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Abstract
Various Staphylococcus species colonize skin and upper air-
ways of warm-blooded animals. They compete successfully 
with many other microorganisms under the hostile and nu-
trient-poor conditions of these habitats using mechanisms 
that we are only beginning to appreciate. Small-molecule 
mediators, whose biosynthesis requires complex enzymatic 
cascades, so-called secondary metabolites, have emerged as 
crucial components of staphylococcal microbiome interac-
tions. Such mediators belong to a large variety of compound 
classes and several of them have attractive properties for fu-
ture drug development. They include, for instance, bacterio-
cins such as lanthipeptides, thiopeptides, and fibupeptides 
that inhibit bacterial competitor species; signaling mole-
cules such as thiolactone peptides that induce or inhibit sen-
sory cascades in other bacteria; or metallophores such as 
staphyloferrins and staphylopine that scavenge scant transi-

tion metal ions. For some secondary metabolites such as the 
aureusimines, the exact function remains to be elucidated. 
How secondary metabolites shape the fitness of Staphylo-
coccus species in the complex context of other microbial and 
host defense factors remains a challenging field of future re-
search. A detailed understanding will help to harness staph-
ylococcal secondary metabolites for excluding the patho-
genic species Staphylococcus aureus from the nasal microbi-
omes of at-risk patients, and it will be instrumental for the 
development of advanced anti-infective interventions.

© 2021 The Author(s)
Published by S. Karger AG, Basel

Introduction

The genus Staphylococcus comprises dozens of species 
that are frequent colonizers of epithelial surfaces such as 
the skin or nasal cavities of humans and animals [Grice 
and Segre, 2011; Coates et al., 2014]. The most prominent 
and most extensively investigated species is the coagu-
lase-positive Staphylococcus aureus, an opportunistic hu-
man pathogen that can switch from a commensal to a 
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pathogenic lifestyle, thereby causing a variety of infec-
tions [Lee et al., 2018]. In contrast, the vast majority of 
staphylococci belongs to coagulase-negative Staphylococ-
cus species including for instance the species Staphylococ-
cus epidermidis and Staphylococcus hominis, which are 
considered to be mostly commensals and less harmful 
than S. aureus, although they occasionally also cause in-
fections [Becker et al., 2014]. With their high prevalence 
on skin and the epithelia of the nose, staphylococci are 
regarded as key members of the human microbiome 
[Coates et al., 2014].

Compared to the microbiome of the gastrointestinal 
tract, the microbiomes of the human skin and nose has 
only moderate biodiversity with a considerable overlap in 
occurring species. The nose, for example, is home to 
members of the genera Cutibacterium, Corynebacterium, 
Moraxella, and Dolosigranulum forming communities 
with staphylococci [Krismer et al., 2017; Rawls and Ellis, 
2019]. They are considered to support the first line of host 
defense because some commensals can inhibit coloniza-
tion and infection by more pathogenic species such as S. 
aureus [Coates et al., 2014]. We have only begun to un-
derstand by which mechanisms these beneficial species 
can confer pathogen colonization resistance. The compo-
sition of bacterial communities is influenced by host-bac-
teria interactions (reviewed in more detail elsewhere 
[Parlet et al., 2019; Flowers and Grice, 2020; Otto, 2020]) 
and by interbacterial interactions. Such bacterial interac-
tions involve the exchange of nutrients and molecules 
that induce or inhibit specific functions in target bacteria, 
so called secondary metabolites. The latter are highly di-
verse organic compounds that are often not essential for 
bacterial primary metabolism but may provide beneficial 
traits to the producing bacteria [Braga et al., 2016]. Sec-
ondary metabolites exert a wide range of bioactivities, 
which can be beneficial, detrimental, or even fatal for 
close-by bacterial community members. The production 
of such secondary metabolites can be an important strat-
egy for bacteria to ensure their own survival and affect 
that of other bacteria.

Owing to recent advances in genome-wide sequencing 
techniques, we begin to understand the role of staphylo-
cocci within bacterial skin and nasal communities and to 
unravel the nature of their interactions. Many of these at-
tempts were focused on S. aureus and its interaction with 
the human microbiome, to find new strategies for inter-
fering with S. aureus colonization (to establish coloniza-
tion resistance) [Botelho-Nevers et al., 2017; Otto, 2020]. 
Three types of secondary metabolites have been found to 
be particularly important. The first includes bacteriocins, 

antimicrobial compounds that inhibit the growth of oth-
er bacteria [Cotter et al., 2005a]. Bacteriocins strongly im-
pact the competition of bacteria for colonization sites 
and/or nutrients [Krismer et al., 2017]. Bacteriocins have 
been defined as ribosomally synthesized peptides [Arni-
son et al., 2013]. However, to cover all known antimicro-
bial compounds, the term bacteriocin is used in a broad-
er sense to include all antimicrobial substances used by 
staphylococci in microbiome competition, independent 
of their biosynthetic pathway.

Several previous studies have demonstrated that nasal 
and skin staphylococcal species frequently produce anti-
microbial compounds that are active against other inhab-
itants of the same niche, suggesting, that their production 
may be advantageous for the producers’ establishment 
and survival on the human epithelia [Janek et al., 2016; 
O'Sullivan et al., 2018]. Nakatsuji et al. observed that S. 
aureus occurrence on skin of atopic dermatitis patients is 
significantly reduced in the presence of staphylococcal 
commensals that produce bacteriocins of the lantibiotics 
type [Nakatsuji et al., 2017; Nakatsuji et al., 2021]. Of 
note, also non-staphylococcal species such as Cutibacte-
rium acnes produce antimicrobials that inhibit staphylo-
cocci including S. epidermidis [Christensen et al., 2016; 
Claesen et al., 2020].

The second type covers molecules that interfere with 
bacterial signaling pathways, in particular the staphylo-
coccal accessory gene regulator (agr), a quorum sensing 
(QS) system. This system is present in all staphylococci. 
It uses thiolactone/lactone containing autoinducing pep-
tides (AIPs) for cell density-dependent signaling [Le and 
Otto, 2015]. They exist as members of different structur-
al subgroups, and several studies have demonstrated that 
AIPs can cross-inhibit signaling of staphylococci belong-
ing to other subgroups, a phenomenon referred to as quo-
rum quenching [Ji et al., 1997; Thoendel et al., 2011; Otto, 
2020].

Metallophores have almost exclusively been investi-
gated for their importance during infections, but they 
may play an important role for bacterial interactions in 
the microbiome. These low-molecular-weight molecules 
are produced by bacteria during limited availability of 
essential transition metal ions, such as iron or zinc, in 
order to scavenge them from the environment and to de-
liver them back to the cells [Kramer et al., 2020]. The hu-
man nasal epithelium represents an environment with 
limited availability of essential metals such as iron [Kris-
mer et al., 2017] suggesting that metallophores may be 
also involved in staphylococcal persistence in human mi-
crobiomes.



Torres Salazar/Heilbronner/Peschel/
Krismer

Microb Physiol 2021;31:198–216200
DOI: 10.1159/000517082

As diverse as bacterial interactions are, as manifold are 
the substance classes and biosynthetic pathways of bacte-
rial interactions shaping secondary compounds, ranging 
from ribosomally synthesized and post-translationally 
modified peptides (RiPPs) to non-ribosomally synthe-
sized peptides (NRPs) and non-peptide molecules. In this 
review, we outline the different classes of the hitherto 
identified community-active secondary compounds pro-
duced by staphylococcal species, with emphasis on the 
biosynthetic pathways. Secondary metabolites from the 
group of unmodified peptides (class-II bacteriocins) and 
the small-peptide family of phenol-soluble modulins 
(PSMs) are not covered by this review, despite their pre-
sumably huge impact on the microbiome.

