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Abstract
Geographic atrophy (GA) secondary to age-related macular 
degeneration accounts for close to one-quarter of cases of 
legal blindness in the USA and the UK. Despite this notable 
disease burden, the pathophysiology of GA is complex and 
not fully understood, and there is currently no approved 
treatment to prevent or slow its progression. GA is heteroge-
neous in its appearance and extent, and underlying associ-
ated traits such as drusen and complement factor polymor-
phisms vary between patients and by ethnicity, posing a 
challenge for treatment development. The root cause of vi-
sion loss in GA is photoreceptor death; therefore, protecting 
photoreceptors from damage and delaying their degenera-
tion are key to successful GA treatment. There are multiple 
neuroprotective pathways that may contribute to protect-
ing photoreceptors from damage, and compounds that tar-
get these pathways include antioxidants, neurotrophic fac-
tors, and catalases. However, the efficacy of previously tri-
alled neuroprotective therapies in GA, such as brimonidine, 
tandospirone, and NT-501, has been inconsistent; this may 

be due to their target of action, method of delivery, and/or 
suboptimal duration of action. Neurotrophic factors, or mol-
ecules involved in neuroprotective signalling cascades, may 
be ideal agents for further investigation for the treatment of 
GA. Future neuroprotective strategies in GA must focus on 
the development of agents with a long duration of action 
that can combat the progression of chronic damage in GA to 
provide clinically meaningful benefits for patients.

© 2021 The Author(s)
Published by S. Karger AG, Basel

Introduction

Epidemiology of Geographic Atrophy
Age-related macular degeneration (AMD) is a leading 

cause of blindness in people aged 50 years and over in the 
developed world [1–4]. The incidence of AMD and its 
advanced stages increases exponentially with age [4]; as 
the global population ages, it is estimated that the preva-
lence of advanced AMD will rise from 11.26 million cases 
in 2020 to 18.57 million by 2040 [4, 5].

Advanced AMD can be divided into 2 forms: “wet” 
AMD (wAMD) and geographic atrophy (GA). wAMD is 
characterized by the formation of new blood vessels from 
the choroid into the subretinal or retinal pigment epithe-
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lium (RPE) spaces and comprises 3 primary types [6–8]. 
GA is characterized by progressive atrophy and thinning 
of the RPE and choriocapillaris, leading to photoreceptor 
death and vision loss [5, 9–11]. At present, GA affects ap-
proximately 5 million people globally, accounting for 
roughly 25% of cases of legal blindness in the USA and 
the UK [5, 12]. A meta-analysis published in 2020 indi-
cated that GA is less common in Asian populations com-
pared with European populations, although information 
on the epidemiology of GA in Asia is limited [13].

Pathophysiology of GA
Although heterogeneous in its appearance and extent, 

GA often begins as a single parafoveal lesion [14, 15]. GA 
may form in areas previously occupied by drusen or RPE 
detachments [14, 16–18]; drusen are extracellular depos-
its that are located between the RPE and Bruch’s mem-
brane [10]. The presence of multiple large drusen increas-
es the probability of developing GA [5], and GA that 
forms in areas previously occupied by drusen is associ-
ated with substantially worse visual outcomes [14]. GA is 
also associated with morphological changes such as re-
ticular pseudodrusen [16, 18], which are small yellow-
white lesions typically located above the RPE [18]. Re-
ticular pseudodrusen have been associated with reduced 
choriocapillaris flow and density [18] and are more com-
mon in eyes with GA or type 3 wAMD (retinal angioma-
tous proliferation) than those with other advanced forms 
of AMD (83% and 50% of eyes respectively, vs. 9%) [19]. 
Eyes with reticular pseudodrusen are more likely to prog-
ress to an advanced form of AMD than those with drusen 
alone [20–22]. The presence of drusenoid pigment epi-
thelial detachments may also precipitate GA, with one 
analysis showing that drusenoid pigment epithelial de-
tachments have a 50% chance of developing into GA after 
7 years [23].

