
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00412-023-00785-8

RESEARCH

Super‑resolution microscopy reveals the number and distribution 
of topoisomerase IIα and CENH3 molecules within barley metaphase 
chromosomes

Ivona Kubalová1 · Klaus Weisshart2 · Andreas Houben1 · Veit Schubert1

Received: 30 June 2022 / Revised: 25 October 2022 / Accepted: 13 December 2022 
© The Author(s) 2023

Abstract
Topoisomerase IIα (Topo IIα) and the centromere-specific histone H3 variant CENH3 are key proteins involved in chromatin 
condensation and centromere determination, respectively. Consequently, they are required for proper chromosome segregation 
during cell divisions. We combined two super-resolution techniques, structured illumination microscopy (SIM) to co-localize 
Topo IIα and CENH3, and photoactivated localization microscopy (PALM) to determine their molecule numbers in barley 
metaphase chromosomes. We detected a dispersed Topo IIα distribution along chromosome arms but an accumulation at 
centromeres, telomeres, and nucleolus-organizing regions. With a precision of 10-50 nm, we counted ~ 20,000-40,000 Topo 
IIα molecules per chromosome, 28% of them within the (peri)centromere. With similar precision, we identified ~13,500 
CENH3 molecules per centromere where Topo IIα proteins and CENH3-containing chromatin intermingle. In short, we 
demonstrate PALM as a useful method to count and localize single molecules with high precision within chromosomes. The 
ultrastructural distribution and the detected amount of Topo IIα and CENH3 are instrumental for a better understanding of 
their functions during chromatin condensation and centromere determination.

Keywords CENH3 · Centromere · Chromatin · Hordeum vulgare · Photoactivated localization microscopy · Structured 
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Introduction

Determining the ultrastructures of cell nuclei and chro-
mosomes and quantifying their molecular components are 
required to understand the dynamics of such basic biologi-
cal processes as transcription, replication, and cell division. 
Often, fluorescence dyes are used to label the protein of 
interest. In contrast to classical fluorescence microscopy 
techniques, super-resolution microscopy such as struc-
tured illumination microscopy (SIM) and single-molecule 
localization microscopy (SMLM), including photoactivated 
localization microscopy (PALM) are well suited to achieve 
ultrastructural imaging by breaking the diffraction limit of 
light (Schermelleh et al. 2019; Khater et al. 2020). In PALM, 

fluorophores are excited in such a way that only one mol-
ecule of many within the diffraction-limited spot is in its 
“On” state and can reach precisions up to ~10-40 nm (Betzig 
et al. 2006).

Meanwhile, SIM, implemented in different microscopic 
platforms, has been widely used in cell biology (Heintzmann 
and Huser 2017). It was applied to scrutinize chromosome 
scaffold proteins (Poonperm et al. 2015) and unveiled the 
localization of the replication protein A on chromosome 
axes during meiotic recombination in mammals (Yoon et al. 
2018). Moreover, SIM revealed that the mammalian genome, 
in interphase nuclei, is organized into functional chromatin 
domains of ~200-300 nm in diameter (Miron et al. 2020).

PALM uncovered dynamic clusters of cohesin and the 
insulator protein CTCF (Hansen et al. 2017) and contrib-
uted to elucidating the mammalian higher-order chromatin 
structure (Nozaki et al. 2017). PALM was also successfully 
applied to bacteria to monitor transcription (Stracy and 
Kapanidis 2017). The development of a three-dimensional 
(3D) assay for transposase-accessible chromatin-PALM 
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enabled to study chromatin domains and genome topology 
changes in single cells (Xie et al., 2020).

In plants, SIM was used to visualize chromatin and asso-
ciated proteins in interphase nuclei and condensed chromo-
somes (Schubert 2014, 2017; Nemečková et al. 2019; Shi 
et al., 2019; Zelkowski et al. 2019; Kubalová et al. 2020; 
Schubert et al. 2020; Municio et al. 2021). Besides, SIM is 
useful to investigate other cell structures (Schubert 2017) 
such as microtubules of Arabidopsis and Medicago (Komis 
et al. 2014, 2015a, b, 2017, 2018; Vavrdová et al. 2019; 
Tichá et al. 2020).

