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Summary

Sleep spindles are a hallmark electroencephalographic feature of non-rapid eye movement

sleep, and are believed to be instrumental for sleep-dependent memory reactivation and

consolidation. However, direct proof of their causal relevance is hard to obtain, and our

understanding of their immediate neurophysiological consequences is limited. To investi-

gate their causal role, spindles need to be targeted in real-time with sensory or non-

invasive brain-stimulation techniques. While fully automated offline detection algorithms

are well established, spindle detection in real-time is highly challenging due to their sponta-

neous and transient nature. Here, we present the real-time spindle detector, a robust

multi-channel electroencephalographic signal-processing algorithm that enables the auto-

mated triggering of stimulation during sleep spindles in a phase-specific manner. We vali-

dated the real-time spindle detection method by streaming pre-recorded sleep

electroencephalographic datasets to a real-time computer system running a Simulink®

Real-Time™ implementation of the algorithm. Sleep spindles were detected with high

levels of Sensitivity (�83%), Precision (�78%) and a convincing F1-Score (�81%) in refer-

ence to state-of-the-art offline algorithms (which reached similar or lower levels when

compared with each other), for both naps and full nights, and largely independent of sleep

scoring information. Detected spindles were comparable in frequency, duration, amplitude

and symmetry, and showed the typical time–frequency characteristics as well as a centro-

parietal topography. Spindles were detected close to their centre and reliably at the prede-

fined target phase. The real-time spindle detection algorithm therefore empowers

researchers to target spindles during human sleep, and apply the stimulation method and

experimental paradigm of their choice.

K E YWORD S

closed loop, electroencephalographic triggered stimulation, non-invasive brain stimulation,
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1 | INTRODUCTION

Thalamocortical sleep spindles, i.e., 0.5–2-s bursts of oscillatory brain

activity at sigma frequency (�12–15 Hz) with waxing and waning

amplitude, are a hallmark feature of the electroencephalogram (EEG)

during non-rapid eye movement (NREM) sleep. Spindles subserve

sleep-dependent memory reactivation (Bergmann, Mölle, Diedrichs,

et al., 2012) and systems consolidation (Diekelmann & Born, 2010) via

their nested phase–amplitude coupling with neocortical slow oscilla-

tions (SOs; 0.5–1 Hz) and hippocampal ripples (> 80 Hz; Staresina
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et al., 2015), supporting phase-dependent plasticity (Bergmann &

Born, 2018) and the synaptic rescaling of cortical neurons (Klinzing

et al., 2019). To investigate their neurophysiological underpinnings

and test their causal role for memory consolidation, spindles need to

be targeted and manipulated experimentally. In humans, non-invasive

means such as the application of sensory or transcranial brain stimula-

tion in a brain-state-dependent manner (Bergmann, 2018), as done

successfully for the SO, provides an opportunity to interact directly

with the electrophysiological brain activity of interest in a temporally

and spatially precise fashion that cannot be achieved with more indi-

rect, e.g., pharmacological, manipulations, the effects of which are

more systemic and affect brain activity during longer time periods.

The SO phase-dependent transcranial magnetic stimulation (TMS)

of the left human primary motor cortex (M1) during NREM sleep

revealed that corticospinal excitability, as assessed by motor-evoked

potentials (MEPs), were smaller during SO down- than up-states

(Bergmann, Mölle, Schmidt, et al., 2012). Using closed-loop SO phase-

triggered auditory stimulation, Ngo et al. (2013, 2015) were able to

enhance SO amplitude, associated spindle generation and memory

consolidation. Also, targeted memory reactivation studies successfully

explored the benefit of targeting reactivation cues phase-locked to

SO up- or down-states (Göldi et al., 2019; Shimizu et al., 2018).

While SOs are an easy real-time target, also faster oscillations can

be targeted using modern real-time systems (Zrenner et al., 2018).

During wakefulness, real-time EEG-triggered TMS of M1 demon-

strated phase-dependent MEP modulations during the sensorimotor

mu-alpha rhythm (Bergmann et al., 2019; Zrenner et al., 2018), and

TMS bursts repeatedly targeting the more excitable mu-alpha troughs

induced long-term potentiation (LTP)-like MEP increases (Zrenner

et al., 2018). While alpha amplitude modulations are slower and more

easily predictable than spontaneous spindle bursts of the sigma band,

spindles have a better signal-to-noise ratio (SNR).

Several automated offline spindle detection approaches are avail-

able (Lacourse et al., 2019; Parekh et al., 2017; Vallat & Walker, 2021;

Warby et al., 2014; Weber, 2013), including machine or deep learning-

based detection methods (Kaulen et al., 2022; Kulkarni et al., 2019;

LaRocco et al., 2018) with a potential for real-time applications, but

actual implementations are scarce. Lustenberger et al. (2016) used tran-

scranial alternating current, while Antony et al. (2018) and Choi et al.