Ribosomally Synthesized and Post-Translationally 
Modified Peptides

The term “RiPPs” was first introduced in a review pub-
lished by a discussion group under the leadership of Wil-
fred van der Donk as a recommendation to summarize 
the plethora of peptides that are ribosomally synthesized 
and get subsequently modified by enzymes that are en-
coded in diverse biosynthetic gene clusters (BGCs) [Arni-
son et al., 2013; Montalban-Lopez et al., 2021]. RiPPs are 
relatively small molecules with a size below 10 kDa, rep-
resenting a superfamily of natural products with diverse 
structural features and biological functions [Arnison et 
al., 2013].

The peptide backbones of RiPPs are encoded by struc-
tural genes leading to precursor peptides with lengths of 
20–110 amino acids. The precursor peptide is composed 
of different segments, of which the so-called core peptide 
will eventually be transformed into the mature bioactive 
product [Arnison et al., 2013]. Most precursor peptides 
of RiPPs possess a leader peptide attached to the core pep-
tide at the N-terminus, which will be removed upon RiPP 
maturation [Oman and van der Donk, 2010]. In some 
cases, the leader peptide is attached to the C-terminus of 
the core peptide and can contain recognition sequences, 
which are important during maturation of the peptide for 
excision and cyclization [Arnison et al., 2013].

During RiPP biosynthesis, the leader peptide is used 
for recognition of the unprocessed precursor peptide by 
post-translational modification (PTM) enzymes and by 
export proteins [Oman and van der Donk, 2010]. Those 
enzymes gradually modify the unmodified core peptide 
to yield the modified core peptide (MCP) [Arnison et al., 
2013]. PTMs of RiPPs can be highly diverse and include, 

for instance, dehydration, phosphorylation, cyclization, 
and oxidation reactions. Further downstream of the 
modification process, the leader peptide is finally re-
moved from the MCP by proteolytic cleavage, resulting 
in the release of the mature bioactive RiPP [Arnison et al., 
2013].

In staphylococci, the currently known RiPPs are bac-
teriocins or signaling molecules, belonging to the classes 
of lanthipeptides, sactipeptides, thiopeptides, or thiolac-
tones, which will be discussed in this section (see also Ta-
ble 1).

Lanthipeptides
Lanthipeptides are RiPPs containing the unusual ami-

no acids lanthionine (Lan) or 3-methyllanthionine 
(MeLan) and, sometimes, the dehydrated amino acids 
didehydroalanine (Dha) or didehydrobutyrine (Dhb) 
[Schnell et al., 1988; Guder et al., 2000]. Lan and MeLan 
result from the condensation of a Dha or Dhb with a Cys 
leading to a thioether linkage that connects their 
β-carbons [Guder et al., 2000]. They are typically formed 
by PTM enzymes with dehydratase and cyclase activities 
from Ser or Thr, which are in the first step dehydrated to 
Dha or Dhb, respectively, and, in a second step, linked to 
the thiol group of intramolecular Cys residues resulting 
in Lan or MeLan formation, respectively [Guder et al., 
2000].

Lanthipeptides with antimicrobial activity are called 
lantibiotics and, according to Knerr and van der Donk 
[Knerr and van der Donk, 2012], can be further divided 
into class I-IV lantibiotics, depending on the enzymes in-
volved in PTM of the lantibiotic. In class-I lantibiotics, 
two separate enzymes mediate dehydration and cycliza-
tion, the dehydratase LanB and the cyclase LanC, respec-
tively, while in class-II (LanM), class-III (LanKC), and 
class-IV (LanL), only one enzyme accomplishes lanthio-
nine formation [Knerr and van der Donk, 2012].

The target sites of lantibiotics are typically surface 
structures of Gram-positive bacteria such as lipid I and II, 
which are precursors for peptidoglycan biosynthesis [Re-
isinger et al., 1980; Brötz et al., 1998; Breukink et al., 
1999], as well as lipid III and IV, precursors for wall tei-
choic acid biosynthesis [Müller et al., 2012]. For epider-
min/gallidermin, two of the lantibiotics produced by 
staphylococci, it has been demonstrated that upon bind-
ing to lipid II, the incorporation of lipid II via the trans-
peptidase/trans-glycosylase into the growing peptidogly-
can network is blocked, thus resulting in the death of tar-
get bacterial cells [Götz et al., 2014]. Furthermore, pore 
formation with a consequent dissipation of the mem-
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Table 1. Bacteriocins identified from Staphylococcus species

Bacteriocin Producer Susceptible bacteria & mode of action References

Lantibiotics Agneticin 3682 S. agnetis 3682 Firmicutes: S. aureus, Bacillus spp., Listeria spp., Lactobacillus spp., 
Lactococcus lactis, Leuconostoc mesenteroides
Actinobacteria: M. luteus, Corynebacterium fimi, Kocuria 
rhizophila, Geobacillus stearothermophilus

[Fagundes et al., 2011; 
Fagundes et al., 2019]

BacCH91 S. aureus CH-91 Firmicutes: Staphylococcus spp. [Wladyka et al., 2013]

Epidermin S. epidermidis Tü3298 Firmicutes: Staphylococcus spp., Streptococcus spp., Bacillus spp., 
Listeria spp., Lactobacillus spp., Lactococcus lactis, Leuconostoc 
mesenteroides, Peptostreptococcus anaerobicus, Geobacillus 
stearothermophilus
Actinobacteria: Micrococcus luteus, Cutibacterium acnes, Kocuria 
rhizophila, Corynebacterium spp.,
Interaction with lipid I/II (peptidoglycan biosynthesis) and lipid 
III/IV (wall teichoic acid biosynthesis); membrane pore formation

[Kellner et al., 1988; 
Brötz et al., 1998; 
Müller et al., 2012; 
Fagundes et al., 2011; 
Götz et al., 2014]

Gallidermin S. gallinarum Tü3928 Firmicutes: Staphylococcus spp., Streptococcus spp., 
Peptostreptococcus anaerobicus
Actinobacteria: Micrococcus luteus, Cutibacterium acnes, Kocuria 
rhizophila, Corynebacterium xerosis
Interaction with lipid I/II (peptidoglycan biosynthesis) and lipid 
III/IV (wall teichoic acid biosynthesis); membrane pore formation

[Kellner et al., 1988; 
Brötz et al., 1998; 
Müller et al., 2012; 
Götz et al., 2014]

Epilancin K7 S. epidermidis K7 Firmicutes: S. simulans, Streptococcus agalactiae [van de Kamp et al., 
1995a; Varella Coelho 
et al., 2007]

Epilancin 15x S. epidermidis 15X154 Firmicutes: S. aureus, Streptococcus spp., Enterococcus spp. [Velásquez et al., 2011; 
Ekkelenkamp et al., 
2005]

Epicidin 280 S. epidermidis BN280 Firmicutes: Staphylococcus spp., S. agalactiae
Actinobacteria: M. luteus

[Heidrich et al., 1998; 
Varella Coelho et al., 
2007]

Pep5 S. epidermidis 5 Firmicutes: Staphylococcus spp.
Actinobacteria: Micrococcus spp.
Membrane pore formation

[Sahl and Brandis, 
1981; Kordel et al., 
1988; Heidrich et al., 
1998; Pag et al., 1999]

Nisin J S. capitis APC 2923 Firmicutes: Staphylococcus spp., Enterococcus spp., L. 
monocytogenes, Lactobacillus delbrueckii, L. lactis
Actinobacteria: C. acnes, C. xerosis

[O’Sullivan et al., 
2020]

Nukacin ISK-1 S. warneri ISK1 Firmicutes: Staphylococcus spp., Streptococcus bovis, Bacillus 
subtilis, Lactobacillus spp., Lactococcus lactis, Pediococcus 
pentosaceus, Enterococcus faecalis
Actinobacteria: Micrococcus luteus
Interaction with lipid II (peptidoglycan biosynthesis)

[Kimura et al., 1998b; 
Asaduzzaman et al., 
2009; Islam et al., 
2012; Roy et al., 2014]

Nukacin IVK45 S. epidermidis IVK45 Firmicutes: (S. aureus ∆dltA), S. pyogenes, Dolosigranulum pigrum
Actinobacteria: C. accolens, Micrococcus luteus
Gammaproteobacteria: Moraxella catarrhalis

[Janek et al., 2016]

Nukacin KQU-131 S. hominis KQU-13 Firmicutes: Bacillus sp., lactic acid bacteria (LAB)
Actinobacteria: Micrococcus sp.