Complement factor polymorphisms are associated 
with, and are systemically activated in, AMD [24–28]. 
The complement system is a crucial part of the body’s im-
mune system, leading to proteolytic cascades and the re-
lease of proinflammatory molecules that target patho-
gens, resulting in inflammation [28, 29]. Chronic inflam-
mation has been associated with the pathogenesis of GA 
[30]. Furthermore, complement activation may play a 
functional role in systemic cardiovascular disease, lead-
ing to poor choroidal and ocular perfusion, which could 
precipitate GA [31, 32]. Although complement is not as-
sociated with all cases of GA, one phenotypic subgroup of 
GA (with large soft drusen and foveal atrophy) is charac-
terized by a high genetic risk score for complement poly-

morphisms [33], and complement proteins have been 
found in the retina adjacent to some GA lesions [10]. 
Components of the complement system have been found 
in drusen, but to date, their relationship with pseudodru-
sen is less clear [34]. It is also not currently known wheth-
er complement proteins lead to the formation of drusen 
or accumulate as a result of drusen [28]. The presence and 
phenotype of drusen and pseudodrusen vary by race; for 
example, Caucasians are more likely to develop large dru-
sen than people of other races [35, 36]. Similarly, the com-
plement polymorphisms that are commonly found in 
Caucasians have a much lower frequency in Asian popu-
lations [37–40]. Ethnic variation in the AMD-associated 
Y402H complement polymorphism does not correlate 
with the overall prevalence of AMD, suggesting that dif-
ferent polymorphisms or genes may be risk factors in 
some populations [40]. Two phenotypic subgroups of GA 
with low genetic risk scores for complement polymor-
phisms have been identified: one with foveal atrophy and 
few drusen, and another with extrafoveal atrophy, reticu-
lar pseudodrusen, and a high ARMS2 genetic risk score 
[33]. This suggests that the complement system and dru-
sen phenotype are not major drivers of AMD in all popu-
lations.

Trials of complement inhibition in patients with GA 
have shown inconsistent success in slowing GA progres-
sion; only pegcetacoplan and avacincaptad pegol have 
demonstrated a significant reduction in square root GA 
lesion growth versus sham treatment (0.39 vs. 0.49 mm, 
p = 0.044; 0.32 vs. 0.44 mm, p = 0.0051, respectively), but 
neither were accompanied by a corresponding functional 
difference in best corrected visual acuity (BCVA) or low-
luminance BCVA [41–45]. The limited success of com-
plement inhibitors may partly relate to the ethnic varia-
tion in complement polymorphisms.

Disease Burden of GA
GA is associated with considerable disease progression 

and burden, with patients experiencing a loss of both vi-
sual acuity and independence when performing daily 
tasks. Close to half of all patients with GA are legally 
blind, with 42% reported as having 20/200 vision or worse 
[46]. Larger areas of GA are associated with a decreased 
visual acuity and function, hindering patients’ ability to 
carry out daily tasks [47–50]. Reading speed declines as a 
function of GA lesion size, location, and growth [50, 51], 
and GA negatively affects patients’ ability to recognize 
faces [52, 53]. GA also severely impacts patients’ ability to 
drive, limiting their freedom to travel [54]; 66.7% of pa-
tients become ineligible to drive within a median time of 
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1.6 years from their diagnosis [12]. AMD and GA also af-
fect other aspects of patients’ quality of life, increasing the 
risk of depression as well as susceptibility to falls and in-
juries due to poor visual acuity [55, 56]. As a GA lesion 
increases in size, skills critical for maintaining quality of 
life deteriorate, such as reading speed and recognizing 
faces [50, 51, 57]. Many patients with GA also experience 
fear related to their condition and the deterioration of 
their eyesight [48, 49].

Unmet Medical Need
Although acute vision loss due to wAMD responds to 

treatment and is reversible to some extent, the progres-
sive vision loss that results from GA is irreversible in a 
substantial proportion of treated patients [8, 9]. As such, 
the primary goal of GA treatment is to prevent or delay 
disease progression [58]. Some large trials such as the 
Age-Related Eye Disease Studies (AREDS/AREDS2) fo-
cused on the prevention of advanced AMD [59–61] but 
included only a small number of patients with GA, yield-
ing little benefit for this population. For example, AREDS 
included 118 patients with GA, compared with 658 with 
wAMD and 1,568 with large or extensive drusen [60].