On the other hand, SMLM, like PALM studies, is still 
limited in plants. Schubert and Weisshart (2015) determined 
the number of RNA polymerase II molecules in differenti-
ated Arabidopsis nuclei by PALM. Besides, PALM was used 
to analyze microtubules and microtubule-associated proteins 
in Arabidopsis root epidermal cells (Vavrdová et al. 2020).

Recently, we compared different super-resolution micros-
copy methods and proved their superiority over diffraction-
limited fluorescence microscopy to analyze chromosomal 
chromatin. The achieved lateral SIM resolution of ~100 nm 
and PALM localization precision of up to ~10 nm demon-
strated that the combination of both techniques provides a 
comprehensive overview of Topoisomerase IIα (Topo IIα) 
localization in barley metaphase chromosomes at the ultra-
structural level (Kubalová et al. 2021b).

Topoisomerases are involved in transcription, DNA 
replication, and chromatin organization (Björkegren and 
Baranello 2018; Meijering et al. 2022; Pommier et al. 2022). 
Topo IIα is a dimeric enzyme (~175 kDa in human) owning 
catalytic and non-catalytic functions. The former depends 
on ATPase activity, whereas the latter relies solely on the 
C-terminal domain (CTD) (Fukui and Uchiyama 2007; Edg-
erton et al. 2016). The catalytic function ensures that super-
coiled or catenated DNA becomes resolved via DNA strand 
passage. Topo IIα introduces double-strand breaks into 
dsDNA, thus allowing other DNA fibers to pass through. 
Afterward, the break becomes sealed without any loss of 
DNA information. This action is important for several bio-
logical processes such as DNA replication, transcription, 
chromosome condensation, and segregation (Nitiss 2009). 
Although CTD is dispensable for decatenation (Dickey and 
Osheroff 2005), it is essential for the targeting of Topo IIα 
in mitotic chromosomes (Lane et al. 2013). First, Topo IIα 
resolves inter-chromatid entanglements, then it generates 
intra-chromatid entanglements to promote thickening. Only 
the latter process requires the CTD (Shintomi and Hirano 
2021). The majority of Topo IIα concentrates in the inner 
centromere and is associated with the control and activation 
of cell cycle checkpoints as demonstrated in human, mouse, 
and muntjac cells (Coelho et al. 2008; Lane et al. 2013; 
Gomez et al. 2013, 2014; Nielsen et al. 2020).

Besides, Topo IIα localizes in chromosome arms. Topo 
IIα was found as a component of the chicken and human 
mitotic chromosome scaffolds (Earnshaw and Heck 1985; 
Earnshaw et al. 1985; Samejima et al. 2012; Chu et al. 
2020). The application of light and electron microscopy 
uncovered twisted double-stranded protein scaffolds in 
both human metaphase chromatids. These scaffolds are 
composed of alternating Topo IIα enzymes, condensins, 
and kinesin family member 4 (KIF4) proteins (Ono et al. 
2004; Samejima et al. 2012; Poonperm et al. 2017; Chu 
et al. 2020). The importance of Topo IIα was demonstrated 
via its depletion, disrupting the scaffold structure (Poon-
perm et al. 2015).

Although most data originate from mammalian research, 
it was reported that plant Topo IIα acts in mitotic and mei-
otic recombination (Singh et al. 2004). In onion (Zabka et al. 
2014) and tobacco (Singh et al. 2017), Topo IIα is involved 
in cell cycle regulation and removes meiotic bivalent inter-
locks in Arabidopsis (Martinez-Garcia et al. 2018). Thus, 
Topo IIα possesses several roles while residing on mitotic 
chromosomes, each requiring a precise location and number 
of available molecules.