[Wilaipun et al., 2008]

Warnericin RB4 S. warneri RB4 Firmicutes: Alicyclobacillus acidoterrestris, Alicyclobacillus 
acidocaldarius, Actinobacteria: Micrococcus luteus

[Minamikawa et al., 
2005]

Staphylococcin C55 S. aureus C55 Firmicutes: S. aureus
Actinobacteria: M. luteus

[Navaratna et al., 
1998]

Sactibiotics Hyicin 4244 S. hyicus 4244 Firmicutes: Staphylococcus spp., Enterococcus spp., Lactobacillus 
spp., Listeria spp., L. lactis
Actinobacteria: M. luteus

[Duarte et al., 2013]
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brane potential is associated with killing. However, this 
seems to depend on the thickness of the membrane of the 
target cell and the length of lantibiotics [Breukink et al., 
1999; Bonelli et al., 2006].

In general, the generic locus symbol lan is used to des-
ignate the entire group of lantibiotic gene clusters, which 
have, depending on the lantibiotic, more specific geno-
typic denotations, for example, nuk for nukacin ISK-1 or 
gdm for gallidermin [Arnison et al., 2013]. Further, the 
gene clusters typically contain genes encoding the precur-
sor peptide (lanA), PTM enzymes (lanB, lanC, lanM, 
lanL, etc.), an exporter (lanT), and extracellular protease 
(lanP) for the transport of the MCP and proteolytic cleav-
age of the leader peptide, and proteins for immunity (lanI, 
lanH, lanFEG) that protect the producer from its own 
product [Siezen et al., 1996; Bierbaum and Sahl, 2009]. In 
some staphylococcal class-I lantibiotics, additional PTM 
enzymes such as LanD [Schnell et al., 1992; Kupke et al., 
1994] and LanO [Velásquez et al., 2011] have been identi-
fied that are associated with additional PTMs, for exam-
ple, for epidermin or epilancin 15X, respectively.

Epidermin and its natural derivative gallidermin are 
among the best described staphylococcal class-I lantibiot-
ics and were originally discovered in S. epidermidis 
Tü3298 and Staphylococcus gallinarum Tü3928, respec-
tively [Allgaier H, 1985; Kellner et al., 1988]. The biosyn-
thesis of epidermin and gallidermin is nearly identical, 
and the core peptides only differ by one amino acid 
(Leu6Ile in gallidermin) [Kellner et al., 1988]. Both BGCs 
consist of 11 genes and are, in the case of epidermin, or-
ganized as epiGEFHTABCDQP locus, with epiQ [Peschel 
et al., 1993] and epiD [Schnell et al., 1992; Kupke et al., 
1994] encoding for a regulator and an additional PTM 
enzyme, respectively.

The ribosomally synthesized precursor peptide con-
tains the 22-aa core peptide that will become the mature 
lanthipeptide. The formation of lanthionine and methyl-
lanthionine is mediated via EpiB and EpiC, resulting in 
the generation of three thioether ring structures in the 
epidermin core peptide segment (Fig.  1) [Götz et al., 
2014]. One special structural feature of epidermin and 
gallidermin is the fourth thioether ring at the C-terminus, 
a S-((Z)-2-aminovinyl)-D-Cys (AviCys) residue, gener-
ated by the PTM enzyme EpiD/GdmD, a flavoprotein 
that binds the coenzyme flavin mononucleotide (FMN) 
[Kupke et al., 1992; Kupke and Götz, 1997; Götz et al., 
2014]. The resulting MCP is then secreted via the ABC 
transporter EpiHT in a sec-independent way and is extra-
cellularly cleaved by the leader peptidase EpiP to form the 
mature and active gallidermin [Geissler et al., 1996; Götz 
et al., 2014].

Over the years, further staphylococcal class-I lantibi-
otics have been identified that are variants of or closely 
related to epidermin: 1V,6L-epidermin from S. epidermi-
dis V1 and V301 [Bierbaum et al., 1996], staphylococcin 
T (identical to gallidermin) from Staphylococcus cohnii T 
[Furmanek et al., 1999], staphylococcin Au-26/Bsa/au-
reodermin [Scott et al., 1992; Daly et al., 2010; Joo et al., 
2011] and BacCH91 [Wladyka et al., 2013] from S. aure-
us, and agneticin 3682 (formerly hyicin 3682) isolated 
from Staphylococcus agnetis (formerly Staphylococcus hy-
icus) [Fagundes et al., 2011; Fagundes et al., 2019].

Another member of staphylococcal class-I lantibiotics 
is epilancin 15X, originating from S. epidermidis 15X154 
and encoded by the BGC elxOTAPBCI [Ekkelenkamp et 
al., 2005; Velásquez et al., 2011]. A special feature of epi-
lancin 15X is an N-terminal lactate residue (Fig. 1). Upon 
biosynthesis of the precursor peptide and Lan/MeLan 

Table 1 (continued)

Bacteriocin Producer Susceptible bacteria & mode of action References

Thiopeptides Micrococcin P1 S. equorum WS 2733/S. 
hominis S34-1

Firmicutes: Staphylococcus spp., Enterococcus spp., Listeria spp., 
Lactobacillus sp., Bacillus cereus, Clostridium perfringens
Actinobacteria: Corynebacterium sp., Micrococcus sp., 
Brevibacterium sp., Arthrobacter sp., Microbacterium sp.
Interaction with complex formed between L11 binding domain of 
50S ribosomal subunit and 23S ribosomal RNA, thereby inhibiting 
peptide chain elongation

[Cundliffe and 
Thompson, 1981; 
Carnio et al., 2000]

Fibupeptides Lugdunin S. lugdunensis IVK28 Firmicutes: S. aureus, E. faecium, E. faecalis, L. monocytogenes, S. 
pneumoniae
Actinobacteria: C. acnes
Protonophore-like mode of action, causing proton leakage in 
membranes (independent of proteinaceous membrane molecules)

[Zipperer et al., 2016; 
Schilling et al., 2019]
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formation, the leader peptide is proteolytically removed 
by ElxP, a presumed intracellular protease that leaves the 
31-aa core peptide with an N-terminal Dha [Velásquez et 
al., 2011]. Due to instability, the Dha undergoes sponta-
neous hydrolysis to form a pyruvate residue, which is 
then reduced by the NADPH-dependent PTM enzyme 
ElxO, resulting in an N-terminal lactate residue [Ve-
lásquez et al., 2011]. The mature peptide is most likely 
secreted by ElxT, a putative ABC exporter [Velásquez et 
al., 2011]. Like epilancin 15X, its natural derivative epi-
lancin K7 also possesses an N-terminal lactate residue 
[van de Kamp et al., 1995a; van de Kamp et al., 1995b]. 
However, to date, no LanO has been identified that could 

be responsible for this modification step in epilancin K7 
[Heidrich et al., 1998; Velásquez et al., 2011]. Neverthe-
less, an elxO homolog could be found in the BGC 
eciOIAPBC of epicidin 280, a lantibiotic derived from S. 
epidermidis BN280 (Fig. 1) [Heidrich et al., 1998]. Here, 
the elxO homolog eciO encodes a PTM enzyme EciO with 
putative oxidoreductase function. Most likely EciO cata-
lyzes the conversion of the N-terminal pyruvate to a lac-
tate residue; however, experimental evidence for this is 
currently lacking [Heidrich et al., 1998; Repka et al., 
2017].

