley (1.20–

2.52 % N), spring barley (1.70–2.89 % N), and winter rye

T A B L E 2 Results of the Shapiro–Wilk test for normality of

measured N content in crop; overall p-value canopy = .002

Crop Level W p value
Corn leaf .87 <.05

Corn canopy .84 <.05

Spring barley canopy .95 .71

Winter barley canopy .83 .17

Winter rye canopy .91 .19

(0.56–1.43 % N). The lower level of N supply for winter rye

compared with the other crops might be due to sampling at

the time of ripening. In terms of the distribution of N for

each crop, the difference between median and mean is the

highest for corn. In order to set up valid regression func-

tions for the prediction, the distribution of N measurements

per crop and level (leaf, canopy) was tested for normality.

Results of Shapiro–Wilk’s normality tests indicated normally

distributed N values for winter rye, winter barley, and spring

barley (Table 2), whereas leaf and canopy samples of corn

showed non-normally distributed N values.

Significant differences in the mean of observed N contents

per treatment can be seen in selected trials (Supplemental

Figure S1). Corn leaf N contents at MUCO19 ranged from

0.81 to 2.86 N percentage dry weight, with a clear effect

of fertilization, where the zero, conventional, and high treat-

ment showed means of 1.06, 2.18 and 2.49 N percentage dry

weight, respectively. Here, Tukey’s HSD test explicitly iden-

tified differences between all the three treatment groups. At

MACO20, Tukey’s HSD revealed significant differences in

N contents between the zero treatment and all others. The

respective N means are 1.83 N percentage dry weight for the

zero treatment, 2.39 N percentage dry weight for the low, 2.56

N percentage dry weight for the conventional, and 2.65 N per-

centage dry weight for the high treatment. At the same field,

winter rye canopy N contents significantly differed between

the zero, the low, and the two highest N fertilization treatments

(conventional and high) resulting in 0.59 N percentage, 0.85

N percentage, 1.17 N percentage, and 1.38 N percentage dry

weight, respectively.

3.2 Plant N content and spectral properties

The ASD reflectance spectra indicated that leaf and canopy

reflectance varied concomitantly with N content in tissues.

There was a clear leaf optical properties response to fertiliza-

tion treatments, which in turn were reflected in differences

in N content. Leaf spectra showed a trend towards higher

absorbance at all wavelengths with increasing N in leaves

(Supplemental Figure S2). Also, higher canopy N content

seemed to correspond to decreases in red reflectance, increase
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3322 ROSSO ET AL.

in near-Infrared reflectance and a corresponding increase in

the near-infrared/red ratio (Supplemental Figure S3). Both

leaf and canopy spectral variability at the wavelengths at

which Multiplex (435, 685, and 735 nm for emission bands B,

R, and FR respectively) and SPAD (650 and 942 nm) operate,

led to the expectation of these sensors to be sensitive enough

to changes in N content in crops. A trend towards increas-

ing green and NIR reflectance with increasing N was evident.

This however, rather than corresponding to the typical spec-

tral response to changes in chlorophyll is more likely the effect

of spectral mixture with soil background, as lower chlorophyll

contents also correspond with lower plant density.

3.3 Leaf N content and sensors’ outcome

3.3.1 Univariate analysis

In contrast to the SPAD device, Multiplex produces a total of

21 variables at each measurement. Considering each of the 21

output variables separately, the two nitrogen balance indices

(NBI-R, NBI-G) and the flavonoid index (FLAV) showed

tighter correlations with leaf N according to Spearman’s

rho (Supplemental Table S1), especially when taking all

corn experiments together or focusing only on the MUCO19

trial. Thereby, FLAV decreases with increasing N content

while NBI-R and -G increase with increasing N content.

The same variables, however, showed rather low Spearman’s

rho at MACO20 and MUCO20. For the uniformly fertilized

sample of MUCO20, the BGF-G, the SFR-G, the SFR-R,

and ANTH-RG showed the highest values for Spearman’s

rho (−.73 to −.88). For the MACO20 sample Spearman’s

rho did not exceed −.54. The overall correlation results are

mainly influenced by the relatively high sample size observed

at MUCO19.