(2019) used auditory stimulation to target ongoing spindles, but only

basic information and no validation procedure was provided regarding

the real-time algorithm and its phase specificity. The Portiloop system, a

portable system on chip, at least achieved real-time spindle detection

with an F1-Score of 71% by training artificial neural networks on a

field-programmable gate array (Valenchon et al., 2021).

Here we present the real-time spindle detector (RTSD), a robust,

empirically validated and fully automated real-time signal-processing

algorithm that is able to identify spindles from ongoing EEG recordings

close to their amplitude maximum (spindle centre) and send out a phase-

specific trigger signal. We validated the RTSD using real-time streaming

of pre-recorded sleep data from naps and full nights, comparing its per-

formance with several state-of-the-art offline spindle detection algo-

rithms, and evaluating key characteristics of the detected spindles.

2 | MATERIALS AND METHODS

2.1 | The RTSD

The RTSD identifies 0.5–2-s-long distinct oscillatory patterns of wax-

ing and waning amplitude in the sigma band (12–15 Hz) in ongoing

EEG data. Unlike offline algorithms that are “non-causal” (using data

points from past, present and future) and can thus rely on long data

segments comprising complete spindles, the RTSD has to work in a

“causal” manner (including only past and present data points). To

robustly detect spindles while they unfold and therefore with incom-

plete information about their final shape, duration and amplitude, the

RTSD relies on the analysis of several complementary high-level sig-

nals derived from the raw data, which are evaluated in parallel and

combined to make a decision (Figure 1). Also, personalized detection

criteria related to individual spindle power and peak frequency cannot

be taken from the full data of the same sleep recording but have to be

derived from “baseline” sleep data, that is, a separate period of sleep

EEG data recorded either during the beginning of the same sleep ses-

sion or during a previous sleep session of the same subject (e.g. an

adaptation night). In the latter case, spindle peak frequency and root

mean square (RMS) of the spindle band power can be extracted using

established offline detection procedures that utilize envelope-based

detection, such as YASA, A7 or SpiSOP (Lacourse et al., 2019; Vallat &

Walker, 2021; Weber, 2013).

2.1.1 | Hardware and software implementation

The RTSD algorithm is implemented in a real-time Simulink

(MathWorks) environment in MATLAB r2017b, which can be compiled,

loaded and run on any Simulink compatible real-time computer system.

For actual real-time detection, digitized EEG/polysomnographic (PSG)

data are streamed via a real-time compatible EEG amplifier with digital

output streaming (e.g. NeurOne Tesla EEG system, Bittium, Finland or

ActiChamp Plus, BrainProducts, Germany). For validation purposes in

the present work, we replayed existing datasets to the compiled real-

time Simulink model running on a dedicated real-time system (bossde-

vice, sync2brain Germany). The BEST toolbox (Hassan et al., 2022) was

used to control the Simulink model, setting individual thresholds for

spindle detection on the bossdevice. Raw time series data of the

detected events, such as spindles and SOs as well as the instantaneous

EEG phases at the time of detection, were recorded in data files for

confirmatory post hoc offline analysis. In our implementation, the

RTSD algorithm had a loop delay of 5–15 ms, which is induced primar-

ily by the hardware, the interface software (here, Simulink) and the

digital bandpass filters.

2.1.2 | Data preprocessing

Raw data can be processed through a number of custom spatial filters,

that is, a linear combination of the streamed channels, resulting in an

2 of 12 HASSAN ET AL.
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arbitrary number of virtual channels for which spindles can in principle

be detected independently in parallel. However, a minimum of one

virtual channel is required to detect spindles, for example, C3

re-referenced against the linked mastoids as used in our example for a

typical use case. Every 10 ms, 520 ms of the most recent data are

extracted and used for further analyses, resulting in a 98% overlap of

consecutively extracted analysis windows. Then, by applying a two-

pass (zero-phase) least-squares finite impulse response (FIR) filter of

order 20 to the most recent 520-ms data segment we create two fun-

damental signals: using a passband of 1–30 Hz a broadband EEG

signal (EEGbb) is constructed; and using a passband of the individual

spindle peak frequency ± 2 Hz a sigma band EEG signal (EEGσ) is

created. Then, 10 ms from each side of EEGbb and EEGσ is removed to

create 500-ms segments of data that are free of filter edge artefacts.

The filtered EEGbb and EEGσ signals are then further processed to

derive four high-level signals, which are described in the following

section together with their respective thresholds.