Closely related to epicidin 280 is Pep5, originally iden-
tified in S. epidermidis 5, which harbors the Pep 5 BGC 
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pepTIAPBC [Ersfeld-Dressen et al., 1984; Weil et al., 
1990; Meyer et al., 1995]. The BGC of Pep5 is organized 
in the same order as epicidin 280 BGC and the encoding 
proteins contain high levels of amino acid similarity 
[Heidrich et al., 1998; Bastos et al., 2009]. The precursor 
peptides of the two bacteriocins share 58.9% amino acid 
identity and both are synthesized with a 26-aa leader pep-
tide. However, the Pep5 core peptide consist of 34 aa, 
while that of epicidin 280 consists of only 30 aa [Bastos et 
al., 2009]. The mature peptide harbors an N-terminal 
oxobutyryl residue, which is formed by spontaneous de-
amination of the N-terminal Dhb (Fig. 1) [Kellner et al., 
1989; Weil et al., 1990; Bierbaum et al., 1996]. In contrast 
to epicidin 280, the Pep5 BGC lacks a lanO gene and only 
the two PMT enzymes PepB/C are used to modify the 
Pep5 core peptide [Meyer et al., 1995]. Thus, Pep5 repre-
sents a class-I lantibiotic without any further enzymatic 
modification besides the formation of Lan/MeLan and 
Dha/Dhb. Apart from Pep5, there have been other lanti-
biotics isolated from staphylococci modified only by 
LanB and LanC, such as nisin J from Staphylococcus capi-
tis [O'Sullivan et al., 2020].

A typical example for staphylococcal class-II lantibiot-
ics is nukacin ISK-1, a 27-aa lantibiotic, originally isolated 
from Staphylococcus warneri ISK1, harboring the nuka-
cin ISK-1 BGC nukAMTFEGH [Kimura et al., 1998a; 
Kimura et al., 1998b; Sashihara et al., 2000]. In contrast to 
the class-I lantibiotics described above, the formation of 
Lan and MeLan in nukacin ISK-1 is mediated by the sin-
gle bi-functional enzyme LanM (NukM) [Aso et al., 2004; 
Shimafuji et al., 2015]. Whereas the C-terminal cyclase 
domain of LanM modification enzymes shares homolo-
gies to LanC enzymes, the N-terminal dehydratase do-
main of LanM bears no sequence similarities to LanB en-
zymes [Knerr and van der Donk, 2012]. These differenc-
es are also reflected by the distinct modes of dehydration 
of Ser and Thr, as dehydration mediated by LanM occurs 
via phosphorylation instead of glutamylation via LanB 
(reviewed in more detail elsewhere [Repka et al., 2017]). 
As for staphylococcal class-I lantibiotics, the leader pep-
tide of NukA is removed after NukM catalyzed Lan/
MeLan formation, and the mature core peptide is re-
leased. However, both the cleavage of the MCP and the 
export of the resultant nukacin ISK-1 are mediated by 
only one enzyme, NukT, an ABC transporter maturation 
and secretion (AMS) protein [Nishie et al., 2009], which 
includes a peptidase domain.

Apart from S. warneri ISK-1, nukacin variants could 
be isolated from other staphylococcal species. Janek and 
colleagues identified the first S. epidermidis-derived nu-

kacin-like bacteriocin produced by the human nasal iso-
late S. epidermidis IVK45, termed nukacin IVK45 (Fig. 1) 
[Janek et al., 2016]. The gene cluster of nukacin IVK45 
shares high similarities to that of nukacin ISK-1 and nu-
kacin KQU-131, another variant produced by S. hominis 
from fermented fish [Wilaipun et al., 2008; Janek et al., 
2016]. The mature nukacin IVK45 differs from the other 
two nukacins by five and by six amino acids, respectively, 
and the leader peptide by another five amino acids [Janek 
et al., 2016]. Further examples of staphylococcal nukacin-
like bacteriocins are nukacin 3299 (formerly designated 
simulancin 3299), a peptide produced by Staphylococcus 
simulans shown to be identical to nukacin ISK-1 [Ceotto 
et al., 2010], or warnericin RB4, a nukacin variant pro-
duced by S. warneri [Minamikawa et al., 2005].

A rather exotic class-II lantibiotic is staphylococcin 
C55, a two-component lantibiotic produced by S. aureus 
C55 [Navaratna et al., 1998]. Its BGC harbors two struc-
tural genes sacαA and sacβA, encoding C55α and C55β, 
respectively, the two lanM genes sacM1 and sacM2, an 
AMS protein encoding gene sacT, and a gene coding  
for an additional modification enzyme, SacJ, a zinc  
and NADPH-dependent LanJA-type dehydrogenase 
[O'Connor et al., 2007; Repka et al., 2017]. The function 
of LanJ was first characterized for the biosynthesis of lac-
ticin 3147 from Lactococcus lactis DPC3147, where it is 
thought to be responsible for the introduction of the ami-
no acid D-Ala into the peptides [Cotter et al., 2005b]. In 
general, this modification step occurs after Dha forma-
tion by LanM, followed by a diastereoselective hydroge-
nation of Dha mediated by LanJ, resulting in the forma-
tion of D-Ala, thereby rendering Dha a substrate not only 
for Lan formation by LanM but also for D-Ala formation 
by LanJ [Cotter et al., 2005b]. The cleavage and transport 
of the two MCPs is most likely mediated by SacT, in the 
same way as LtnT in the lacticin 3147 biosynthesis pro-
cess [Cotter et al., 2005b; O'Connor et al., 2007]. Interest-
ingly, even though faint antimicrobial activity could be 
observed for the single peptides C55α and C55β, a com-
bination of them at equimolar ratio is required to obtain 
full antimicrobial activity of staphylococcin C55 [Na-
varatna et al., 1998]. The genetic determinants of staphy-
lococcin C55 could also be identified in S. aureus strain 
U0007 [Crupper et al., 1997].

Most recently, the BGC for another putative two-com-
ponent lantibiotic was discovered in S. hominis APC 
3824, exhibiting similarities to the BGC of haloduracin, a 
lantibiotic produced by Bacillus halodurans C-125 [An-
gelopoulou et al., 2020].
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Sactipeptides
Sactipeptides are a class of RiPPs containing intramo-

lecular thioether linkages between the thiol group of Cys 
and the α-carbon of an acceptor amino acid [Arnison et 
al., 2013]. Such “sulfur-to-α-carbon” condensations are 
generally mediated by radical S-adenosylmethionine 
(SAM) enzymes harboring [4Fe-4S] clusters [Flühe et al., 
2012]. The general mechanism of thioether bond forma-
tion by the radical SAM enzyme has been described in 
more detail for subtilosin A, a sactipeptide derived from 
Bacillus subtilis [Flühe et al., 2012].

Sactipeptides with antimicrobial properties are called 
sactibiotics [Arnison et al., 2013]. Only a few studies have 
elucidated the mode of action of sactibiotics. Most sacti-
peptides have relatively high hydrophobic properties and 
tend to form hairpin structures due to their sulfur-to-α-
carbon linkages. Their hydrophobic residues are pointing 
to the outside, enabling an interaction with the mem-
brane of the targeted organism, possibly resulting in some 
kind of membrane damage [Mathur et al., 2017].