The SPAD measurements resulted generally in relatively

higher and more consistent values for Spearman’s rho,

with coefficients of −.83(at MUCO19), −.73(at MACO20),

and −.83(at MUCO20). Based on these results, Multiplex’

leaf-based FLAV, NBI-R, NBI-G and SPAD values were ana-

lyzed for significant differences across fertilization treatment

(Supplemental Figure S4). Because no N measurements were

directly involved in this analysis, all leaf-based Multiplex

measurements presented on Table 1 were used. Regarding

the FLAV index observed on corn leaves, a significant dif-

ference of means could be seen between the conventional and

high fertilization treatment (p < .005, Tukey HSD) as well

as between the zero and high N supply (p < .005, Tukey

HSD). For leaf-based NBI-R and NBI-G values, a signifi-

cant difference could only be verified between the low and

the conventional treatment (p < .005, Tukey HSD). Regard-

ing the SPAD values measured on corn leaves, a significant

difference of means was found between the two lower and the

two higher fertilization treatments (p < .005, Tukey HSD).

In the case of spring barley leaves, Tukey’s HSD resulted in

significant differences between all considered treatments for

Multiplex’ FLAV (p < .005) with lowest sensor values for the

“conv” treatment. Similar results were observed for NBI-R,

NBI-G, and SPAD: The zero-fertilization treatment differed

significantly from the other treatments (p < .005). In the case

of winter barley leaves, no significant difference was found

for FLAV (p = .07), whereas the NBIs and SPAD values

varied significantly between the two considered fertilization

treatment (p < .05).

Focusing on the corn field trials (Supplemental Figure S5)

at MACO20 neither FLAV, NBI-R nor NBI-G showed a sig-

nificant difference between the zero-N application and the

other treatments, contrasting with the N distribution per treat-

ment observed previously (Supplemental Figure S1). In the

case of field trial MUCO19, SPAD values more closely reflect

the pattern of N than the NBI values. The variation between

treatments was more pronounced for FLAV, albeit in the

opposite direction. When considering the total corn sample,

Shapiro–Wilk’s test for normality confirmed a normal distri-

bution for measured FLAV (p= .09) and rejected it for NBI-R,

NBI-G, and SPAD (p < .005). Despite of these potential vio-

lation to the test’s assumptions, a regression analysis for the

prediction of N from each of these four variables was carried

out for exploratory purposes. The regression model to deter-

mine N content from FLAV showed an exponential decline of

this variable with increasing corn N content (R2 = −.65) and

a residual standard error of 0.43 N % dry weight (Figure 2).

Both N balance indices (NBI-R and -G) showed a logarithmic

relationship with a coefficient of determination of R2 = −.71

and−.67, respectively, and a standard error of 0.35 and 0.38 N

percentage dry weight. The N-NBI relationship was stronger

at low N values, but above 2.00 percentage N content the

prediction ability of NBI dropped. It has to be mentioned,

that due to the selected fertilization treatments, there was a

gap of N values between 1.50 and 2.00 N percentage dry

weight. Hence, the effect of two point clouds correspond-

ing to the zero and higher fertilization levels might contribute

considerably to the strength of the relation. The SPAD mea-

surements showed a tight relationship with N at the leaf level

(R2 =−.87) (Figure 2), best explained by an exponential func-

tion, with a residual standard error of 0.28 percentage dry

weight.

For further assessment of the univariate regression mod-

els, a Shapiro–Wilk test of the residuals and residual plots

were used. Test results suggested a normal distribution of

residuals with p values of .16 (FLAV), .36 (NBI-R), .19

(NBI-G), and .50 (SPAD). In contrast, plots of residual

vs. predicted values (Figure 3) seem to show some pat-

terns, casting doubts on the appropriateness of the models

(e.g., irregular scattering of residual values around the zero

line).
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ROSSO ET AL. 3323

F I G U R E 2 Regression models for N content vs. Multiplex flavonoid index (FLAV), Multiplex nitrogen index (NBI-R), NBI-G, and SPAD at