2.1.3 | Computation of high-level signals

EEGσ RMS power signal

To gain an index of absolute spindle power, the RMS is computed

using a 250-ms moving data window of EEGσ with a step size of
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F IGURE 1 High-level signals
computed by the real-time spindle
detector (RTSD) algorithm. The RTSD
computes several high-level signals,
derived from the raw
electroencephalographic (EEG) data of
the virtual channel of interest (here
electrode C3 re-referenced to right
mastoid). Each dotted line represents

the threshold for its respective high-
level signal, that is: (i) EEGσ RMS (root
mean square) power; (ii) EEGσ relative
power; (iii) EEGσ � EEGbb correlation;
and (iv) EEGbb instantaneous
frequency bounds. In the first row,
the green shaded region represents
detected spindle events, while the red
shaded region represents a rejected
non-spindle event that would have
been a False Positive (FP) if based on
the RMS power envelope alone
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100 ms to construct the EEGσ RMS power signal. The RMS power

threshold is individualized for each subject based on their baseline

sleep data by taking the mean of the EEGσ RMS power plus 1.5 times

their SD.

EEGσ relative power signal

To prevent broadband power changes from being mistaken for

spindle-related increases in the sigma band, the EEGσ RMS power sig-

nal needs to be normalized. A fast Fourier transform of the EEGbb is

used to calculate the EEGσ relative power. A 500-ms moving data

window is zero padded on both sides (250 ms each) to 1 s to con-

struct a frequency spectrum with 1-Hz resolution. The power summed

across the frequency bins corresponding to the spindle peak

frequency ± 2 Hz (i.e. the individual sigma band) is divided by the

power summed across the 1–30-Hz bins to construct the EEGσ rela-

tive power signal. An increase in EEGσ relative power is caused by a

local increase in the power of the sigma band but not by broadband

power increases that occur proportionally across the entire spectrum.

A fixed threshold value of 15%–20% relative power is generally suffi-

cient to estimate sigma-band-specific activity, but the threshold can

also be determined individually based on the baseline sleep data.

EEGσ � EEGbb correlation signal

To prevent artefacts or noise in the raw data to be mistaken for actual

spindle events in the sigma bandpass-filtered data, the actual wave-

form shape of the potential spindle is evaluated in the raw data. For

this purpose, the Pearson correlation coefficient between EEGbb and

EEGσ is calculated for a 250-ms moving data window. A high correla-

tion coefficient indicates that the bandpass-filtered data reflect actual

activity of the sigma band rather than artefacts or noise. A fixed

threshold value of r ≥ 0.65 is generally sufficient to detect N2 and N3

spindles, but the value may need to be adopted based on the SNR of

spindles in the subject and the specific spatial filters applied.

EEGbb instantaneous frequency signal

To further ensure the other high-level signals are not confounded by

activity in neighbouring frequency bins (which for offline detection

methods can be ensured by the use of higher-order bandpass filters),

only spindle oscillations within certain frequency bounds are

accepted. Therefore, the instantaneous frequency is calculated from

the time derivative of the Hilbert phase of the EEGbb signal over a

250-ms moving data window. Then, it is determined for which per-

centage of the data window the EEGbb instantaneous frequency

remains within the range of the individual spindle peak frequency

± 5 � the SD of the spindle frequency (Hz). A fixed threshold value

of 75% generally indicates a stable instantaneous frequency in the

sigma band.

2.1.4 | Spindle detection

Eventually, a spindle is detected when at least three out of the four

above-described high-level signals satisfy their respective criteria and

in addition the spindle duration criterion is met. This is the case when

time since the EEGσ RMS power signal crossed the “entry threshold”
of mean + 1.15 SDs is greater than 250 ms, which corresponds to half

of the minimum spindle duration of 500 ms, allowing for the identifi-

cation of the spindle centre also for very short spindles. Maximum

spindle power (i.e. the assumed spindle centre) is detected when the

time derivative of the EEGσ RMS power crosses zero and the RMS

power begins to descend. The end of the spindle is detected once the

signal falls below the “entry threshold” again. Spindle detection is sus-

pended when the RMS power remains above the “entry threshold”
for more than 2 s, and it resumes only after at least three of the four

signals again exceed their respective thresholds.

2.1.5 | Real-time spindle phase estimation

In addition to detecting spindle events, also their oscillatory phase is

estimated in real-time using the phastimate algorithm (Zrenner

et al., 2020). In summary, the phase of the spatially filtered raw signal

is continuously estimated by band-pass filtering the most recent

256-ms moving data window by a least-squares FIR filter with an

order of 65 and a passband of the individual spindle frequency

± 2 Hz. Then, 32.5 ms on each side of the data segment is removed to

create a data segment free of filter edge artefacts. The resulting

191-ms-long data segment is then used for 65-ms forward prediction

using a Yule–Walker 15th order autoregressive model (Chen

et al., 2013; McFarland & Wolpaw, 2008). The forward predicted

65-ms data segment provides ± 32.5 ms around time point zero. A

fixed time offset equal to the software and hardware delays is then

applied to the zero time point to identify the actual time point zero

(i.e. “now”). A static range test is applied to the phase at this time

point “now” obtained from the Hilbert phase time series of the fore-

casted signal to identify peaks, troughs, rising flanks and falling flanks.