Among staphylococci, only one sactibiotic has been de-
scribed in more detail so far, hyicin 4244 (Table 1), which 
is produced by Staphylococcus hyicus, whose final structure 
has yet to be elucidated [Duarte et al., 2013; Duarte et al., 
2018]. Its BGC is located on the chromosome and consists 
of eight genes (hyiSABCDEFG) with an organization re-
sembling that of subtilosin A. The structural gene hycS en-
codes a 43-aa precursor peptide with high identity (71%) 
to the precursor peptide of subtilosin A (SboA). It harbors 
three thioether donor Cys residues (Cys12, Cys15, Cys21) 
and acceptor amino acids (Phe30, Phe39 and Thr36). The 
mature hyicin 4244 is assumed to be 35-aa long and prob-
ably also undergoes macrocyclization to form a circular 
bacteriocin related to subtilosin A [Duarte et al., 2018].

The proteins encoded by the hyicin 4244 BGC also dis-
play high similarities (from 42% to 70%) to the proteins 
of subtilosin A. Hence, they have most likely the same 
functions. In brief, HycA is the radical SAM enzyme that 
presumably introduces thioether linkages in HycS, analo-
gous to AlbA for subtilosin A, while HycE and HycF are 
predicted to be cytoplasmic proteases that are involved in 
the removal of the leader peptide and macrocyclization to 
generate the mature hyicin. Further genes encode the pu-
tative immunity factors HycB, HycC, and HycD, whereas 
the latter two are presumably also involved in the trans-
port of the mature peptide [Duarte et al., 2018].

Recently, four putative distinct sactipeptides were 
identified in S. epidermidis genomes, displaying only little 
sequence similarity to known sactibiotics (<20.6%) [An-
gelopoulou et al., 2020]. Although the producers showed 

antimicrobial activity against various bacteria, those sact-
ibiotics were mostly investigated on a genetic level, and 
further research is required to confirm that the antimi-
crobial activity was caused by these putative sactibiotics.

Thiopeptides
Thiopeptides, or thiazolyl peptides, represent one of 

the most extensively modified RiPP class [Bagley et al., 
2005; Wieland Brown et al., 2009]. They typically com-
prise a characteristic six-membered, nitrogenous hetero-
cycle located at the center of the peptide, which functions 
as a scaffold for at least one peptide macrocycle and a tail. 
Both are featured by azole rings (oxazole, thiazole, or thi-
azoline) and dehydroamino acids (Dha/Dhb), which are 
derived from multistep modifications of Ser, Thr, and Cys 
[Bagley et al., 2005; Just-Baringo et al., 2014].

Thiopeptides can be classified into five series (a-e) ac-
cording to their structure, depending on the substitution 
pattern and oxidation state of the nitrogenous heterocy-
cle [Bagley et al., 2005]. They often exhibit antimicrobial 
activities against Gram-positive bacteria, and their modes 
of action are usually linked to the inhibition of protein 
biosynthesis. On one hand, this process can occur by 
binding to the GTPase-associated region of the ribosome/
L11 complex, thereby hindering elongation factors to 
bind, which results in ribosome stalling [Harms et al., 
2008; Walter et al., 2012; Just-Baringo et al., 2014]. On the 
other hand, the peptide can bind to the elongation factor 
TU (EF-Tu), which prevents the formation of the EF-
Tu·aminoacyl-tRNA complex [Heffron and Jurnak, 2000; 
Parmeggiani et al., 2006].

The first and yet only thiopeptide identified in the ge-
nus Staphylococcus is micrococcin P1 (MP1), originally 
isolated in 1948 from Micrococcus sp. and since then 
found twice, in Staphylococcus equorum WS 2733 and in 
S. hominis (Fig. 2, Table 1) [Su, 1948; Carnio et al., 2000; 
Liu et al., 2020]. As for the latter, the BGC for MP1 is lo-
cated on a plasmid and shows high similarities to the MP1 
BGC found in Macrococcus caseolyticus (formerly falsely 
classified as S. epidermidis) [Bennallack et al., 2014; Ben-
nallack et al., 2016; Liu et al., 2020]. Using Bacillus subti-
lis for heterologous gene expression, eight PTM enzymes 
encoded by the tclIJKLMNPS BGC have been shown to be 
sufficient to produce MP1 [Bennallack et al., 2016]. The 
structural gene tclE encodes a 49-aa MP1 precursor pep-
tide of which the 14-aa at the C-terminus represent the 
core peptide with a high content of Ser, Thr, and Cys, 
which eventually is transformed into mature MP1 with 
two Dhb residues, six thiazole rings, and one central pyr-
idine ring (Fig. 2).
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Bewley et al. proposed a biosynthetic pathway for MP1 
based on homology comparisons with other well-studied 
thiopeptides (thiocillin and thiomuracin) and supportive 
experimental data [Bewley et al., 2016]. In brief: during 
MP1 biosynthesis, the formation of thiazole rings is cata-
lyzed by TclI (precursor peptide recognition), TclJ (a thi-
azole/oxazole-modified microcin family cyclodehydra-
tase) and TclN (FMN-binding McbC-type dehydroge-
nase) in an ATP- and FMN-dependent manner [Bewley 
et al., 2016]. The alcohol residue at the C-terminal tail of 
MP1 is generated by the two predicted short-chain dehy-
drogenases TclP and TclS, with TclP responsible for the 
formation of a ketone residue that is later reduced by TclS 
to an alcohol. The two enzymes TclK and TclL catalyze 
the dehydration of Ser and Thr to Dha and Dhb, respec-
tively, and the multifunctional TclM catalyzes the forma-
tion of the central pyridine ring, the peptide macrocycli-
zation and leader peptide elimination. Further genes, not 
associated with MP1 PTM but encoded within the same 
cluster, are tclQ, tclU, and orf18, encoding a MP1-insen-
sitive ribosomal protein L11 homolog conferring immu-
nity, a putative transcriptional regulator, and a putative 
protein of unknown function, respectively [Bennallack et 
al., 2016].

Thiolactones/Thiolactone-Containing Peptides
Thiolactones are heterocyclic rings of different sizes 

that contain a sulfur atom adjacent to a carbonyl group. 
In virtually all Staphylococcus species, thiolactones are 
structural elements of AIPs that are involved in the acces-
sory gene regulation (agr) QS system, allowing popula-
tion density/environment-dependent gene regulation 
through cell-cell communication [Ji et al., 1995; Thoendel 
et al., 2011; Le and Otto, 2015]. In brief, the agr locus con-
sists of two transcriptional units, RNAII and RNAIII, of 
which the RNAII locus contains the four genes agrB, 
agrC, agrD, and agrA involved in QS [Le and Otto, 2015]. 
AgrC and AgrA represent a two-component signal trans-
duction system. AgrC is the transmembrane histidine ki-
nase sensor that gets auto-phosphorylated upon AIP 
binding [Lina et al., 1998]. Subsequently, it transfers the 
phosphate group to the associated response regulator 
AgrA, which then activates the P2/P3 promotor regions 
of RNAII/RNAIII, respectively, resulting in an auto-feed-
back regulation of agrBDCA and transcription/transla-
tion of RNAIII that regulates expression of agr target 
genes [Novick et al., 1995; Koenig et al., 2004; Queck et 
al., 2008].

