Fachrepositorium Lebenswissenschaften (FRL)



**Repository for Life Sciences** 

# Fine-Grained Named Entities for Corona News - Presentation

Efeoglu, Sefika | Paschke, Adrian

Version: Postprint (Verlagsversion)/Postprint (Publisher Version) Typ/Type: Kongressschrift/Conference Proceeding Jahr/year: 2023 Quelle/Source: https://repository.publisso.de/resource/frl:6440380 Schlagwörter/Keywords: named entity recognition, corona news, fine-grained entities, contextual embedding

Zitationsvorschlag/ Suggested Citation:

Efeoglu, Sefika; Paschke, Adrian (2023): Fine-Grained Named Entities for Corona News -Presentation. International SWAT4HCLS Conference 2023. DOI: 10.4126/FRL01-006440380

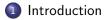
Nutzungsbedingungen:

Dieses Werk ist lizensiert unter einer Creative Commons Lizenz (https://creativecommons.org/licenses/by/4.0/)

Terms of use:

This document is licensed under creative commons license (https://creativecommons.org/licenses/by/4.0/)




# Fine-Grained Named Entities for Corona News

### Sefika Efeoglu and Adrian Paschke

Freie Universität Berlin

February 15, 2023

| Outline |  |  |
|---------|--|--|





## 3 Evaluation





| Introduction<br>•• |  |  |
|--------------------|--|--|
|                    |  |  |

#### **Motivation**



Figure 1: The word cloud of corona news corpus from tagesschau.

| Introduction | Methodology | Evaluation | Conclusion | Bibliography |
|--------------|-------------|------------|------------|--------------|
|              | 0000        | 000        | 00         | 00           |
| Introduction |             |            |            |              |

### Problem:

- Huge amount of unstructured text data in the corona domain since December 2019.
- Analyzing these unstructured texts is time-consuming.

### Drawbacks of existing corpora:

The existing corpora, such as CORD-19 [1] and LitCovid [2]:

- fail to identify recent variants of the coronavirus and generic mentions.
- include earlier published scientific papers in this domain.

### Approach:

This study aims to develop an annotation pipeline that generates annotated training data from newer corona news articles for named entity recognition (NER).

| Introduction |  |  |
|--------------|--|--|
| Introduction |  |  |

## Problem:

- Huge amount of unstructured text data in the corona domain since December 2019.
- Analyzing these unstructured texts is time-consuming.

## Drawbacks of existing corpora:

The existing corpora, such as CORD-19 [1] and LitCovid [2]:

- fail to identify recent variants of the coronavirus and generic mentions.
- include earlier published scientific papers in this domain.

### Approach:

This study aims to develop an annotation pipeline that generates annotated training data from newer corona news articles for named entity recognition (NER).

| Introduction |  |  |
|--------------|--|--|
| Introduction |  |  |

## Problem:

- Huge amount of unstructured text data in the corona domain since December 2019.
- Analyzing these unstructured texts is time-consuming.

## Drawbacks of existing corpora:

The existing corpora, such as CORD-19 [1] and LitCovid [2]:

- fail to identify recent variants of the coronavirus and generic mentions.
- include earlier published scientific papers in this domain.

### Approach:

This study aims to develop an annotation pipeline that generates annotated training data from newer corona news articles for named entity recognition (NER).

| Methodology<br>0000 |  |  |
|---------------------|--|--|
|                     |  |  |

### An Annotation Pipeline for Training Texts

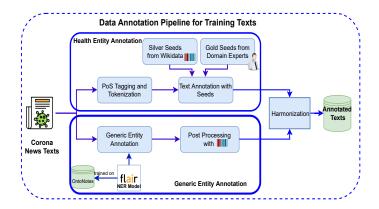
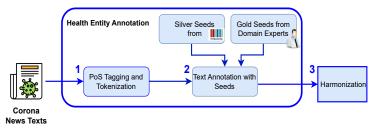




Figure 2: Data Annotation Pipeline for Training Texts.

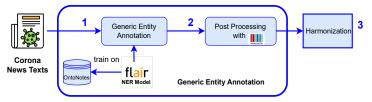
| Methodology<br>0000 |  |  |
|---------------------|--|--|
|                     |  |  |

### Health Entity Annotation



#### Input Sentence:

According to the Berlin virologist Christian Drosten, an unvaccinated person with an Omicron infection carries three quarters of the risk of being hospitalized for an unvaccinated person with the delta variant of Corona.


#### Output (Input to Step 3):

According to the Berlin virologist Christian Drosten, an unvaccinated person with an Omicron[CORONAVIRUS] infection[DISEASE\_OR\_SYNDROME] carries three quarters of the risk of being hospitalized for an unvaccinated person with the delta variant[CORONAVIRUS] of Corona[CORONAVIRUS].

### Figure 3: Health Entity Annotation.

| Methodology<br>0000 |  |  |
|---------------------|--|--|
|                     |  |  |

### Generic Entity Annotation



#### Input Sentence:

According to the Berlin virologist Christian Drosten, an unvaccinated person with an Omicron infection carries three quarters of the risk of being hospitalized for an unvaccinated person with the delta variant of Corona.