Phases estimated during the detected spindle event are considered

spindle phases.

2.2 | Empirical validation of the RTSD

2.2.1 | Sleep EEG/PSG datasets

We validated our real-time algorithm in two independent datasets of

EEG and PSG recordings from nocturnal naps (Dataset 1) and full

nights (Dataset 2), respectively. Dataset 1 consisted of N = 20 sub-

jects (12 females, mean age: 23 ± 5 years) recorded during the

stimulation-free adaptation session of an unpublished EEG-triggered

TMS experiment conducted at the Neuroimaging Center (NIC) of the

Johannes Gutenberg University Medical Center, Mainz. Subjects had

no history of neurological or psychiatric disease, were right-handed,

and did not take any medications. They were not allowed to drink

alcohol or caffeine on the day of the experiment, and they had to be

awake for at least 8 hr before the experiment to ensure moderate

sleep pressure. Experimental procedures conformed to the

4 of 12 HASSAN ET AL.
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Declaration of Helsinki and were approved by the Ethics Committee

of the Landesärztekammer Rheinland-Pfalz. EEG and PSG were

recorded using a 64-channel EEG-cap with sintered Ag/AgCl elec-

trodes (Multitrodes, EasyCap) containing the following electrodes

according to 10–20 EEG system: Fp1, Fp2, Fpz, AF7, AF3, AFz, AF4,

AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT9, FT7, FC5, FC3, FC1, FC2,

FC4, FC6, FT8, FT10, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5,

CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8,

PO7, PO3, POz, PO4, PO8, O1, Oz, O2, M1 (left mastoid), M2 (right

mastoid); Reference, FCz; Ground, POz. For PSG, electromyography

(EMG) at the chin, and the vertical and horizontal electro-oculogram

(VEOG and HEOG) were recorded using bipolar electrode montages.

EEG and PSG data were digitized in DC mode with a 1250-Hz anti-

aliasing low-pass filter and 5-kHz sampling rate using a TMS-

compatible 24-bit amplifier (NeurOne Tesla with Digital-Out Option,

Bittium) connected to an 8-V battery. The subjects slept in a sound-

proof and electromagnetically shielded sleeping cabin (Desone,

Germany) on a comfortable mattress resting on a wooden bed in a hor-

izontal position. They were covered with a blanket and their heads

were stabilized by a vacuum cushion. Dataset 2 consisted of N = 10

subjects selected from the placebo session of a previously published

study that examined the effects of blocking metabotropic glutamate

receptor 5 on sleep-dependent memory consolidation (Feld

et al., 2021). The data were collected at the sleep lab of the Institute of

Medical Psychology and Behavioral Neurobiology, University of Tübin-

gen, Germany. EEG and PSG were recorded using Ag/AgCl electrodes

containing the following electrodes according to 10–20 EEG system:

F4, Fz, F4, C3, Cz, C4, P3, Pz, P4; Referenced to linked mastoids;

Ground electrode on the forehead. For PSG, EMG at the chin, and

VEOG and HEOG were recorded using bipolar electrode montages.

EEG and PSG data were digitized in DC mode with an 80-Hz low-pass

filter and a sampling rate of 250 Hz. Further details regarding the sleep

characteristics of all subjects are available in Tables S1 and S2.

2.2.2 | Detection criteria and offline spindle
detection

We selected three previously published and frequently used offline

spindle detection algorithms for comparison and validation of our

RTSD method, namely YASA, A7 and SpiSOP. These offline algorithms

are actively maintained as open-source software contributions, are well

documented and are easy to use. Because the A7 spindle detector

itself had been shown to outperform four previously published offline

detection methods, namely Ferrarelli et al. (2007), Mölle et al. (2002),

Martin et al. (2013) and Wamsley et al. (2012), we considered no fur-

ther methods than the three mentioned ones for comparison. To

ensure fair comparisons, the key spindle detection criteria for both our

RTSD algorithm as well as all offline spindle detection algorithms were

kept identical wherever possible, namely, to detect spindles in the 12–

15-Hz frequency band, with a minimum duration of 0.5 s and maxi-

mum duration of 2 s, and an amplitude of mean + 1.5 times the SD of

the RMS bandpass-filtered signal. Other RTSD-specific thresholds, that

is, the EEGσ relative power threshold, correlation threshold and instan-

taneous frequency bounds threshold, were fixed across all subjects at

20%, 0.65 and 75%, respectively. We used published software imple-

mentations of YASA (version 0.6.01) in Python release 3.10, and of A7

(version 1.1.2) and SpiSOP in MATLAB r2017b.