It was shown in S. aureus, that the two genes agrD and 
agrB mediate the biosynthesis of AIPs [Ji et al., 1995]. The 
gene agrD encodes a precursor peptide consisting of a 
core peptide that is flanked by an N-terminal amphipa-
thic helical region and a C-terminal highly negatively 
charged recognition sequence [Thoendel and Horswill, 
2009]. AgrD is processed by AgrB, a membrane protein 
with endopeptidase activity, and an additional protease 
that is thought to be SpsB, the general signal peptidase as-
sociated with Sec and Tat secretion system [Hazenbos et 
al., 2017), via the following (proposed) pathway [Thoen-
del and Horswill, 2009]: Upon translation, the precursor 
peptide localizes to the inner leaflet of the cell membrane 
via the N-terminal amphipathic helix structure [Zhang et 
al., 2004]. In the next step, AgrB removes the C-terminal 
recognition sequence of the precursor peptide, which is 
followed by formation of the thiolactone ring between a 
Cys of the core peptide and its C-terminus [Thoendel and 
Horswill, 2009]. By means of a yet unknown mechanism, 
the AIP precursor is translocated to the outer cytoplasmic 
membrane leaflet, either by AgrB or another protein, 
where the N-terminal amphipathic helix is subsequently 
removed, presumably by the peptidase SpsB, which re-
sults in the release of the mature AIP [Kavanaugh et al., 
2007].

Although the agr QS system is present in all staphylo-
cocci, the length and amino acid compositions of AIP 

SCTTCVCTCSCCTT
_                  _

b

a

Fig. 2. a Amino acid sequence of micrococcin P1. Color code in-
dicates posttranslational modifications. Red: dehydration; blue: 
thiazole formation; pink: dehydrogenation; green line: cyclization 
and pyridine formation. b Chemical structure of micrococcin P1.
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precursors/mature AIPs are highly diverse between dif-
ferent staphylococcal species and, intriguingly, also be-
tween different clonal groups of a given species [Le and 
Otto, 2015]. In S. aureus, for instance, four agr types with 
four different AIPs (AIP I-IV) are known that show cross-
inhibition towards strains possessing other agr types, a 
phenomenon called “quorum quenching,” that also oc-

curs on the interspecies level [Ji et al., 1997; Otto et al., 
1999; Paharik et al., 2017]. The amino acid sequences of 
AIPs produced by staphylococci are summarized in Ta-
ble  2, including also the AIP variant of Staphylococcus 
pseudintermedius, where the thiolactone is replaced by a 
lactone, and Figure 3 shows representative AIP struc-
tures.

Table 2. Amino acids sequences of autoinducing peptides (AIPs) produced by Staphylococcus species

Species Sequence Inhibited Agr Source

S. argenteus YSTCDFIM (identical to S. aureus AIP-I) [Gless et al., 2019]

S. aureus YSTCDFlM (AIP-I) S. aureus Agr-II/III
S. simulans Agr-III

[Ji et al., 1995; Ji et al., 1997; Brown et al., 
2020]

GVNACSSLF (AIP-II) S. aureus Agr-I/III/IV [Ji et al., 1997]

INCDFLL (AIP-III) S. aureus Agr-I/II/IV [Ji et al., 1997]

YSTCYFIM (AIP-IV) S. aureus Agr-II/III
S. simulans Agr-III
S. epidermidis Agr-I

[Jarraud et al., 2000; Otto et al., 2001;  
Brown et al., 2020]

S. caprae YSTCSYYF S. aureus Agr-I/II/II/IV [Paharik et al., 2017]

S. chromogenes SINPCTGFF [Gless et al., 2019]

S. epidermidis DSVCASYF (AIP-I) S. epidermidis Agr-II/III
S. aureus Agr-I/II/III

[Otto et al., 1999; Otto et al., 2001; Olson et al., 
2014]

NASKYNPCSNYL (AIP-II) S. epidermidis Agr-I
S. aureus Agr-I

[Olson et al., 2014; Williams et al., 2019]

NAAKYNPCASYL (AIP-III) S. epidermidis Agr-I
S. aureus Agr-I

[Olson et al., 2014; Williams et al., 2019]

S. haemolyticus SFTPCTTYF [Gless et al., 2019]

S. hominis TYSTCYGYF [Gless et al., 2019]

SYNVCGGYF S. aureus Agr-I [Williams et al., 2019]

S. hyicus KINPCTVFF [Gless et al., 2019]

S. lugdunensis DICNAYF S. aureus Agr-I/II/III [Ji et al., 1997; Otto et al., 2001]

DMCNGYF (AIP-II) [Gless et al., 2019]

S. pseudintermedius RIPTSTGFF (AIP-I) [Kalkum et al., 2003]

S. saprophyticus INPCFGYT [Todd et al., 2017; Gless et al., 2019]

S. schleiferi KYPFCIGYF S. aureus Agr-I/II/III/IV [Canovas et al., 2016; Gless et al., 2019]

S. schweitzeri YSTCYFIM (identical to S. aureus AIP-IV) [Gless et al., 2019]

S. simulans KYNPCLGFL (AIP-I) [Gless et al., 2019]

KYYPCWGYF (AIP-II) S. simulans Agr-I
S. aureus Agr-I/II/III/IV

[Brown et al., 2020]

KYNPCWGYF (AIP-III) S. simulans Agr-I
S. aureus Agr-I/II/III

[Brown et al., 2020]

S. vitulinus VIRGCTAFL [Gless et al., 2019]

S. warneri YSPCTNFF [Gless et al., 2019]
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NRPs (Non-Ribosomal Peptides)

Non-ribosomal peptides are secondary metabolites 
found in bacteria and fungi with manifold biological ac-
tivities [Finking and Marahiel, 2004]. In contrast to RiPPs 
described above, NRPs are produced by non-ribosomal 
peptide synthetases (NRPSs), a family of large multimod-
ular mega-enzymes; thus, NRPSs constitute RNA- and 
ribosome-independent machineries for peptide biosyn-
thesis.

NRPSs are typically organized in multiple, distinct 
modules comprising catalytic domains that are respon-
sible for the coordinated incorporation of a single amino 
acid or related building block into a polypeptide product. 
Those modules can either be encoded by a single gene to 
form a single, large NRPS protein with multiple modules, 
or by multiple genes encoding individual NRPS proteins 
that interact sequentially with each other to form a mul-
tienzyme complex [Finking and Marahiel, 2004; Gulick, 
2017]. A minimal module, usually found as the first mod-
ule initiating peptide synthesis, consists of an adenylation 
(A) and a peptidyl carrier protein (PCP) domain, while 
modules further downstream generally also contain an 
additional condensation (C) domain. NRP biosynthesis 

comprises several biochemical steps that are described at 
greater detail elsewhere [Finking and Marahiel, 2004; Gu-
lick, 2017].