#### Output (Input to Step 3):

According to the <u>Berlin[OPE]</u> virologist <u>Christian Drosten[PERSON]</u>, an unvaccinated person with an <u>Omicron[ORG]</u> infection carries three quarters[DATE] of the risk of being hospitalized for an unvaccinated person with the delta variant of <u>Corona[GPE]</u>.

### Figure 4: Generic Entity Annotation.



#### The Annotated Sentence:

According to the Berlin[GPE] virologist Christian Drosten[PERSON], an unvaccinated person with an Omicron[CORONAVIRUS] Infection[DISEASE\_OR\_SYNDROME] carries three quarters[DATE] of the risk of being hospitalized for an unvaccinated person with the delta variant[CORONAVIRUS] of Corona[CORONAVIRUS].

#### Figure 5: Harmonization

|              |       | Evaluation<br>000 |  |
|--------------|-------|-------------------|--|
| Experimental | Setup |                   |  |

- **Dataset:** corona-related news articles from a German news-channel "Tagesschau" between December 2020 and June 2022.
- Fleiss Kappa: 0.98 (test) (calculated for event, product, immune\_response, coronavirus, disease\_or\_sydrome, sign\_or\_symptom, 'empty').
- NER models: base (Glove) [3], advanced (Flair+Glove) [4] and SciBERT [5].

| Corpus   | $\mid$ # of sentences |
|----------|-----------------------|
| Training | 89986                 |
| Dev      | 4999                  |
| Test     | 1000                  |

Table 1: The entities in the data set have been categorized with 23 entity types.

|         | Evaluation<br>000 |  |
|---------|-------------------|--|
| Results |                   |  |

- Fine-tuned SciBERT [5] model's micro F1-score is 0.7765.
- Its entity-specific F1-scores are 0.81 (coronavirus), 0.84 (sign\_or\_symptom), 0.79 (disease\_or\_syndrome), 0.8 (immune\_response), and 0.85 (group).

| Embedding   | Model   | Model<br>Std | Coronavirus | Disease<br>or<br>Syndrome | Group   | Imm <sup>une</sup><br>Response | sign<br>or<br>Symptom |
|-------------|---------|--------------|-------------|---------------------------|---------|--------------------------------|-----------------------|
| Glove       | 0.71084 | 0.003414     | 0.76522     | 0.84152                   | 0.80078 | 0.96364                        | 0.81922               |
| Glove+Flair | 0.77162 | 0.002322     | 0.78614     | 0.81214                   | 0.85016 | 0.83264                        | 0.86562               |

Table 2: This table shows the statistical details about mean micro-F1 scores of the NER models (implemented by using Flair framework [6]), which were trained and evaluated five times. Besides, the table gives the mean micro-F1 scores of new entity types on the models trained with our corona news corpus.

|  | Evaluation<br>000 |  |
|--|-------------------|--|
|  |                   |  |

### F1 Scores of Specific Entities

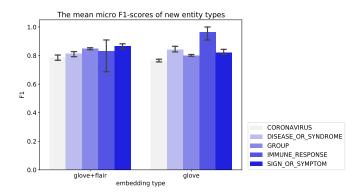



Figure 6: F1 scores of the new entities.

|            |  | Conclusion<br>OO |  |
|------------|--|------------------|--|
| Conclusion |  |                  |  |

- Contributions:
  - An annotation pipeline to create annotated texts from the corona news articles for NER.
  - A new up-to-date annotated corpus in the corona domain to identify corona-related mentions on the corona news articles via the NER models.
- The models utilizing contextual embedding surpass the model using an only word embedding in terms of micro-F1 score.
- Besides, the fine-tuned SciBERT model has performed well in the domain-specific entity types.

|             |        | Conclusion<br>00 | Bibliography<br>00 |
|-------------|--------|------------------|--------------------|
| Acknowledge | oments |                  |                    |

The research presented in this presentation was supported in part by the German Federal Ministry of Education and Research (BMBF) project "PANQURA" under grant 03COV03F, in part by the European Union project "FAST-LISA" under grant 101049342.

Sefika Efeoglu and Adrian Paschke

|    | Methodology |     | Conclusion | Bibliography |
|----|-------------|-----|------------|--------------|
| 00 | 0000        | 000 | 00         | 00           |

## Thank you! sefika.efeoglu@fu-berlin.de

|              |  | Bibliography<br>©© |
|--------------|--|--------------------|
| References I |  |                    |

X. Wang, X. Song, B. Li, Y. Guan, and J. Han, "Comprehensive named entity recognition on cord-19 with distant or weak supervision," 2020.

- Q. Chen, A. Allot, and Z. Lu, "LitCovid: an open database of COVID-19 literature," *Nucleic Acids Research*, vol. 49, pp. D1534–D1540, 11 2020.



J. Pennington, R. Socher, and C. D. Manning, "Glove: Global vectors for word representation," in *Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1532–1543, 2014.



A. Akbik, D. Blythe, and R. Vollgraf, "Contextual string embeddings for sequence labeling," in *COLING 2018, 27th International Conference on Computational Linguistics*, pp. 1638–1649, 2018.



I. Beltagy, K. Lo, and A. Cohan, "Scibert: Pretrained language model for scientific text," in *EMNLP*, 2019.



A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter, and R. Vollgraf, "FLAIR: An easy-to-use framework for state-of-the-art NLP," in *NAACL 2019, 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)*, pp. 54–59, 2019.