For comparison with our real-time spindle algorithm, we selected

channel C3 from Dataset 1 (nap recordings) re-referenced against the

average of both mastoids. For Dataset 2 (full-night recordings), we

selected channel C3, already referenced against a linked mastoids dur-

ing the original recordings. Additionally, EMG, HEOG and VEOG from

PSG were selected and used in the automatic sleep scoring implemen-

ted in YASA. To separate the effect of the different spindle detection

algorithms from the potential impact of the sleep scoring, spindle

detection was performed twice, once on the entire data irrespective

of sleep stage, and once restricted to sleep stages N2 and N3 as

obtained from YASA automated sleep stage scoring. YASA scoring

results were used for all validation runs with offline algorithms as well

as the RTSD algorithm. For the naps of Dataset 1, a manual check of

the automatic sleep stage scoring was performed for quality control

as recommended for naps in the YASA software.

2.2.3 | Performance assessment

We assessed the performance of the RTSD against each of the offline

spindle detectors, using the respective offline algorithm as ground truth.

Specifically, we assessed the number of correct spindle detections (True

Positive; TP), of incorrect spindle detections (False Positive; FP) and of

missed spindles (False Negative; FN). Correct rejections (True Negatives;

TN) cannot reasonably be assessed for rare events in continuous data

and are therefore not provided. Using the method of inter-

section (Lacourse et al., 2019; LaRocco et al., 2018; Warby et al., 2014),

the ratio between the intersection and union of the respectively

detected spindle intervals was calculated for each spindle, and a spindle

match (TP) was determined whenever the ratio was greater than 0.2.

Unmatched spindles found in the offline detectors were categorized as

FN, and unmatched spindles found in the real-time detector were cate-

gorized as FP. Based on these numbers, we determined Sensitivity

(i.e. the percentage of detected spindles that are true spindles), Precision

(i.e. the percentage of true spindles that are detected spindles) and the

F1-Score (an established compound index for assessing detection algo-

rithms combining Sensitivity and Precision) as defined below:

Sensitivity¼ TP
TPþFN

ð1Þ

Precision¼ TP
TPþFP

ð2Þ

F1�Score¼2�Precision�Sensitivity
PrecisionþSensitivity

ð3Þ

The RTSD was compared with YASA, A7 and SpiSOP. As a benchmark

for the maximally expected levels of Sensitivity, Precision and

HASSAN ET AL. 5 of 12
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F1-Score, all three state-of-the-art offline detectors were also tested

against each other, resulting in a total of six different comparisons

(real-time versus YASA; real-time versus A7; real-time versus SpiSOP;

YASA versus A7; YASA versus SpiSOP; and A7 versus SpiSOP).

To further characterize the spindles detected in real-time:

(i) morphological properties of the detected spindles, such as spindle

frequency, amplitude, duration and symmetry of wave shape, were

calculated and compared with offline detected spindles as described

by Purcell et al. (2017); (ii) time–frequency representations (TFRs)

were calculated to verify their typical narrow-band waxing and waning

pattern; and (iii) topographical representations of spindle power were

plotted to verify their distinct localization with respect to the EEG

montage selected for detection.

Time–frequency analysis of spindle-related oscillatory power

changes was carried out using the FieldTrip toolbox (Oostenveld

et al., 2011). For all spindles, raw spatially filtered data segments of

�1 to 1 s around the real-time detected spindle centre were

retrieved from the real-time system (bossdevice). Data were then

preprocessed by de-meaning and a 1-Hz high-pass filter. TFRs were

calculated separately for TP and FP spindles (compared against

YASA) by using a Hanning taper windowed FFT (time steps: 50 ms;

frequency steps: 0.5 Hz). TFRs were plotted as percentage power

change relative to the full epoch of �1 to 1 s as baseline. Sigma

power topographies were plotted for the time interval of �500 to

500 ms as the percentage change in power from the baseline at

�550 to �500 ms.

To test whether spindle phase targeting worked as expected,

spindle phase was additionally validated with the phase-detection

module enabled and four different spindle phase targets (peak, falling

flank, trough and rising flank) in four additional detection runs: post

hoc we determined the actual phase of the trigger signal based on the

Hilbert transform of the sigma bandpass-filtered (individual sigma

peak ± 2 Hz) EEG signal, and evaluated the phase targeting precision

using the circular SD method of CircStat toolbox (Berens, 2009).