In brief: The A domain is responsible for the selection 
of the amino acid to be incorporated into the NRPS 
product and is therefore often referred to as the “gate 
keeper” of NRPSs [Stachelhaus et al., 1999; Gulick, 
2017]. During NRP synthesis, the A domain activates 
the amino acid in an ATP-dependent manner to form 
an amino acyl adenylate that is loaded onto a PCP. The 
C-domain is then responsible for the elongation/exten-
sion of the NRP as it catalyzes the peptide bond forma-
tion between the two amino acyl adenylates tethered to 
PCPs of adjacent modules [Stachelhaus et al., 1998; 
Finking and Marahiel, 2004]. This new peptide serves 
again as a substrate for the further downstream located 
C-domains, continuing the elongation process. At the 
end of the elongation process, release of the nascent pep-
tide from the last PCP is usually catalyzed by a thioester-
ase domain but can occasionally also be catalyzed by a 
reductase domain [Finking and Marahiel, 2004; Du and 
Lou, 2010]. In case of the latter, the hitherto identified 
NRPs from staphylococci are released via an NADPH-
dependent reductase.
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Fig. 3. Amino acid sequence and ring topologies/structures of (staphylococcal) autoinducing peptides. Thiolacte 
and lactone rings formed between amino acids are indicated in blue (Cys/Ser) and red (AA).
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Fibupeptides
Fibupeptides are a recently discovered class of NRPs 

defined as macrocyclic peptides containing a thiazolidine 
moiety [Schilling et al., 2019]. This class is represented by 
lugdunin, currently the first and only member of natural 
fibupeptides (Fig. 4a, Table 1) [Zipperer et al., 2016]. Lug-
dunin has protonophore activity combined with antibi-
otic properties. It is produced by Staphylococcus lugdu-
nensis, a commensal of the human nose and skin micro-
biomes that inhibits the growth of S. aureus (among 
other bacteria) by causing the breakdown of energy sup-
ply. Furthermore, it could be shown that the risk of nasal 
carriage of S. aureus was approx. 6-fold reduced when 
human individuals were colonized by lugdunin-produc-

ing S. lugdunensis, which was also confirmed in animal 
models, indicating a microbiome-shaping role of lug-
dunin-producing S. lugdunensis that may contribute to 
human resilience against S. aureus carriage [Zipperer et 
al., 2016].

The lugdunin BGC is located on the chromosome and 
contains the genes responsible for lugdunin biosynthesis; 
the four genes lugA-D, encoding the NRPS modules, and 
the genes lugT and lugZ, encoding a thioesterase involved 
in repair/recovery of stalled PCP domains and a 4′-phos-
phopantetheinyl transferase, respectively. It further con-
tains genes involved in lugdunin transport and immunity 
(lugI-H) or, presumably, regulation (lugJ, lugR) [Zipperer 
et al., 2016; Krauss et al., 2020].

Aureusimine A (Tyrvalin) Leuvalin

Aureusimine B (Phevalin) Pyrazinone

Aureusimine B – Dipep�de aldehyde Aureusimine B - PyrazinoneAureusimine B – Imine intermediate

O2

Linear pep�de

Imine

Lugdunin (thiazolidine ring)

Cycliza�on

ba

Fig. 4. Community active NRPS products of staphylococci. a Chemical structure of the fibupeptide lugdunin and 
its conversion from a linear peptide, over an imine intermediate to the final lugdunin product. Thiazolidine ring 
is indicated in blue. b Chemical structures of aureusimines and their conversion from a dipeptide aldehyde (red), 
over an imine intermediate (blue) to a pyrazinone product (pink), on the example of aureusimine B.
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The four NRPS modules of LugA-D contain five ade-
nylation domains for Cys, Val, Trp, Leu, Val and also 
three epimerization domains, which catalyze the conver-
sion of L-amino acids to D-amino acids. The biosynthesis 
is initiated by LugD and continues with LugA-C, with 
LugC contributing three Val, resulting in the formation 
of a linear hepta-peptide consisting of L-Cys, D-Val, L-
Trp, D-Leu, L-Val, D-Val, and L-Val, tethered to the last 
PCP of LugC. The C-terminal reductase of LugC releases 
the peptide from the last PCP, leading to aldehyde forma-
tion at the C-terminal L-Val that is subsequently nucleo-
philically attacked by the N-terminal amine of L-Cys to 
form a macrocyclic imine. A second nucleophilic attack 
of the thiol group of Cys to the imine finally generates the 
five-membered thiazolidine heterocycle, the hallmark of 
fibupeptides [Zipperer et al., 2016].

Pyrazinones
Pyrazinones are 6-membered, nitrogenous heterocy-

cles that are constituents of aureusimines, non-ribo-
somally synthesized, cyclic dipeptides produced by some 
Staphylococcus species. Aureusimines were discovered al-
most simultaneously by the two groups of Fischbach 
[Zimmermann and Fischbach, 2010] and Magarvey [Wy-
att et al., 2010] in S. aureus, and their BGCs were shown 
to be conserved in several staphylococcal species includ-
ing S. aureus, S. epidermidis, S. lugdunensis, and S. capitis 
[Zimmermann and Fischbach, 2010].

The BGC of aureusimine is located on the chromo-
some and consists of genes coding for the 4′-phosphop-
antetheinyl transferase AusB and the single, dimodular 
NRPS protein AusA, whose first A domain has a prefer-
ence for incorporation of Val and the second A domain 
for the aromatic amino acids Tyr or Phe and the aliphat-
ic amino acid Leu [Wyatt et al., 2010; Wilson et al., 2013]. 
Biosynthesis leads to a dipeptide consisting of L-Val and 
either L-Tyr, L-Phe, or L-Leu that is released from the last 
PCP via the C-terminal reductase. The resulting aldehyde 
at L-Tyr/L-Phe/L-Leu subsequently undergoes cycliza-
tion with the amine of the N-terminal L-Val to form an 
intermediate imine that again spontaneously oxidizes to 
the final pyrazinone product, aureusimine A (tyrvalin), 
aureusimine B (phevalin), or leuvalin, respectively 
(Fig.  4b) [Wyatt et al., 2010; Zimmermann and Fisch-
bach, 2010].

The biological roles of aureusimines have been inves-
tigated by several groups, which initially thought that 
these compounds are involved in virulence factor regula-
tion, which, however, was later attributed to a mutation 
in the saeS gene, a known regulator of virulence factors 

[Sun et al., 2010; Wyatt et al., 2010]. Nevertheless, au-
reusimines may play a role in S. aureus virulence. The 
group of Fraunholz [Blättner et al., 2016] has shown that 
aureusimines are involved in PSM-mediated phagosomal 
escape of internalized S. aureus in a currently unknown 
way and therefore contribute to an important survival 
strategy. More recently, a study based on the investigation 
of NRPS BGCs of the human gut microbiome suggested 
that peptide aldehydes, such as the aureusimine B alde-
hyde, are also potent inhibitors of cathepsins, a cysteine 
protease family involved in Toll-like receptor 9 activation 
in macrophages and dendritic cells and in antigen pro-
cessing and presentation [Gulick, 2017; Guo et al., 2017]. 
Interestingly, the linear dipeptide aldehyde seems to be 
the bioactive form rather than the cyclic pyrazinone pep-
tide. The gut represents an anaerobic environment, where 
the linear dipeptide and the cyclic imine exist in equilib-
rium [Guo et al., 2017]. Only in the presence of oxygen, 
the irreversible conversion from the cyclic imine to the 
pyrazinone occurs, suggesting that the pyrazinone vari-
ant may be the unfavorable form of aureusimines. If au-
reusimines are also inhibitors of host cysteine proteases 
and whether this potential activity contributes to the pre-
vention of PSM degradation or of antigen processing re-
mains to be explored.

Polycarboxylate Siderophores

(Poly-)carboxylates are one of the four known classes 
of siderophores, low-molecular-weight molecules with 
ferric iron-chelating properties. They were classified 
based on the chemical moieties with which they coordi-
nate Fe(III), as described in more detail elsewhere [Kram-
er et al., 2020]. Siderophores are produced by bacteria un-
der iron-limited conditions to secure proliferation by 
scavenging iron ions from the environment. In staphylo-
cocci, staphyloferrin A and B have been documented, 
which belong to the (poly)carboxylate class of sidero-
phores (Fig. 5a) [Konetschny-Rapp et al., 1990; Drechsel 
et al., 1993]. While many siderophores are produced by 
NRPS systems, staphyloferrin A and B are produced via 
NRPS-independent siderophore (NIS) synthetases.

NIS enzymes catalyze the condensation of citric acid 
or derivatives with amines or alcohols, and are character-
ized by a conserved N-terminal iron uptake chelate (Iuc) 
domain and a C-terminal domain associated with iron 
transport or metabolism [Carroll and Moore, 2018].