leaf level in corn

3.3.2 Multivariate analysis

The ranking of relevant Multiplex fluorescence variables

carried out with GPR, showed that the lowest error

(NRMSE = 17.27) corresponded to a model with three vari-

ables, FRF-R, SFR-G, and FLAV. The first of which is a “raw”

variable; the second, a chlorophyll index; and the third, the

flavonoid index that was among the variables with the highest

N correlation values. Surprisingly, the NBI-G index, a widely

used parameter to estimate N content was last included in

the model with six variables. A model with only one vari-

able, which was chosen to be FLAV, yielded a relatively

very high error of 20.87, indicating that any univariate model

to predict N may not be the most adequate option. Based

on the GPR ranking, first, we selected the model with six

variables in attention to the improvement in error observed

between the use of seventh and sixth variables (Figure 4),

and the fact that NBI was among the variables chosen. Nine

ML algorithms were applied to this model to see whether

algorithms other than GPR could produce better modeling

results. The algorithm RVM represented an improvement

respect to GPR (Table 3) whereby the NRMSE went from

18.42 to 17.66. When applied to the best, three-variable

GPR model, RVM slightly outrun GPR, but a significant

improvement in performance was obtained when the same

model was tested with cross-validation (Figure 4). To test

whether any of the nine ML algorithms could produce bet-

ter models than GPR and, given the already known close

relationship between FLAV and NBI to leaf N, both param-

eters were tested again in a univariate frame, this time with

the nine algorithms and cross-validation. As a result, NBI

performed slightly better than FLAV (NMRSE values of

16.03 and 16.22, respectively), but both notably worse than

SPAD (NRMSE = 9.82 and R2 = .89), whose model was used

as a reference. The lower accuracy of the NBI model respect

to the three-variable model and SPAD measurements can be
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3324 ROSSO ET AL.

F I G U R E 3 Residual plots of the regression models to retrieve N from proximal sensors

F I G U R E 4 Result of the Multiplex variable relevance test, black line and dots indicate the error (normalized root mean square error

[NRMSE]) from the Gaussian processes regression (GPR) method. Blue and red dots indicate additional tests with selected models and algorithms

other than GPR. CrossV, cross-validation; FLAV, Multiplex flavonoid index; NBI, Multiplex nitrogen index
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ROSSO ET AL. 3325

T A B L E 3 Machine learning model performances

Model ML algorithm NRMSE Adj. R2 Method
Six variables (includes NBI) RVM 17.66 −.78 Training/validation data split

Three variables (FRF_R, SFR_G and FLAV) RVM 14.34 −.76 Cross-validation

One variable, FLAV GPR 16.22 −.70 Cross-validation

One variable, NBI GPR 16.04 −.71 Cross-validation

SPAD (for comparison) RVM 9.82 −.89 Cross-validation

Note. FLAV, Multiplex flavonoid index; GPR, Gaussian processes regression; NBI, Multiplex nitrogen balance index; NRMSE, normalized root mean square error; RVM,

relevance vector machine (for other Multiplex acronyms see Supplemental Table S1).

F I G U R E 5 Accuracy of the three best performing (lower normalized root mean square error [NRMSE]; Table 3) models from the machine

learning analysis

seen in predicted-vs.-observed plots (Figure 5). The robust-

ness of the relationship SPAD to N content is particularly

meaningful after the cross-validation test.

3.4 Canopy N and sensors’ outcomes

Multiplex variables showing consistently high correlation

(whether negative or positive) across crops are: FLAV,

NBI-G and -R, SFR-G and -R, and FRF-UV (Supplemen-

tal Table S2). These results, except for SFR, are similar

to the results observed at the leaf level (Supplemental

Table S1). Compared with the leaf-based observations, corn

canopy measurements showed equally strong correlations for

the same Multiplex variables. Two variables, FER-RG and

ANTH-RG, showing the highest correlation coefficients had

very low values at the leaf level. Winter barley showed higher

correlations with almost all indices and even with some sin-

gle variables such as far red excited with blue (RF-B), green

(RF-G), and red (RF-R). One reason for that could be the very

small sample size of N = 4. Spring barley, on the other hand,

had in general less tight relationships than the other three

crops with no correlation coefficient reaching −.80. Winter

rye, with a larger sample size (N = 12), showed exceptionally

high correlation coefficients for FLAV, ANTH-RG, and both

N balance indices. Given the diversity of crops that this analy-

sis comprises, the standard deviation (SD) of Spearman’s rho

provides a measure of the consistency of correlation across

crops. A comparable low SD in connection with a relatively

high Spearman’s rho was found for the Multiplex parameters

FLAV, SFR-G, NBI-R, and NBI-G (Supplemental Table S2).