3 | RESULTS

3.1 | Performance of RTSD is comparable to
offline algorithms

When limiting spindle detection to NREM epochs, the following per-

formance indices were obtained. The grand average F1-Score for

RTSD versus the different offline algorithms was 78%–84% (com-

pared with 80%–81% between the offline algorithms) for the naps,

and 79%–83% (compared with 81% between the offline algorithms)

for the full-nights. The grand average Sensitivity for RTSD versus the

different offline algorithms was 80%–87% (compared with 83%–85%

between the offline algorithms) for the naps, and 81%–86% (com-

pared with 83%–86% between the offline algorithms) for the full-

nights. The grand average Precision for RTSD versus the different off-

line algorithms was 76%–80% (compared with 77%–78% between

the offline algorithms) for the naps, and 78%–81% (compared with

78%–80% between the offline algorithms) for the full-nights (see

Table 1 for all grand average values, and Figure 2 for distributions and

subject-wise performance indices). When spindles were identified

without limiting the search of the algorithms to NREM sleep stages,

Sensitivity, Precision and F1-Scores were overall slightly reduced for

both naps and full-night recordings, but still better for comparisons

between RTSD and offline detection than between the offline

TABLE 1 Grand average values of performance characteristics in percent (%)

RTSD
versus YASA

RTSD
versus A7

RTSD versus
SpiSOP

YASA
versus A7

YASA versus
SpiSOP

A7 versus
SpiSOP

Spindle detection restricted to NREM sleep epochs

F1-Score (nap) 84 ± 3 79 ± 3 78 ± 5 80 ± 2 80 ± 3 81 ± 2

Sensitivity (nap) 87 ± 5 83 ± 4 80 ± 5 84 ± 3 83 ± 3 85 ± 4

Precision (nap) 80 ± 4 76 ± 5 77 ± 3 77 ± 4 78 ± 2 78 ± 4

F1-Score (full-night) 83 ± 4 80 ± 2 79 ± 4 81 ± 3 81 ± 2 81 ± 2

Sensitivity (full-night) 86 ± 6 81 ± 5 81 ± 6 84 ± 4 86 ± 5 83 ± 5

Precision (full-night) 81 ± 5 78 ± 4 78 ± 4 79 ± 3 78 ± 3 80 ± 4

Spindle detection not restricted by sleep stage information

F1-Score (nap) 73 ± 6 69 ± 5 69 ± 7 64 ± 5 63 ± 4 63 ± 6

Sensitivity (nap) 74 ± 5 71 ± 6 69 ± 7 66 ± 5 65 ± 6 65 ± 5

Precision (nap) 72 ± 5 67 ± 5 69 ± 5 62 ± 6 62 ± 4 61 ± 6

F1-Score (full-night) 71 ± 6 70 ± 6 69 ± 6 63 ± 5 64 ± 6 64 ± 5

Sensitivity (full-night) 71 ± 7 72 ± 5 68 ± 7 65 ± 6 66 ± 6 65 ± 5

Precision (full-night) 70 ± 6 68 ± 6 69 ± 5 60 ± 5 60 ± 5 62 ± 6

Means (± SD) are reported.

Abbreviations: NREM, non-rapid eye movement; RTSD, real-time spindle detector.
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F IGURE 2 Performance values for comparisons of real-time spindle detector (RTSD) and offline algorithms including non-rapid eye
movement (NREM) sleep epochs only. RTSD was compared against offline algorithms (YASA, A7 and SpiSOP) and in between offline algorithms
for the nap recordings (dataset 1) and full-night recordings (dataset 2) for: (a) F1-Scores; (b) Sensitivity; and (c) Precision. Single-subject data
points (coloured filled circles) and raincloud plots are provided in addition to the condition mean (black open circle)
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detectors themselves when providing no sleep staging information

(Figure S1; Table 1).

3.2 | Properties of real-time detected spindles are
comparable to those detected offline

When comparing the distributions of spindle frequency, amplitude,

duration and symmetry of the spindle amplitude envelope for the

events detected by the RTSD and the different offline algorithms

(confined to NREM sleep epochs), highly similar distributions were

obtained (Figure 3), confirming the high contingency levels described

above and no systematic differences in the type of spindles being

detected.

TFRs (Figure 4a) and topographical distribution of sigma power

(Figure 4b) of TP spindles detected using RTSD revealed that the TP

spindles (here defined in comparison to YASA) were detected as

intended, and that neither adjacent frequencies nor oscillatory activity

from other sources had confounded the RTSD procedure.

3.3 | Spindle phase targeting was reliable

To verify that the instantaneous oscillatory phase of an ongoing spin-

dle can be reliably determined in real-time, we confirmed the phase

targeting post hoc by extracting the phase information from the Hil-

bert transform of the individual sigma bandpass-filtered signal. We did

this separately for the four target phases (peak, trough, rising flank,

falling flank), but collapsed across both datasets while including only

periods of NREM sleep (Figure 5). All spindle phases were correctly

targeted with an average circular SD of 53.4� across all phase angles

(peak: 53.9�; falling flank: 55.1�; trough: 54.6�; rising flank: 50.2�).