Centromeres, occurring as distinct primary constrictions 
(monocentromeres) or distributed along chromosomes 
(holocentromeres) (Schubert et al. 2020), are fundamental 
for correct chromosome segregation during mitotic and 
meiotic cell divisions. Thus, they secure the proper distri-
bution of genetic material into daughter cells. Tandemly 
repeating DNA sequences of different lengths among spe-
cies are typical for these regions. In contrast to non-cen-
tromeric chromatin, most centromeres contain a specific 
histone H3 variant, termed CENH3 (or CENP-A) (Palmer 
et al. 1991; Talbert et al. 2002; Cleveland et al. 2003; Ali-
Ahmad and Sekulić 2020). In most eukaryotes, CENH3 
specifies the position of a proteinaceous complex, the kine-
tochore, where spindle fibers attach pulling the chromo-
somes towards both daughter cells (Musacchio and Desai 
2017). Vast numbers of proteins residing at the centromere 
and in the kinetochore detect the fidelity of the spindle fiber 
attachment and eventually trigger cell cycle checkpoints 
(Cleveland et al. 2003; Hindriksen et al. 2017). Thus, the 
vital function of centromeres based on the presence of a 
certain CENH3 amount is required.

The monocentromeres of most plant species, like rye, 
barley, Aegilops speltoides, and Cuscuta japonica are 
determined by CENH3, and their ultrastructures were 
analyzed by SIM (Wanner et al. 2015; Schubert et al. 
2016, 2020; Oliveira et  al. 2020). SIM revealed that 
barley CENH3 is localized mainly in the interior, rather 
than at the surface of the monocentromeres. Only a low 
amount is present in the pericentromeres. Barley encodes 
two CENH3 variants, αCENH3 and βCENH3, interacting 
with a fraction of Cerebra, a centromeric retroelement 
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(CR)-like repeat, and besides with a GC-rich centromeric 
satellite (Houben et al. 2007; Sanei et al. 2011; Schroeder-
Reiter et al. 2012). α and βCENH3 colocalize and form 
together two distinct globular intermingling structures at 
the primary constriction of mitotic and meiotic metaphase 
chromosomes (Ishii et al. 2015; Wanner et al. 2015).

SIM has also been used to quantify the relative amount of 
immuno-labeled CENH3 during the mitotic and meiotic cell 
cycles of rye (Schubert et al. 2014). However, SIM investigations 
cannot determine the absolute number of molecules. The specific 
number and localization of proteins are required to understand 
their function in the chromatin organization of interphase nuclei 
and during cell divisions. Moreover, these data are necessary 
to improve polymer simulations (Câmara et al. 2021; Kubalová 
et al. 2021a) explaining chromatin condensation along chromo-
some arms and at centromeres.

In this work, we show that PALM/SMLM is a useful 
method to count and localize single molecules with high 
precision. We applied SIM and PALM to localize and quan-
tify the number of Topo IIα and CENH3 molecules based 
on immuno-labeled somatic barley metaphase chromo-
somes. The observed accumulation of both proteins within 
centromeres shows their need to arrange plant centromeres. 
Furthermore, Topo IIα is present along chromosome arms 
probably necessary to condense chromatin.

Results

Topo IIα occurs dispersed at arms but accumulates 
at centromeres, telomeres, and NORs of barley 
metaphase chromosomes

To analyze the distribution of Topo IIα at the ultrastruc-
tural level, we stained flow-sorted barley chromosomes 
with specific antibodies and applied 3D-SIM. Both Topo 
IIα peptide antibodies raised in rabbits and guinea pigs 
(Topo IIrb12 and Topo IIgp13, respectively) (Kubalová 
et al. 2021b) revealed similar enzyme distribution patterns 
on metaphase chromosomes (Figs. 1, 2; Movies 1, 2). Fig-
ure 1 shows the labeling pattern of five different chro-
mosomes. In all of them, Topo IIα occurs in a network-
like manner. Movie 1 demonstrates by running through 
a 3D-SIM image Z stack of the chromosome shown in 
Fig. 2b that Topo IIα is homogeneously distributed at 
the surface and within chromosome arms. This becomes 
also obvious by rotating the same image stack (Movie 2). 
The satellite chromosomes 5H and 6H (left chromosome 
in Fig. 1 and bottom chromosome in Fig. 2a) exhibit an 
accumulation of Topo IIα within their nucleolus organ-
izing regions (NORs). Besides, Topo IIα is accumulated 
at some telomeres with varying intensity as demonstrated 