As described in the methodology, SPAD values for the canopy

level are represented by the averages of the leaf-based mea-

surements. The correlation coefficients obtained were −.89

for corn, −.86 for spring barley, and −.80 for winter barley.

The SPAD sensor was not applied to the winter rye vegetation

at Marquardt experimental station.

Regression analyses were carried out for the best-

performing Multiplex variables: FLAV, NBI-G and SFR-G;

and interpolated SPAD. NBI-R, also a well-performing vari-

able, was not included given its similarity with NBI-G.

Both, interpolated SPAD and selected Multiplex parame-

ters, appeared to be linearly related with biomass N content

(Figure 6). The high coefficient of determination for the corn

models (R2 = −.91 for FLAV, R2 = −.84 for NBI-G, and

R2 = −.94 for SPAD) are obviously strongly influenced by

the bimodal distribution of the value pairs. In the case of

spring barley, NBI-G seems to be the best predictor com-

pared with FLAV, SFR-G, and interpolated SPAD (R2 value

of −.70 vs. −.45, −.36, and −.54, respectively). Canopy

values observed for the relatively small winter barley sample

also showed a high bipolarity contributing to high R2 values of

SFR-G (−.89), NBI-G (−.91), and SPAD (−.80). The FLAV

parameter performed less well resulting in R2 =−.45. Despite

the small sample size of winter rye, the linear relationships

are characterized by a generally high coefficient of determi-

nation for all selected Multiplex parameters (R2 of −.88 for

FLAV, −.71 for SFR-G, and −.96 for NBI-G). In addition, N
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3326 ROSSO ET AL.

F I G U R E 6 Crop-specific linear relationships between canopy N content and Multiplex flavonoid index (FLAV), Multiplex chlorophyll index

(SFR-G), Multiplex nitrogen index (NBI-G), and interpolated SPAD values for different crops

contents of winter rye biomass are well distributed with no

obvious bimodality.

3.5 Multiplex readings uncertainty

Because each Multiplex value is the result of the average of

500 readings, an analysis of the deviation or dispersion of

these readings provided by the device, may indicate the reli-

ability of the measurements. The standard deviation, SD (or

coefficient of variation, CV, in the case of indices), provided

by Multiplex at each measurement were used for the analysis.

Measurements were grouped and averaged by leaf (N = 179)

or canopy (N = 199) levels (Supplemental Table S3). Aver-

age SD of three digits (126.6–679.9) were obtained on some

basic (“raw”) variables measured in corn at the leaf level

(Supplemental Table S3). The other three crops never

exceeded an average of 19.56 both, at the leaf or canopy levels,

and an average of 31.66 for corn at the canopy level. All the

Multiplex variables belonging to the index type of parameter

had SD or CV values ranging from .00 to .58.

4 DISCUSSION

4.1 Multiplex

Out of the three variables (FRF-R, SFR-G, and FLAV)

included in the best-performing multivariate model, only

FLAV appeared as a single variable with relatively high cor-

relation with leaf N content (Supplemental Table S1). This

variable, together with NBI also showed the best regression

models to estimate leaf N (Figure 2). At the canopy level,

FLAV and NBI-G were the best correlating variables with

N, if we consider the SD column (Supplemental Table S2) a

good indicator of consistent correlation across crops. Agati

et al. (2013) also found that NBI and FLAV were consis-

tently among the most accurate variables to estimate N in

leaves of turfgrass species. Similar results were reported by

Li et al. (2013), although the testing of potential Multiplex

predictors was restricted to SFR-R, FLAV, and NBI-R. Song

et al. (2017) found both -G and -R NBIs to be a slightly bet-

ter predictor of canopy N density in corn than SFR, however

all indices showed a relatively loose correlation with the N
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ROSSO ET AL. 3327

