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Motivation

Figure 1: The word cloud of corona news corpus from tagesschau.
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Introduction

Problem:

▸ Huge amount of unstructured text data in the corona domain
since December 2019.

▸ Analyzing these unstructured texts is time-consuming.

Drawbacks of existing corpora:

The existing corpora, such as CORD-19 [1] and LitCovid [2]:

▸ fail to identify recent variants of the coronavirus and generic
mentions.

▸ include earlier published scientific papers in this domain.

Approach:

This study aims to develop an annotation pipeline that generates
annotated training data from newer corona news articles for named
entity recognition (NER).
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An Annotation Pipeline for Training Texts
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Figure 2: Data Annotation Pipeline for Training Texts.
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Health Entity Annotation

PoS Tagging and
Tokenization

Text Annotation with
Seeds

Gold Seeds from
Domain Experts
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Health Entity Annotation

 Harmonization

1 2 3

Corona
News Texts

Input Sentence: 
According to the Berlin virologist Christian Drosten, an unvaccinated person with an Omicron infection carries
three quarters of the risk of being hospitalized for an unvaccinated person with the delta variant of Corona.

Output (Input to Step 3):
According to the Berlin virologist Christian Drosten, an unvaccinated person with an Omicron[CORONAVIRUS]
infection[DISEASE_OR_SYNDROME] carries three quarters of the risk of being hospitalized for an
unvaccinated person with the delta variant[CORONAVIRUS] of Corona[CORONAVIRUS].

Figure 3: Health Entity Annotation.
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Generic Entity Annotation

Generic Entity
Annotation

Post Processing
with 

OntoNotes Generic Entity AnnotationNER Model

 Harmonization
1 2 3

Corona
News Texts

Input Sentence: 
According to the Berlin virologist Christian Drosten, an unvaccinated person with an Omicron infection carries
three quarters of the risk of being hospitalized for an unvaccinated person with the delta variant of Corona.

Output (Input to Step 3):
According to the Berlin[GPE] virologist Christian Drosten[PERSON], an unvaccinated person with an
Omicron[ORG] infection carries three quarters[DATE] of the risk of being hospitalized for an unvaccinated
person with the delta variant of Corona[GPE].

train on

Figure 4: Generic Entity Annotation.
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Harmonization

Omicron[CORONAVIRUS]
infection[DISEASE_OR_SYNDROME]
delta variant[CORNAVIRUS]
Corona[CORONAVIRUS]

Berlin[GPE]
Christian Drosten[PERSON]
Omicron[ORG]
three quarters[DATE]
Corona[GPE]

The Annotated Sentence:
According to the Berlin[GPE] virologist Christian Drosten[PERSON],
an unvaccinated person with an Omicron[CORONAVIRUS] infection[DISEASE_OR_SYNDROME]
carries three quarters[DATE] of the risk of being hospitalized for an unvaccinated person 
with the delta variant[CORONAVIRUS] of Corona[CORONAVIRUS].

Omicron[CORONAVIRUS]
infection[DISEASE_OR_SYNDROME] 
delta variant[CORNAVIRUS]
Corona[CORONAVIRUS]
Berlin[GPE]
Christian Drosten[PERSON]
Omicron[ORG]  X
three quarters[DATE]
Corona[GPE] X

Health Data Annotation Generic Data Annotation

Conflict Resolution

Figure 5: Harmonization
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Experimental Setup

▸ Dataset: corona-related news articles from a German news-channel
“Tagesschau” between December 2020 and June 2022.

▸ Fleiss Kappa: 0.98 (test) (calculated for event, product,
immune response, coronavirus, disease or sydrome,
sign or symptom, ‘empty’).

▸ NER models: base (Glove) [3], advanced (Flair+Glove) [4] and
SciBERT [5].

Corpus # of sentences

Training 89986
Dev 4999
Test 1000

Table 1: The entities in the data set have been categorized with 23 entity
types.
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Results

▸ Fine-tuned SciBERT [5] model’s micro F1-score is 0.7765.

▸ Its entity-specific F1-scores are 0.81 (coronavirus), 0.84
(sign or symptom), 0.79 (disease or syndrome), 0.8
(immune response), and 0.85 (group).
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Glove 0.71084 0.003414 0.76522 0.84152 0.80078 0.96364 0.81922
Glove+Flair 0.77162 0.002322 0.78614 0.81214 0.85016 0.83264 0.86562

Table 2: This table shows the statistical details about mean micro-F1
scores of the NER models (implemented by using Flair framework [6]),
which were trained and evaluated five times. Besides, the table gives the
mean micro-F1 scores of new entity types on the models trained with our
corona news corpus.
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F1 Scores of Specific Entities
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Figure 6: F1 scores of the new entities.
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Conclusion

▸ Contributions:
1 An annotation pipeline to create annotated texts from the

corona news articles for NER.
2 A new up-to-date annotated corpus in the corona domain

to identify corona-related mentions on the corona news articles
via the NER models.

▸ The models utilizing contextual embedding surpass the model
using an only word embedding in terms of micro-F1 score.

▸ Besides, the fine-tuned SciBERT model has performed well in
the domain-specific entity types.
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