At present, there is no approved pharmacological 
treatment for preventing the onset or slowing the pro-
gression of GA. The slow progress of treatment develop-
ment may in part be attributed to the lack of adequate in 
vivo models of GA [62]. In addition, most clinical trials 
that focused specifically on patients with GA have tar-
geted the complement system. However, the presence of 
reticular drusen and complement activation vary by pop-
ulation, meaning that anti-complement therapy may not 
be efficacious in all patients with GA [63–65]. This has 
prompted investigation into alternative approaches, in-
cluding anti-inflammatory agents, synthetic vitamin A 
replacement therapy, visual cycle modulation, and neu-
roprotection [66–71]. To examine the potential role of 
neuroprotective treatments in GA, we investigated peer-
reviewed journal articles using PubMed and conducted a 
series of clinical trial database searches using clinicaltri-
als.gov for studies of GA treatments.

Neuroprotection in GA

Background of Neuroprotection
Neuroprotection entails the preservation, recovery, or 

regeneration of neuronal function and structure after cat-
astrophic acute injury (e.g., stroke) or chronic ongoing 
damage (e.g., neurodegeneration) [72, 73]. Although the 

symptoms of disease resulting from neural damage vary, 
many aspects of their pathogenesis are shared, such as in-
flammation and oxidative stress [74–77]. Investigation 
into the pharmacological protection of neurons from 
damage began in the 1980s and focused on stroke and ex-
citotoxic injury [78].

Multiple complex pathways for neuroprotection exist, 
including the inhibition of neurodegenerative apoptosis, 
necroptosis, and ferroptosis [79–81]. As such, there are 
many potential therapeutic approaches for neuroprotec-
tion (shown in Fig. 1). These include apelin-13 peptide, 
which has been shown to protect against further acute 
damage in a rat model of ischemic stroke through the 
AMPK/GSK-3β pathway via AR/Gα/PLC/IP3/CaMKK 
signalling [82], and N-acetyl-serotonin treatment, which 
protects ischemic neural cells in a state of oxygen-glucose 
deprivation from chronic damage by inhibiting mito-
chondrial cell death in mice [83]. In addition, the PI3K/
Akt pathway is critical in the protection of neural cells 
against staurosporine-induced apoptosis through the up-
regulation of tropomyosin-related kinase (Trk) via nerve 
growth factor and brain-derived neurotrophic factor 
(BDNF) in vitro [84]. It is clear that there are many po-
tential mechanisms through which neuroprotection can 
be achieved.

Antioxidants
Antioxidants may delay or prevent apoptosis, thus 

preserving neurons [76, 85]. Manganese superoxide dis-
mutase is thought to be a major mechanism by which cells 
counteract reactive oxygen species (ROS) injury after 
ischemia [86]. A synthesized mimic of manganese super-
oxide dismutase significantly increased the in vitro viabil-
ity of neurons and improved neurological function in an 
ischemic stroke mouse model (p < 0.01 compared with an 
untreated control group) [86]. Resveratrol and glutathi-
one have also been investigated for their potential neuro-
protective effects in retinal ganglion cells [76, 87, 88]. To 
date, in humans, antioxidants have not been shown to 
have a significant effect on GA lesion growth; the placebo 
group in AREDS had a mean lesion growth of 7.89 mm, 
whereas patients who received antioxidants alone had a 
mean lesion growth of 6.64 mm (p = 0.19) [89]. Further-
more, a trial of OT-551 (a synthesized molecule with an-
tioxidant properties administered via eye drop) failed to 
show any significant difference in area of GA or drusen 
between the study and fellow eye (p > 0.05) [90]. How-
ever, the use of antioxidants, whether through diet or oth-
er modern therapeutic methods, could stimulate endog-
enous protective mechanisms in patients with GA [85].
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Neurotrophic Factors
Neurotrophic factors are involved in regulating the 

development and function of the nervous system [91] 
and have neuroprotective effects [84]. Ciliary neuro-
trophic factor (CNTF) gene therapy has been shown to 
confer life-long neuroprotection to photoreceptors in a 
mouse model [92] and can both suppress photoreceptor 
death and stimulate Müller glial cell proliferation [93]. 
However, BDNF in combination with tyrosine receptor 
kinase B (TrkB) gene therapy may be a more potent neu-
roprotector than CNTF alone; in a rat model, 76% of 
BDNF-treated retinal ganglion cells that had undergone 
TrkB gene transfer survived post-axotomy, when typi-