parameter. In that paper, FLAV was not reported to have been

tested. Martinon et al. (2011) found canopy Multiplex regres-

sion coefficients of −.45 to −.74 for NBI, FLAV, and SFR

with percentage N, being NBI the best and SFR the weak-

est. Zecha et al. (2017) presented one of the few research

works combining Multiplex variables. The authors claimed

that by building a model with NBI and FLAV, the predic-

tion of wheat yield improved significantly. In conclusion, the

three Multiplex variables most frequently tested in previous

works seem to produce the best results, although a thorough

screening of other variables is not common in literature, and

even less frequent, a combination of variables. In our case,

results indicate that a multiple variable approach seems to

be the most appropriate to predict N when measuring with

Multiplex. Both the univariate regression analyses and the

ML approach yielded similar coefficient of determination val-

ues when only one variable (NBI or FLAV) was considered.

Therefore, if one variable instead of many Multiplex variables

is to be used to estimate N, either FLAV or NBI seem to be

the most appropriate. At the canopy level, even though more

data would be necessary to arrive to more definite conclu-

sions, our results seem to indicate that also NBI and FLAV

have the best N prediction capabilities. From our results it

is also clear that crops have species-specific fluorescence-N

relationships. The level of uncertainty (variability) of some

Multiplex readings in corn leaves were strikingly high when

compared to most other variables in canopy and the other

three crops. This could be due to some intrinsic properties

of corn leaves in terms of their production of red and infra-

red fluorescence. The reading variability was much lower for

the indices, even when highly variable parameters are used

to build them. The relatively low variability of canopy read-

ings was also unexpected, considering the potential sources

of instability during measurements, such as hand movement,

wind, variable background, etc.

4.2 Multiplex vs. SPAD

The SPAD-N relationship curve resembled the type of rela-

tionship between SPAD and Chlorophyll as reported in

previous studies (Cartelat et al., 2005; Hunt et al., 2013;

Parry et al., 2014; Uddling et al., 2007). At the leaf level,

SPAD reproduced N content more accurately than Multiplex

regardless of how many of its variables were included, and

independently of the method used to build the relationships.

According to Li et al. (2013), also SPAD performed slightly

better than Multiplex variables in rice, although their mea-

surements were made at the canopy level. Due to the smaller

sample size at the canopy level compared with the leaf level

and the fact that SPAD canopy readings represent interpolated

values, a direct comparison of sensory measurement accu-

racy was not appropriate. However, based on our results it

seems likely that with an appropriate leaf sampling proto-

col, SPAD can be used to characterize the N status at the

canopy level. The problem of the canopy representativity is

much more sensitive in the case of interpolated SPAD than

Multiplex, because Multiplex seems to be better suited for

direct canopy readings. The sensor reading mechanics has

also a big relevance for the leaf level. In comparison with

Multiplex, the SPAD device has a very small point of con-

tact with the leaf. As a consequence, SPAD readings are

more subject to local variations in leaf surface such as small

nerves, chlorotic spots, or imperfections, which can drasti-

cally affect the results. For this reason, to make sure that the

value obtained is representative of the leaf nutritional status,

the user needs to be careful and sometimes repeat measure-

ments when spurious readings are suspected. The level of

uncertainty (variability) of some Multiplex readings in corn

leaves were strikingly high when compared to most other vari-

ables in canopy and the other three crops. This could be due

to some intrinsic properties of corn leaves in terms of their

production of red and infra-red fluorescence. The reading

variability was much lower for the indices, even when highly

variable parameters are used to build them. The relatively low

variability of canopy readings was also unexpected, consider-

ing the potential sources of instability during measurements,

such as hand movement, wind, and variable background.

The results of this study suggest that, at least at the leaf

level, fluorescence-based measurements are not able yet to

compete in accuracy with a transmittance/reflectance-based

device like SPAD. To this respect, a hyperspectral sensor like

ASD mounted on a device apt for fast and easy measurements

on the field, would be able to combine the multidimensional-

ity of Multiplex and ASD, and the accuracy and practicality

of SPAD.
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