4 | DISCUSSION

We have presented and validated a novel method for robustly detect-

ing sleep spindles automatically in real-time. The RTSD identifies

ongoing spindle activity by transforming the raw EEG in several high-

level signals that are evaluated in parallel, and then detecting spindle

F IGURE 3 Morphological properties of real-time and offline detected spindles. Distributions across all detected spindles of all subjects and
data points of all individual spindles events are provided for morphological spindle traits extracted by the same procedure, being highly
comparable with respect to: (a) frequency (Hz); (b) amplitude (μV); (c) duration (s); and (d) symmetry index of the spindle amplitude envelope
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activity in one or more EEG channels in a manner similar to offline

spindle detection.

The performance of the RTSD was very good (F1-Score about

0.8), with well-balanced Sensitivity and Precision levels. Higher levels

were not to be expected, given that the automatic offline detection

algorithms themselves did not reach higher levels when compared

with each other. The F1-Scores reported for other offline spindle

detection methods are even slightly lower, for example, A7 scored at

0.72 (Lacourse et al., 2019), DETOKS at 0.67 (Parekh et al., 2015),

Spindler at 0.67 (LaRocco et al., 2018) and Spinky at 0.74 (Lajnef

et al., 2017). However, the lower F1-Scores may also be caused by

the fact that these offline methods used expert labelled data as

ground truth, whereas we used automatic offline spindle detectors. In

addition, these methods detected spindles as short as 300 ms rather

than 500 ms, which is slightly easier to detect by automated detection

techniques. We deliberately used multiple established state-of-the-art

offline spindle detection algorithms as ground truths instead of

manual expert ratings, because the RTSD algorithm is not meant to

compete with clinical sleep scoring procedures but to provide a novel

method for neuroscientific research into the function of sleep spindles

using sensory and transcranial brain stimulation approaches, for which

the approximation of human judgements is less important than the

use of objective and reproducible criteria. If desired, changing RTSD

detection criteria allows for a flexible adjustment of Sensitivity versus

Precision, to be as liberal or as conservative as required by the experi-

mental design and research question.

Performance indicators were reduced only slightly for RTSD (by

�10%) when spindle detection was not restricted to NREM sleep

stages, while larger drops were observed in the consistency between

offline algorithms (by �15%–20%; Figure S1; Table 1). This shows

that while sleep stage information improves the F1-Score, the RTSD

is very robust and can also be used in real-time detection settings

where no sleep scoring information is available during the ongoing

recordings. This robustness is remarkable, given that the RTSD has to

F IGURE 4 Topographical distribution and time–frequency representation (TFR) of real-time detected spindles. (a) TFRs of oscillatory power
in the C3 signal re-referenced against linked mastoids, calculated separately for real-time spindle detector (RTSD) detected True Positive (TP) and
RTSD False Positive (FP) spindles (as compared with YASA) with a baseline interval of �1 to 1 s. TFRs of TP spindles show a modulation of sigma
power over time, with a relative increase from �500 ms to 500 ms around spindle centre and relative decrease before �500 ms and after
500 ms. FP spindles showed no particular pattern in the TFR that would be indicative of a particular temporal or frequency source of
electroencephalographic (EEG) signals leading to false alarms. (b) Topographical maps of the sigma power modulation from �500 ms to 500 ms
(taken from a) for TP and FP spindles detected by RTSD with a baseline interval of �550 ms to �500 ms. The topography of TP spindles verifies
a local sigma power increase over C1 to C3 (specific to the target montage), suggesting that also local spindles can be targeted using RTSD. FP
spindles showed no particular topography that would be indicative of a particular spatial source of EEG signals leading to false alarms
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work on less information (data) than the offline algorithms. A7, YASA

and SpiSOP require data segments of at least a few seconds to iden-

tify complete spindles, whereas the RTSD method only uses the most

recent 500 ms and per definition only the first half of the ongoing

spindle for detection. However, the RTSD compensates the lack of

temporal information by the parallel assessment of several high-level

signals derived from the incoming raw data. For example, none of the

offline methods assesses whether the instantaneous frequency is

within the desired bounds, which constitutes one of the four key

thresholds in RTSD.

The primary limitation of the RTSD is that it locates the spindle

centre by detecting zero crossings of the amplitude envelope deriva-

tive as soon as the envelope begins to descend, while in reality spindle

amplitude envelopes can have more than one maximum. The RTSD

only detects local maxima following 250 ms of spindle onset (i.e. since

the envelope has crossed the “entry threshold”), regardless of

whether this is a global maxima. Together with the loop delay of 5–

15 ms reached in our implementation (Simulink® Real-Time™ on a

bossdevice from sync2brain), spindles cannot be targeted during their

initial waxing phase. Removing the criterion of detecting a spindle

centre may allow earlier targets within a spindle but will also increase

the false-positive rate; whether or not this is acceptable eventually

depends on the study goals. This limitation may also be overcome in

the future by using additional information from the data (such as

power envelope gradients) or by training deep learning approaches to

predict spindles during very early phases or even before their initia-

tion (Valenchon et al., 2021).