Fig. 1  Colocalization of topoisomerase IIα (Topo IIα) and CENH3 
detected by 3D-SIM. The Topo IIgp13 antibodies used in this experi-
ment show a similar pattern as the Topo IIrb12 antibodies on barley 
metaphase chromosomes (see Fig.  2). CENH3, sometimes forming 
ring-like structures (red arrows; Schubert et  al. 2016), is embed-
ded within the Topo IIα labeled centromeric chromatin. The satel-
lite chromosome 6H (left) shows Topo IIα labeling also at the NOR 

regions of both chromatids (green arrows). The telomeres of all chro-
mosomes accumulate Topo IIα with varying intensities. The enlarged 
pericentromeric region of the right chromosome indicates the inter-
mingling of Topo IIα and CENH3-labeled chromatin. The merge 
exhibits besides Topo IIα (green) and CENH3 (red) the whole chro-
mosomes stained with DAPI (blue)
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especially at the bottom arms of the second and fifth chro-
mosomes. The enzymes concentrate within the pericen-
tromeres as visible on all chromosomes shown in Figs. 1 
and 2.

To figure out whether Topo IIα and CENH3-positive chro-
matin colocalize at centromeres, the chromosomes were labeled 
with CENH3-specific antibodies in addition (Fig. 1). Similar as 
shown previously in Arabidopsis and cereals (Schubert et al. 
2016), CENH3 labels cluster- or ring-like ultrastructures as 
shown on the third chromosome of Fig. 1. Topo IIα and CENH3 
detecting the inner centromere are differently positioned but 
intermingle among each other (enlarged region of the fifth 
chromosome in Fig. 1). Movie 3 visualizes the spatial Topo IIα 

and CENH3 distribution and colocalization in the same rotating 
3D-SIM image Z stack.

Twenty‑eight percent of the ~20,000–40,000 
Topo IIα molecules per chromosome localize 
within the pericentromere

To determine the absolute Topo IIα molecule numbers 
per chromosome, we performed 3D-PALM (Fig. 2b). The 
PALM imaging confirmed the molecule distribution patterns 
visualized via SIM. Both different Topo IIα antibodies deliv-
ered similar molecule numbers indicating the reliability of 
the antibodies and the 3D-PALM method.

Fig. 2  3D-SIM and 3D-PALM 
of using Topo IIα in different 
barley metaphase chromosomes 
visualized by using Topo IIrb12 
Alexa488-labeled antibodies. a 
Maximum intensity projections 
(MIPs) of 3D-SIM image stacks 
show the accumulation of Topo 
IIα at all (peri)centromeres 
(arrows), at some subtelomeres 
(crosses), and NORs (asterisks) 
of satellite chromosomes. Topo 
IIα is homogeneously distrib-
uted along all chromosome 
arms. b Single slices of 3D-SIM 
(top) and 3D-PALM image 
stacks acquired consecutively 
from a chromosome showing 
the Topo IIα accumulation 
besides at the (peri)centromere 
only at the short arm telomere. 
The enlarged region (bottom) 
within the dashed rectangle of 
the chromosome visualized via 
PALM-Gauss (middle) shows 
additionally the localization of 
single Topo IIα molecules (red 
crosses). c Boxplots represent-
ing the Topo IIα molecule 
number variability in 15 and 
11 chromosomes analyzed by 
3D-PALM using Topo IIrb12 
and Topo IIgp13 Alexa488-
labeled antibodies, respec-
tively. Numbers indicate lower 
whisker, 25% quantile, median, 
mean, 75% quantile and upper 
whisker
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The chromosome in Fig. 2b showed after 3D-PALM in 
the Gauss visualization mode a similar Topo IIα distribution 
as via 3D-SIM. The red crosses within the Gauss mode indi-
cate the exact position of the localized and counted molecules 
within the enlarged centromeric region of a single PALM slice 
(Fig. 2 bottom). Running through the PALM-Gauss image Z 
stack exhibits the spatial distribution of Topo IIα (Movie 4).