cally over 90% of neurons would be lost without treat-
ment [94]. In contrast, rats with laser-induced glaucoma 
injected with a viral vector containing CNTF showed 
only 15% less retinal ganglion cell death compared to un-
treated rats [95]. Glial cell line-derived neurotrophic fac-
tor (GDNF) signalling has also been shown to indirectly 
support photoreceptor survival [96], and the anti-in-
flammatory effect of transduced pigment epithelium-de-
rived factor is protective of retinal ganglion cells in the 
DBA/2J glaucoma mouse model [97]. As neurotrophic 
factors innately stimulate neuroprotection, they may be 
a useful starting point for treatment of retinal degenera-
tion [98].
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Stem Cell Therapy
Stem cells are able to secrete neurotrophic factors 

through paracrine action [99]; thus, stem cell therapy may 
facilitate the neuroprotection of photoreceptors. Intravit-
real injections of mesenchymal stem cells engineered to 
secrete high levels of neurotrophic factors (BDNF, GDNF, 
and vascular endothelial growth factor [VEGF]) have been 
shown to significantly extend retinal ganglion cell survival 
in a rat model (69% vs. 46% with placebo, p = 0.0005) [99]. 
Furthermore, the restoration of degenerating supportive 
cells with stem cell-derived replacements may protect 
photoreceptors: insertion of human embryonic stem cell-
derived RPE cells has been shown to preserve photorecep-
tor function long term in a rat model [100]. Similar stem 
cell-derived RPE cells are being trialled in humans: a phase 
1 study of PF-05206388 has shown preliminary evidence 
for the safety and feasibility of this neuroprotective thera-
py in patients with AMD [101], and ongoing phase 1 and 
1/2a studies are currently examining the safety, tolerabil-
ity, and initial efficacy of stem cell derivatives ASP7317 
and OpRegen in patients with GA [102, 103].

Catalases
Catalases are ubiquitous enzymes that catalyse the 

breakdown of hydrogen peroxide (a common ROS) to wa-
ter and oxygen, preventing the cellular damage caused by 
oxidative stress [104, 105]. Previous work has shown that 
catalases protect rat retinas from ischemia/reperfusion 
damage by reducing oxidative stress [106], and nanopar-
ticle-mediated catalases protect cultured human neurons 
from oxidative damage and can even restore neuronal 
morphology [105]. Specific to the human retina, catalases 
reduce the oxidative stress caused by hyperglycaemia in 
cultured human retinal cells [107]. Therefore, catalases 
may be a good neuroprotective option for both stress-as-
sociated and chronic neurodegenerative disorders [105].

Heat Shock Proteins
Heat shock proteins (HSPs) respond to cellular stress 

by repairing proteins and peptides and degrading irrepa-
rable proteins, thus limiting widespread cellular damage 
[108]. Increasing HSPB5 expression in a transgenic mod-
el of Huntington’s disease confers neuroprotection 
through a non-cell autonomous pathway [109]. HSPB5 
also plays a role in protecting the outer cells of the retina 
in response to severe oxidative stress [110]. Although the 
role of HSPs in neuroprotection and neuroinflammation 
is not yet fully understood, their functional role in cellular 
repair and association with areas of inflammation and 
damage may facilitate neuroprotection [111].

Autophagy
Autophagy is a process of self-degradation that re-

moves misfolded or aggregated proteins, damaged organ-
elles, and intracellular pathogens [112, 113]. Rapamycin, 
a drug that induces autophagy, has been shown to confer 
neuroprotection in fly and mouse models of Hunting-
ton’s disease [114]. However, if autophagic recycling be-
comes imbalanced, it can lead to neuronal cell death; thus, 
careful control of autophagy is vital [112, 115]. At present, 
it is not clear what specific modulation of autophagy is 
required for neuroprotection [115]; control of autophagy 
could be a promising future strategy, but further studies 
are required to establish its role and potential for thera-
peutic use.

Mechanisms of Neural Damage in GA
At present, the direct causes of GA and its progression 

are unknown. Vision loss in patients with GA is directly 
related to photoreceptor dysfunction and death [116]. 
There are a number of mechanisms through which pho-
toreceptors can be damaged; these are typically linked to 
changes in oxygenation or light-induced damage, leading 
to oxidative stress, proinflammatory cellular activity, and, 
ultimately, cell death [117–119].