Only two and three NIS enzymes are required for syn-
thesis of staphyloferrin A and B, respectively [Oves-Cos-



Staphylococcus Secondary Metabolites 211Microb Physiol 2021;31:198–216
DOI: 10.1159/000517082

tales et al., 2009; Carroll and Moore, 2018]. These enzymes 
are encoded by the genes sfaB/sfaD for staphyloferrin A 
[Beasley et al., 2009; Cotton et al., 2009] and sbnE/sbnC/sbnF 
for staphyloferrin B [Dale et al., 2004; Cheung et al., 2009], 
which are found adjacent to genes coding for proteins in-
volved in siderophore export and uptake. While the gene 
locus for staphyloferrin B seems to be limited to only a few 
staphylococcal species such as S. aureus, S. pseudinterme-
dius, or S. hyicus, the genes of staphyloferrin A seem to be 
present in almost all staphylococcal species. Only some 
species such as S. lugdunensis lack of sfaA and sfaD, sug-
gesting that these species do not produce their own sid-
erophores. Nevertheless, S. lugdunensis encodes the up-
take systems for both, staphyloferrin A and staphyloferrin 
B allowing to sequester siderophores from other microbi-
ome member species [Brozyna et al., 2014].

Staphyloferrin A is composed of two citric acid moi-
eties that are linked to a D-ornithine [Konetschny-Rapp 
et al., 1990] (Fig. 5 a). The biosynthesis of staphyloferrin 
A can be divided into two steps and is initiated by SfaD 
that connects a citrate with a D-ornithine to generate a 
citryl-D-ornithine intermediate in an ATP and Mg2+-de-
pendent manner. In the second step, SfaB adds another 

citrate to the intermediate, resulting in the formation of 
staphyloferrin A.

Staphyloferrin B consists of L-2,3-diaminopropionic 
acid (L-Dap), citrate, 1,2-diaminoethane, and 
α-ketoglutarate and is synthesized by the SbnCEF NIS 
and the PLP-decarboxylase SbnH [Drechsel et al., 1993; 
Cheung et al., 2009]. Here, SbnE connects a citrate with 
L-Dap to form a citryl-diaminopropionic acid intermedi-
ate, which is decarboxylated by SbnH to a citryl-diami-
nethane. SbnF then adds another L-Dap to the intermedi-
ate and SbnC completes staphyloferrin B biosynthesis by 
adding α-ketoglutarate to the decarboxylated Dap residue 
[Cheung et al., 2009; Carroll and Moore, 2018].

Opines (Metallophore)

Opines are nitrogenous compounds with diverse bio-
logical roles that consist of a variety of α-keto acid and 
amino acid substrates. The synthesis of opines is usually 
mediated by opine dehydrogenases that catalyze the con-
densation of the amino group of an amino acid with an 
α-keto acid and a subsequent NAD(P)H dependent re-

Staphyloferrin A Staphyloferrin B

α-NH2 opineStaphylopine

Carboxylatea

b

Fig. 5. Metallophores produced by staphylococci. a Chemical structures of the two siderophores staphyloferrin 
A and B. Carboxylates are depicted and indicated in red. b Chemical structure of staphylopine. The opine scaf-
fold is depicted and indicated in blue.



Torres Salazar/Heilbronner/Peschel/
Krismer

Microb Physiol 2021;31:198–216212
DOI: 10.1159/000517082

duction [McFarlane et al., 2018]. Recently, a novel opine 
compound produced by S. aureus has been identified that 
was termed staphylopine (Fig. 5b) [Ghssein et al., 2016].

Staphylopine is a broad-spectrum metallophore with a 
nicotianamine-like entity responsible for its metal-che-
lating properties, showing binding affinities for nickel, 
copper, cobalt, iron, and zinc. It is produced under zinc-
limited conditions and has been shown to play an impor-
tant role in zinc acquisition, virulence, and fitness of S. 
aureus [Ding et al., 2012; Remy et al., 2013; Ghssein et al., 
2016; Grim et al., 2017].

The BGC of staphylopine consists of the three genes, 
cntKLM, that are encoded adjacent to genes involved in 
staphylopine export, cntE, and recognition and import, 
cntABCDF [Ghssein et al., 2016]. The staphylopine bio-
synthesis is initiated by the His racemase cntK that pro-
vides a D-His, which is connected by the nicotianamine 
synthase CntL to SAM, generating a D-His-nicotianamine 
(D-HisNA) intermediate. In the last step, the opine dehy-
drogenase CtnM adds a pyruvate to D-HisNA, followed 
by a NADPH-dependent reduction, resulting in the ma-
ture staphylopine molecule [Ghssein et al., 2016; McFar-
lane et al., 2018].

Conclusion

Bacterial communities of the human microbiome 
comprise a multitude of bacterial species and we are only 
just starting to decipher the mechanisms shaping their 
compositions. In this context, aside from host-bacteria 
interactions, specific secondary metabolites may play an 
important role in bacteria-bacteria interactions [Otto, 
2020]. On many occasions, staphylococci have demon-
strated to be a rich source of versatile bioactive com-
pounds, including metallophores, bacteriocins, and sig-
naling-interfering AIPs, which are produced by a large 
repertoire of biosynthetic pathways.

However, whereas a lot of these compounds have been 
thoroughly studied with respect to their bioactive proper-
ties in vitro, their ecological relevance for bacterial inter-
actions in vivo remains widely elusive. This fact is due to 
at least two main reasons. Firstly, research on staphylo-
cocci has focused largely on infections, caused by S. au-
reus and only a few other species [Lowy, 1998], while the 
commensal lifestyle has been addressed only by a few 
studies. Secondly, interactions within bacterial commu-
nities are complex, require sophisticated model systems, 
and are difficult to study with standard laboratory meth-
odology. Members of bacterial communities on human 

body surfaces have to deal with cocktails of different sec-
ondary metabolites produced by many different host and 
bacterial cells. Therefore, it is often challenging to pin-
point the impact of individual compounds or their pro-
ducers on community composition and dynamic. New 
model systems simulating complex bacterial communi-
ties under realistic conditions that allow the dynamic 
monitoring of fitness traits of individual bacterial clones 
need to be developed.

Despite these difficulties, the interest in the field of 
functional microbiome science is continuously increasing 
owing to recent advances in techniques, such as next-gen-
eration sequencing, metagenome analyses, metabolomics, 
and suitable in vivo models [Otto, 2020]. A better under-
standing of the biological roles of specific secondary me-
tabolites in bacterial interactions, however, requires fur-
ther advances in these techniques. Such developments will 
not only facilitate to elucidate the role of novel com-
pounds, but also to examine compounds that have been 
identified in the past but have not been investigated in 
terms of their significance for bacterial interactions yet.

Furthermore, staphylococci and their potent bioactive 
compounds may become of interest for translational 
medicine. Bacteriocins, in particular, seem to be preva-
lent among staphylococci, and recent studies have shown 
that staphylococci are a reservoir of new bacteriocins of 
different and often novel substance classes [Janek et al., 
2016; Nakatsuji et al., 2017; Angelopoulou et al., 2020]. 
Thus, either isolated bacteriocins or the bacteriocin pro-
ducer strains may become useful alternatives or comple-
mentary agents for clinically used antibiotics for infection 
treatment or as probiotics for pathogen decolonization 
strategies. In addition, QS-inhibitory AIP variants may 
become attractive anti-virulence drugs, since they inter-
fere with the staphylococcal agr systems that regulate vir-
ulence-associated genes and, hence, may prevent infec-
tions or attenuate their severity.
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