The number of Topo IIα molecules (~20,000-40,000) varied 
highly between the 15 and 11 chromosomes analyzed by Topo 
IIrb12 and Topo IIgp13 Alexa488-labeled antibodies, respec-
tively (Fig. 2c). On average, ~27,400 Topo IIα molecules are 
present within whole chromosomes, ~17,400 along arms, and 
~7700 around centromeres. That is, ~28% of molecules are 
accumulated in the (peri)centromeric region (Fig. 2c).

Topo IIα enzymes surround ~13,500 
CENH3‑containing nucleosomes at centromeres

To colocalize Topo IIα and CENH3, we immunolabeled 
flow-sorted barley chromosomes with specific antibodies 
simultaneously and applied 3D-SIM. While Topo IIα is 
mainly evident in the pericentromeres, CENH3 concentrates 
within the core of the primary constrictions and intermin-
gles with Topo IIα-labeled chromatin (Fig. 1; Movie 3). The 
fluorescence signals of anti-CENH3 were detected only at 
centromeres, forming one CENH3-positive region per chro-
matid. Compared to wide-field and deconvolution micros-
copy, the increased resolution achieved via SIM allowed 
the detection of looped CENH3-labeled chromatin fibers 
(Fig. 3a). Besides, CENH3 chromatin may form ring-like 
structures) (Fig. 1), similar as found in other cereals and 
Arabidopsis (Schubert et al. 2016).

Fig. 3  3D-SIM and 3D-PALM 
of CENH3-containing cen-
tromeric chromatin. a Both 
sister centromeres are labeled 
by CENH3 (arrows) within a 
barley chromosome (dashed 
line). SIM increases the resolu-
tion compared to widefield and 
deconvolution microscopy and 
shows the chromatin ultrastruc-
ture. b PALM at the same speci-
men. The “Gauss” and “Mol-
ecule density” presentations 
show the single-molecule dis-
tribution in a single slice. The 
crosses indicate single-molecule 
positions. The enlarged region 
(bottom) is indicated (arrow). 
The axial and lateral molecule 
localization precisions are 
shown in Suppl. Fig. 1. c Box-
plot representing the CENH3 
molecule number variability in 
13 barley centromeres analyzed 
by 3D-PALM. Numbers indi-
cate lower whisker (10,000), 
25% quantile (11,700), median 
(12,800), mean (13,515), 75% 
quantile (15,520), and upper 
whisker (19,500)
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Afterward, 3D-PALM was applied on isolated chromo-
somes exclusively labeled with CENH3-Alexa488 antibod-
ies (Fig. 3b, c). The labeling pattern was consistent with 
the SIM imaging. The distinctly localized single molecules 
(cross presentation) accumulate especially within bright 
spots of the Gauss display. A mean number of ~13,500 
CENH3 molecules per chromosome, i. e., ~6750 per sis-
ter centromere, were counted. Compared to Topo IIα, the 
CENH3 molecule numbers varied less in the 13 barley cen-
tromeres analyzed.

3D-PALM allows the detection of single Topo IIα mol-
ecules with a lateral (XY) and axial (Z) precision of up to 
~10 nm (Kubalová et al., 2021b). We achieved a similar high 
precision detecting the number of CENH3-containing nucle-
osomes. About 87% of them were localized laterally and 
88% axially with a precision of 10–50 nm (Suppl. Figure 1).

Assuming an octamer structure, each centromeric nucleo-
some octamer of ~11 nm in diameter contains two CENH3 
histones (Nechemia-Arbely et  al. 2017). Our achieved 
PALM localization precision does not allow us to separate 
both CENH3 histones within a nucleosome. Consequently, 
each barley metaphase centromere should contain ~27,000 
CENH3 molecules.