Changes in Oxygenation Level
The retina is highly metabolically active, meaning that 

it has a great oxygen demand [120]; this renders it par-
ticularly sensitive to changes in oxygenation. Both hypox-
ia and hyperoxia increase the frequency of cell death in 
the retina, primarily in the outer nuclear layer [117]. Hy-
poxia in the retina induces the expression of hypoxia-in-
ducible factor-1α, which leads to the expression of VEGF 
and nitric oxide synthase [120]. VEGF production dis-
rupts the blood-retina barrier and can lead to retinal ede-
ma [120], whereas nitric oxide synthase expression in-
creases concentrations of nitric oxide and may directly 
result in cell death [120]. Furthermore, the activation of 
glutamate receptors in hypoxic conditions may damage 
the photoreceptors by initiating a biochemical cascade 
that increases intracellular calcium levels [120]. Since GA 
is associated with ischemia [121], photoreceptor damage 
relating to retinal ischemia due to hypoxia may be espe-
cially relevant when considering neuroprotective strate-
gies.

Oxidative Stress
Oxidative stress is a result of an imbalance in the pro-

duction and sequestering of ROS [119]. An excess of ROS 
can damage cellular structures, including membranes, lip-
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ids, proteins, and DNA [119]. The retina is especially vul-
nerable to oxidative stress because of its rich polyunsatu-
rated lipid membranes and the high metabolic rate of its 
neurons [76, 122, 123]. Furthermore, mitochondria, 
which are particularly abundant in photoreceptors, are 
vulnerable to damage from oxidative stress [123]; there 
are substantially fewer mitochondria in the RPE of pa-
tients with AMD compared with healthy individuals 
[124]. Oxidative stress plays a key role in a range of retinal 
diseases, including AMD; thus, treatment strategies that 
target oxidative stress in the retina may have broad appli-
cations for retinal health [125]. One ongoing phase 2 study 
is examining the safety and efficacy of elamipretide (a mi-
tochondrially targeted antioxidant) in patients with GA 
[126]. However, the administration of antioxidants has 
yet to show an effect on the incidence of GA or its progres-
sion [89, 127]. That said, a recent large study (14,135 eyes) 
showed that dietary intake of multiple nutrients (includ-
ing vitamin A, vitamin B6, β-carotene, lutein and zeaxan-
thin, magnesium, and copper) reduces the risk of progres-
sion from intermediate AMD to advanced AMD [128].

Proinflammatory Macrophage Activity
The immune response to oxidative damage can result 

in an increased presence of proinflammatory macro-
phages between the RPE and photoreceptor outer seg-
ments [118]; over-accumulation of macrophages between 
the RPE and photoreceptors is associated with the secre-
tion of proinflammatory cytokines [129]. In a mouse 
model of AMD, retinal infiltration by macrophages pre-
ceded the onset of retinal damage, suggesting a causative 
role [118]. When exposed to proinflammatory cytokines, 
RPE cells express fewer than usual genes that are criti-
cally involved in the visual cycle, epithelial morphology, 
and phagocytosis [130]. Furthermore, senescent RPE 
cells upregulate AMD- and GA-associated inflammatory 
factors (interleukin-6 and interleukin-8), forming a cycli-
cal pattern of damage [131–133]. The evidence linking 
proinflammatory macrophages to the sites of future AMD 
development implicates macrophage control as a poten-
tial mechanism for neuroprotection [118].

Changes in the RPE
The RPE acts as a selective barrier and vegetative regu-

lator of the photoreceptor layer [134]; thus, changes in the 
RPE may have a direct effect on the health of photorecep-
tors. Age-related changes in the RPE, such as accumula-
tion of lipofuscin, are associated with the pathogenesis of 
AMD [134]; lipofuscin is phototoxic and has been linked 
to oxidative changes associated with cell death [134]. 

Thinning of the RPE is one sign of GA [5, 9–11]; there-
fore, it is reasonable to assume that other changes in the 
RPE may play a role in GA-associated photoreceptor 
death. Further research is needed to establish the precise 
impact of RPE changes on GA.