Using the RTSD default threshold settings, the detected spindles

expressed morphological traits very similar to those detected by the

offline algorithms. Moreover, TFRs of the TP spindles confirmed the

typical pattern of a time-limited narrow sigma band frequency

increase during the spindle preceded and followed by relative

decreases, which may reflect the influence of a phase-amplitude mod-

ulating SO. False-positive spindles were not associated with any par-

ticular time–frequency pattern, indicating that there was no particular

systematic temporal or frequency source of EEG signals leading to

false alarms. Topographical sigma power maps of TP spindles showed

the typical central topography of sleep spindles, but with a lateraliza-

tion towards the left hemisphere (peaking at channel C1 and extend-

ing to C3), which is presumably owed to the left-lateralized montage

F IGURE 5 Phase estimates for different phase targets during spindles. (a) Phase histograms of all spindles that were detected time-locked to
each of the four explicit phase targets (peak, falling flank, trough, rising flank). Actual phase angles were determined post hoc using the Hilbert
transform. (b) Time-locked C3 signal re-referenced against linked mastoids with the time axis transformed to phase angles (radians) of the
individual spindle peak frequency before averaging across subjects to account for inter-individual differences in frequency. Spindle phase
detection was successfully time locked to peaks, falling flanks, troughs and rising flanks
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(C3 versus linked mastoids) used for spindle detection in our valida-

tion runs. Again, FP spindles did not show a systematic sigma power

distribution, indicating that no particular spatial source of EEG signals

led to false alarms. Together, these auxiliary analyses confirm that the

RTSD algorithm can effectively detect true sleep spindles that are

very comparable to those detected by offline algorithms, without a

systematic source of false alarms.

The RTSD algorithm allows targeting spindles in a phase- and

amplitude-dependent manner to study the neurophysiological under-

pinnings of this important oscillation as well as its role in sleep-

dependent memory reactivation and consolidation, using either non-

invasive brain stimulation (like TMS) or sensory stimulation (such as

auditory or somatosensory stimuli). Just like for mu-alpha oscillations

during wakefulness (Bergmann et al., 2019; Zrenner et al., 2018), spin-

dle phase-dependent single- and paired-pulse TMS can be used to

characterize amplitude- and phase-dependent modulations of cortical

excitability and excitation–inhibition balance. Using MEPs and TMS-

evoked EEG potentials as indices of cortical excitability and network

responsivity without changing the spindle itself by the stimulation,

this approach qualifies as open-loop brain-state-dependent stimula-

tion (OL-BSDS). Similarly, phase-triggered repetitive TMS protocols

can induce after-effects in cortical excitability outlasting the stimula-

tion period (Ziemann et al., 2008), presumably related to phase-

dependent long-term potentiation (LTP)- and long-term depotentation

(LTD)-like plasticity (Bergmann & Born, 2018), an OL-BSDS approach

that may help to uncover the role of spindles in synaptic plasticity.

Moreover, spindle (phase)-triggered TMS bursts may also interfere

with local or network events of memory reactivation allowing

researchers to study their causal relevance for systems consolidation

of memory. Finally, also fully closed-loop brain-state-dependent stim-

ulation (CL-BSDS) protocols can be developed. The envisioned CL-

BSDS protocols may allow to entrain or even up- and downregulate

spindle activity to modulate associated processes of memory reactiva-

tion and consolidation more effectively, as TMS or auditory stimuli

would not only be applied at spindle frequency (Antony &

Paller, 2017; Ngo et al., 2019) in an open-loop brain-state-

independent (OL-BSIS) fashion but synchronized to specific phase

angles of spontaneously occurring spindles. Sleep spindle-triggered

brain stimulation has thus a potential to contribute to our understand-

ing of the neural mechanisms underlying synaptic plasticity and mem-

ory during sleep, and may thus even set the stage for therapeutic

applications in neurorehabilitation or for alleviating memory impair-

ments in neuropsychiatric conditions.

5 | CONCLUSION

We have proposed and validated the RTSD, an automated real-time

sleep spindle detection method working on single- or multiple-channel

montages in parallel to robustly identify sleep spindles in digitally

streamed EEG data. A comparison between RTSD and several state-of-

the-art offline spindle detection algorithms using data from both naps

and full nights of sleep revealed that RTSD performed at least as well as

the offline methods, even in the absence of sleep stage information. The

RTSD method therefore holds significant potential for use with real-time

EEG-triggered sensory or transcranial brain stimulation to study sleep-

dependent memory consolidation or synaptic plasticity in humans.
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