Discussion

3D‑PALM is useful for quantifying single molecules

In this study, we investigated the distribution and the abso-
lute numbers of plant Topo IIα and the centromeric variant 
of histone H3 (CENH3) in barley metaphase chromosomes. 
To obtain the numbers and positions of these molecules, 
we combined two super-resolution microscopic techniques, 
SIM and PALM. Flow-sorted chromosomes were used 
because flat and cytoplasm-free specimens can deliver the 
most informative data. Two different polyclonal peptide 
antibodies against Topo IIα revealed the localization of this 
protein with a lateral and axial precisions of ~10-60 nm 
(Kubalová et al., 2021b). A similar precision we reached 
for CENH3-specific signals allowing to localize ~88% of 
single molecules with a distance of ~10-50 nm.

Low numbers of CENH3 molecules were detected in fis-
sion yeast with 26 by PALM (Lando et al. 2012), 84 in Dros-
ophila using CENH3-EGFP fluorescence intensity measure-
ments (Schittenhelm et al. 2010), and 25-62 in chicken DT-40 
cells by SMLM or a confocal microscopy-based fluorescence 
ratio method (Ribeiro et al. 2010; Johnston et al. 2010). Con-
trary, in HeLa cells Black et al. (2007) determined at most 
30,000 CENH3 molecules, i.e., ~15,000 CENH3-containing 
nucleosomes per centromere by using immunoblotting of 
extracts from randomly cycling cells with known amounts 
of CENH3 as quantitation standards. More recently, Bodor 

et al. (2014) used an indirect fluorescence method to show 
that human centromeres contain ~400 CENH3 molecules. 
This high data variability may be caused by using indirect 
fluorescence-based molecule counting methods containing 
possibly erroneous steps.

In our opinion, SMLM with its high precision to local-
ize single molecules is currently the most reliable method to 
count molecules, albeit limitations apply (Shivanandan et al. 
2014). It should be regarded that the number of molecules 
detected depends on sample integrity, staining efficiency, 
imaging parameters, and image processing parameters. Con-
sequently, an exact molecule number cannot be provided. 
Multi-emitter algorithms might be able to single out blinking 
molecules, but cannot rule out the underestimation of the true 
molecule number (Dempsey et al. 2011; Oddone et al. 2014).

The amount of ~27,000 CENH3 molecules per cen-
tromere we detected in barley is in the range Black et al. 
(2007) revealed in human chromosomes and is clearly higher 
than determined by the other above-mentioned authors.

Topo IIα distribution in barley differs 
from that in non‑plant species

Here, we demonstrate that the most prominent Topo IIα fluores-
cence signals are present at pericentromeres, NORs of chromo-
somes 5H and 6H, and some telomeres of mitotic barley meta-
phase chromosomes. We assume that the telomeric signals of 
Topo IIα are chromosome-specific because both NOR-bearing 
chromosomes identifiable after flow-sorting always showed 
identical Topo IIα-labeling patterns. The high density of Topo 
IIα in barley pericentromeres and some telomeres is consist-
ent with protein accumulations identified by scanning electron 
microscopy (Wanner and Schroeder-Reiter 2008).

At barley chromosome arms, Topo IIα is distributed in 
a reticulate manner. In human HeLa and Chinese hamster 
cells, Topo IIα, together with condensin, form a line-like 
protein scaffold inside each chromatid (Maeshima and Lae-
mmli, 2003; Kireeva et al. 2004; Poonperm et al. 2015; 
Walther et al. 2018). These scaffold proteins were shown to 
be linked via bridges between the sister chromatids in pig, 
muntjac, and human (Chu et al. 2020). But it has also been 
reported that in HeLa cells, the chromatid axes occur as iso-
lated compaction centers rather than forming a continuous 
line-like scaffold (Sun et al. 2018) and appear to consist of 
a helical structure that serves to organize chromatin loops 
into the metaphase chromatid (Phengchat et al. 2019). We 
suppose that the reticulate scaffold formation in barley may 
be due to different lengths of major and minor loops forming 
the 400 nm thick helically organized chromonema building 
condensed metaphase chromatids. The loop sizes fit experi-
mental Hi-C data induced via a dispersed helical scaffold. 
Due to the intermingling of ~80 nm lower-order chromatin 
fibers, the helical chromonema structure is not visible by 
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3D-SIM on homogeneously stained chromatids but via dif-
ferential oligo-FISH labeling (Kubalová et al. 2021a).