Light-Induced Damage
Light can induce oxidative stress-mediated damage to 

photoreceptors. Oxidative reactions are apparent in rat 
retinas after 5 days of constant light exposure [135]. Light 
wavelengths within the visible spectrum range (415–755 
nm) are associated with the highest levels of mitochon-
drial dysfunction in RPE cell cultures that have been 
modified to mimic ageing [136]. However, a meta-analy-
sis has indicated that exposure to sunlight may not be as-
sociated with an increased risk of developing AMD in hu-
mans [137]. Although excess light can induce retinal 
damage, it is unlikely to be a mechanism underlying 
AMD or the cause of retinal dysfunction in the majority 
of patients.

The Rationale for Using Neuroprotection to Manage 
GA
Primary pathways implicated in the progression of GA 

are also associated with mechanisms that can damage 
photoreceptors, such as inflammation, oxidative stress, 
and blood flow regulation [70]. As neuroprotective agents 
can protect photoreceptors from damage and increase the 
survival of neural tissue by preserving neuronal structure 
and function [70], they are a promising disease manage-
ment option for GA. Importantly, a neuroprotective 
mechanism may work independently from the primary 
disease pathomechanism of GA.

Previously Trialled Neuroprotective Therapies

Many agents, including apoptosis inhibitors, anti-in-
flammatory agents, neurotrophic factors, antioxidants, 
progesterone, ursodeoxycholic acid, and tauroursode-
oxycholic acid, have been used to combat neurodegen-
eration in various clinical settings [85, 98, 138–143]. Al-
though corticosteroids are not traditionally thought of as 
neuroprotective agents, sustained-release fluocinolone 
acetonide [144–146] is one example of a corticosteroid 
formulation that could play a neuroprotective role in ret-
inal diseases because of its anti-inflammatory effects 
[146]. However, as fluocinolone is a non-specific cortico-
steroid, it may not sufficiently target GA lesions. Other 
corticosteroids in AMD have failed to improve visual 
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acuity [145, 147]. Several neuroprotective agents have 
been investigated in GA over the past decade but have 
typically not advanced to further trials and were largely 
unsuccessful (Table 1).

Brimonidine
Brimonidine is a selective α2-adrenergic receptor ago-

nist that has been used in glaucoma for its intraocular 
pressure-lowering effects [148, 149]. It is thought that bri-
monidine may directly interact with α2 receptors, leading 
to a reduced pathological accumulation of extracellular 
glutamate and preventing the death of retinal ganglion 
cells [149, 150]; the activation of glutamate receptors can 
damage photoreceptors by increasing intracellular calci-
um levels [120]. Brimonidine has demonstrated a small, 
non-significant effect on the slowing GA lesion growth; 
mean growth from baseline at one year was ~15% com-
pared with ~22% in the sham group [151]. In a phase 2 
trial of brimonidine for the treatment of GA, there were 
some discontinuations in the treatment group (~5%) due 
to adverse events. Although these events were not consid-
ered treatment-related, around one-quarter of all adverse 
events were attributed to the injection itself, highlighting 
the treatment burden associated with frequent intravit-
real injections [151]. The lack of significant effect on GA 
lesion growth indicates that the specific neuroprotective 
mechanism of brimonidine does not sufficiently over-
come the primary pathology of GA.

Tandospirone
Tandospirone [152, 153] is a 5-hydroxytryptamine-1A 

receptor agonist, which has been shown to protect the 
RPE in albino and pigmented rats [154]. Tandospirone 
has a lower treatment burden than intravitreal injections 
owing to its delivery method (eye drops) and has demon-
strated only low-grade adverse events, including eye ir-
ritation (8–10%), eye pain (6–7%), and blepharitis (5–
7%) [153]. However, its desirable safety profile is out-
weighed by its lack of efficacy in GA; no difference was 
observed in GA lesion growth rate between patients who 
received placebo and patients treated with tandospirone 
[153]. Furthermore, eye drops are associated with low pa-
tient compliance and can be challenging to self-adminis-
ter [155]. Also, the administration of tandospirone in the 
form of eye drops may prevent the drug from reaching the 
retina in sufficient volumes to be effective [153, 156].

NT-501
NT-501 contains two human cell lines that have been 

genetically modified to secrete human CNTF into the vit-

reous cavity at different doses via an implanted device, 
providing direct retinal access [157, 158]. High doses of 
CNTF (20 ng/day) resulted in 96% of patients with GA 
losing fewer than three lines of vision (measured using 
BCVA) versus 75% of patients who received sham sur-
gery; however, this difference was not statistically signifi-
cant. There was a statistically significant change in macu-
lar volume versus baseline for the low- and high-dose 
CNTF groups as measured by optical coherence tomog-
raphy (p < 0.001 vs. sham surgery), but it was not possible 
to establish whether this was due to an increase in retinal 
cell numbers [158]. As NT-501/CNTF is delivered via an 
implant, there is a reduced treatment burden for the pa-
tient as the implant is only inserted once [158]. No serious 
adverse events relating to the implant or surgery were re-
ported; however, there were instances of photopsia, mio-
sis, and worsening of pre-existing cataracts in the treated 
groups. Although the mechanism of action of NT-501 is 
appropriate for the treatment of GA, it is possible that the 
choice of growth factor in this trial was not suitable for 
GA specifically. NT-501 has been more successful in oth-
er retinal indications; in patients with macular telangiec-
tasia, CNTF effectively slowed the progression of retinal 
degeneration [159].

Other Considerations
The endpoints that the aforementioned clinical trials 

were structured around may not have been appropriate 
for detecting improvements in visual function. For ex-
ample, in a clinical trial of pegcetacoplan (APL-2), an 
anatomical reduction in GA progression was demon-
strated for treated versus sham patients, but there were 
no efficacy differences for secondary visual endpoints 
such as BCVA [45]. Ensuring that trials are well de-
signed and sufficiently powered to detect both anatomi-
cal and functional endpoints is likely to be crucial in de-
termining the efficacy of potential new treatments for 
GA. This is especially relevant for treatments with neu-
roprotective mechanisms as they may be able to main-
tain visual function even when cells are anatomically 
dysfunctional.

Furthermore, the point at which treatment begins in 
clinical trials is critical for progressive diseases such as 
GA. As current and in-development treatments are not 
able to reverse photoreceptor death, the level of pre-exist-
ing atrophy in patients with advanced GA could limit 
treatment efficacy. This may partly explain the limited 
efficacy reported in previous studies of treatments for 
GA. The recent Classification of Atrophy Meetings 
(CAM) guidelines [160] may help researchers to identify 



Scholl/Boyer/Giani/ChongOphthalmic Res 2021;64:888–902896
DOI: 10.1159/000517794

patients with nascent GA (or who are at a high risk of de-
veloping GA) for inclusion in clinical trials of novel treat-
ments and could result in improved vision outcomes for 
patients.

The Future Role of Effective Neuroprotection in GA: 
Redefining the Approach and Conclusions

GA is associated with considerable disease burden and 
progression. Despite this, there are currently no approved 
treatments to prevent the onset or delay the progression 
of GA. At present, a number of neuroprotective agents are 
under investigation in other retinal diseases (Table  2), 
validating the consideration of neuroprotection in GA. 
Although a neuroprotective mechanism could have a 
positive impact on the treatment landscape of GA, based 
on previous clinical trials (Table 1), treatment duration 
and efficacy need to be improved.

Future Therapeutic Approaches of Neuroprotection in 
GA
A treatment’s duration of action will need to be con-

sidered for future therapies. GA may be similar to dis-
eases in which chronic damage occurs gradually over 
time; therefore, the duration of action of previously tri-
alled neuroprotective agents may have been too short to 
combat chronic and ongoing damage. Duration of action 
could be increased through specific treatment formula-

tions or by identifying treatments with superior ocular 
pharmacokinetics.

Selecting an appropriate target of action may also be 
critical in future clinical trials. Thinning of the RPE is a 
known characteristic of GA [5, 9–11]; therefore, targeting 
the RPE may be appropriate. However, the histopathology 
of GA lesions shows that the area of photoreceptor loss is 
much larger than the area of RPE loss [116], and micrope-
rimetry has demonstrated that impairment of photore-
ceptor activity extends beyond the anatomical GA lesion 
area [161]. If photoreceptor death takes place before the 
RPE is lost, then the RPE may not be an ideal target for 
treatment, as irreversible vision loss would have already 
occurred. That said, the resorption of drusen and loss of 
the RPE are indicators of GA progression, meaning that 
photoreceptor death may be secondary to the presence of 
RPE hypopigmentation [162]. If so, the RPE could still be 
an ideal target for induced or transduced expression of 
neuroprotective proteins. One example of a potential tar-
get associated with the RPE is the DICER1 pathway. The 
accumulation of Alu RNA resulting from a DICER1 defi-
ciency in the RPE has been implicated in GA [163–165]; a 
DICER1 deficit activates inflammasomes, which leads to 
RPE cell death via activation of caspase-8 [163, 164]. Fur-
thermore, the inhibition of inflammasome components 
has been shown to prevent RPE degeneration induced by 
DICER1 loss [163]. As such, there is a rationale for target-
ing the DICER1 pathway, or another associated neuro-
protective protein in the RPE, for the treatment of GA.