One Topo IIα enzyme for every 20-50 kb of DNA was 
estimated to be present in mitotic HeLa metaphase chromo-
somes (Gasser et al. 1986; Fukui and Uchiyama 2007). In 
barley chromosome arms, we determined ~27,400 Topo IIα 
molecules, ~28% of them around centromeres. The genome 
size of barley containing seven chromosomes is 4.65 Gb 
DNA (Monat et al. 2019). This corresponds to 664.3 Mb 
per chromosome. Thus, one molecule of Topo IIα resides at 
approximately every 24 kb (664.3 Mb /27,400 = 24 kb) of 
the whole barley chromosome, a value similar to that found 
for HeLa cells. Due to the accumulation of Topo IIα (~7,700 
molecules) in the barley pericentromeres spanning ~100 Mb 
DNA (Monat et al. 2019), we assume one molecule per 13 
kb (100 Mb/7700 =13 kb), and along chromosome arms 
a lower density with one molecule every 32.5 kb (564.3 
Mb/17,400=32.5 kb).

Besides the detection of the accumulation of Topo IIα 
in pericentromers, NORs and telomeres, and a less promi-
nent amount along chromosome arms, PALM revealed the 
clustering of Topo IIα in these regions, possibly represent-
ing chromatin fiber looping centers. Given the role of Topo 
IIα in chromosome condensation and its reticular distribu-
tion along the chromosomal arms, it would be of interest to 
apply PALM to condensins, the key components in chro-
mosome organization (Hirano 2012). Walther et al. (2018) 
detected by fluorescence correlation spectroscopy ∼195,000 
condensin I and ∼35,000 condensin II complexes in HeLa 
chromosomes. Determining the number and distribution of 
condensins also in barley chromosomes would improve the 
understanding of the mitotic condensation process.

Topo IIα and CENH3 are part of the (peri)centromeric 
chromatin

Besides epigenetic DNA and histone modifications (Vos et al. 
2006; Gieni et al. 2008; Achrem et al. 2020), cohesin, conden-
sin, and SMC5/6 complexes, the main components to organize 
(peri)centromeres are Topo IIα and CENH3 (Wang et al. 2010; 
Gomez et al. 2013, 2014; Lawrimore and Bloom 2019a, b). 
Like in yeast and frog (Ryu et al. 2015; Edgerton et al. 2016; 
Yoshida et al. 2016; Zhang et al. 2020), barley Topo IIα local-
izes to the centromeres of metaphase chromosomes.

A positive correlation exists between kinetochore and 
chromosome size, and the adequate number of attached 
microtubule spindle fibers are important for correct chromo-
some segregation during cell division. Larger chromosomes 
require more microtubules, and thus larger kinetochores to 
move them with the same velocity as small ones (Nicklas 
1965; Plačková et al. 2022). The microtubule-binding capac-
ity increases with kinetochore size in Indian muntjac chro-
mosomes (Drpic et al. 2018) and in rat-kangaroo PtK1 cells, 

and it was demonstrated that the chromosome size deter-
mines the number of microtubules (McEwen et al. 1998). In 
grass species, the anti-CENH3 signal size is strongly cor-
related with genome size. Species with large genomes and 
few chromosomes have the largest centromeres (e.g., rye), 
while species with small genomes and many chromosomes 
have the smallest centromeres (e.g., rice) (Zhang and Dawe 
2012). Although not as obvious as between species, a posi-
tive correlation between kinetochore size and chromosome 
size was also observed in human (Irvine et al. 2004) and 
maize (Wang et al. 2021), and within bimodal karyotypes as 
demonstrated for Agavoideae species (Plačková et al. 2022).

We determined ~27,000 CENH3 molecules per cen-
tromere for the relatively large barley chromosomes. For 
comparison, it will be interesting to elucidate the CENH3 
amount in small chromosomes by PALM/SMLM.