Table 2. Neuroprotective therapies currently under investigation in ocular diseases

Treatment Indication Intervention Endpoints Status

CoQ10-MINIACTIVES 
(NCT04038034)

Glaucoma IOP-lowering drugs with 
either 100 mg b.i.d. oral 
administration of CoQ10-
MINIACTIVES or placebo

Pattern electroretinogram amplitude at 12 months versus 
baseline (primary); visual field test; contrast sensitivity; 
peripapillary retinal nerve fibre layer thickness by OCT; 
macular retinal nerve fibre layer thickness by OCT

Recruiting, 
phase N/A

Lutein dietary  
supplements 
(NCT03932305)

Retinal  
detachment

Lutein vs. placebo BCVA at 6 months versus baseline (primary); retinal 
anatomical changes by OCT; contrast sensitivity by Pelli-
Robson chart; quality of life measures (impact of vision 
impairment profile)

Active, not 
recruiting, 
phase N/A

NT-501 implant 
(NCT02862938)

Glaucoma NT-501 ECT implant vs.  
sham

Visual field (primary); retinal ganglion cell layer thickness  
by OCT; retinal nerve fibre layer thickness by OCT; contrast 
sensitivity; BCVA; optic nerve head structural change

Active, not 
recruiting, 
phase 2

ACTHAR gel 
(NCT01838174)

Acute optic  
neuritis

ACTHAR gel versus 
intravenous 
methylprednisolone

Retinal nerve fibre layer thickness (primary); frequency of 
retinal nerve fibre layer swelling; mood, visual function  
(NEI-VFQ-25) and quality of life assessment

Recruiting, 
phase 4

BCVA, best corrected visual acuity; b.i.d., twice daily; ECT, encapsulated cell therapy; IOP, intraocular pressure; N/A, not applicable; NEI-VFQ-25, Na-
tional Eye Institute Visual Function Questionnaire (25 questions); OCT, optical coherence tomography.
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A number of clinical trials in GA have targeted treat-
ment to the complement system. However, given the 
known ethnic variation in complement polymorphisms 
[37–40], such a treatment is unlikely to be equally effica-
cious in all populations. Accordingly, trials of comple-
ment inhibitors have shown variable success in delaying 
the progression of GA (Table 1) [41–43, 45].

An alternative possibility is to focus on a neuroprotec-
tive agent that directly protects the photoreceptors, 
which could delay vision loss despite the breakdown of 
the choroidal endothelium and choriocapillaris. The 
photoreceptors, RPE, and choriocapillaris exist in a sym-
biotic relationship, which breaks down in AMD [162]; 
detachment of the retina from the choroid leads to pho-
toreceptor death [162]. A neuroprotective agent may 
prolong the survival and function of photoreceptors de-
spite vascular damage. Although this would not treat the 
root cause of vision loss, a delay in photoreceptor death 
may be sufficient to maintain visual function for several 
years.

Importantly, efficacy should be measured not just us-
ing anatomical markers but also by measures of retinal 
sensitivity, which can be impaired even in regions of the 
retina that appear anatomically normal [161]. In addition 
to target selection, it is crucial to consider when to begin 
treatment; as GA is progressive and irreversible, earlier 
treatment is likely to preserve better visual function.

Conclusion

Neuroprotection offers a theoretical mechanism for 
delaying photoreceptor death; although many clinical tri-
als of neuroprotective factors have been unsuccessful thus 
far, the mechanism of drug delivery, specificity of treat-
ment and primary endpoint selection may have impacted 
the outcomes of these trials. Studies focusing on the effect 
of neurotrophic factors (or other molecules involved in 
their signalling cascades) could identify a neuroprotec-
tive agent with a long duration of action that delays the 
incidence and/or the progression of GA and, ultimately, 
the onset of vision loss, providing clinically meaningful 
benefits for patients.
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