Materials and methods

Plant material, chromosome isolation, 
and specimen preparation

Barley metaphase chromosomes (Hordeum vulgare L. cv. 
Morex) were sorted according to Lysák et al. (1999). Briefly, 
a chromosome suspension was prepared from synchronized 
primary roots meristems. Chromosomes were DAPI-stained, 
immediately analyzed, and flow-sorted using a FACSAria II 
SORP flow cytometer and sorter (BD Bioscience, San Jose, 
CA, USA). Five thousand chromosomes were sorted into 15 
μl of PRINS buffer supplemented with 2.5% sucrose (10 mM 
TRIS, 50 mM KCl, 2 mM  MgCl2.6H2O, 2.5% sucrose; pH 
8) onto high precision coverslips (Paul Marienfeld GmbH & 
Co. KG, Lauda-Königshofen, Germany). Before immunola-
beling, the coverslips were stored at −20 °C.

Indirect immunostaining

Before immunolabeling, coverslips were washed twice with 
1×PBS for 5 min at room temperature (RT) and incubated with 
blocking solution (5% BSA, 0.03% Triton X-100, 1×PBS) for 
1.5 h at RT. Peptide Topo IIα (rb12 and gp13) (Kubalová et al. 
2021b) and rabbit anti-grassCENH3 (Nagaki et al. 2004; Hou-
ben et al. 2007) antibodies were diluted 1:100 and 1:10,000, 
respectively, in antibody solution (1% BSA, 0.01% Triton X-100, 
1 × PBS), and incubated overnight at 4 °C. Grass-CENH3 anti-
bodies detect both α and βCENH3 of barley (Ishii et al. 2015).

Next, coverslips were washed with 1×PBS (three times, 5 
min each) at RT and incubated with secondary donkey anti-
rabbit Alexa488 (1:200, #711-545-152 Jackson ImmunoRe-
search) and goat anti-guinea pig Alexa488 (1:200, # A11073 
Invitrogen) antibodies for 1 h at 37 °C. For colocalization 
with Topo IIα, CENH3 was labeled with Cy3-conjugated 
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anti-rabbit IgG (Dianova). Subsequently, coverslips were 
washed in 1×PBS (three times, 5 min each) at RT and 
immediately dehydrated in an ethanol series (70%, 85%, 
and 100%), each step 2 min. Afterward, the coverslips were 
air-dried and subjected to microscopy.

Microscopy

The fluorescence signals of Topo IIα and CENH3 were imaged 
by wide-field (WF), deconvolution (DCV) of WF, and super-
resolution 3D-SIM, using an Elyra PS.1 microscope system 
equipped with a 63×/1.4 Oil Plan-Apochromat objective and 
the software ZENBlack (Carl Zeiss GmbH). Images were cap-
tured separately for DAPI and Alexa488 using 405 nm and 488 
lasers for excitation and appropriate emission filters. Recon-
struction of SIM images was done with the ZENBlack software 
structured illumination processing module. 3D-PALM was per-
formed with the 488 laser and the images were processed with 
the ZENBlack software PALM processing module. The locali-
zation precision in 3D-PALM was calculated via simulations of 
the experimental point-spread function (Weisshart et al. 2016; 
Kubalová et al. 2021b). The localization precision is the stand-
ard deviation of the data fit. Therefore, it describes the certainty 
of the localized position or likewise the area within which the 
molecule is positioned with high likelihood. Determining the 
resolution is not straightforward and would require the spacing 
of the labeled molecules. If the spacing of molecules is at least 
twice as fine as the localization precision, the latter represents 
according to the Nyquist criterion the resolution. Otherwise, 
the resolution is twice the spacing. As spacing normally is not 
known, one has to resort to taking the profile between two struc-
tures as described in Kubalová et al. (2021b) to determine the 
resolution at a specific site. The resolution can be quite different 
in various areas of the image.

3D rendering of SIM and PALM image stacks to pro-
duce movies was performed with the Imaris 9.7 software 
(Bitplane).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00412- 023- 00785-8.
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