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Significance of the Study

•	 Metabolomics encompasses the systematic identification and quantification of all metabolic products 
from the human body.

•	 This field could provide clinicians with novel sets of diagnostic biomarkers for disease states, in addi-
tion to quantifying treatment response to medications at an individualized level.

•	 Outstanding issues preventing widespread clinical use are scalability of data interpretation, standard-
ization of sample handling practice, and e-infrastructure.

DOI: 10.1159/000513545
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Abstract
Metabolomics encompasses the systematic identification 
and quantification of all metabolic products in the human 
body. This field could provide clinicians with novel sets of 

diagnostic biomarkers for disease states in addition to quan-
tifying treatment response to medications at an individual-
ized level. This literature review aims to highlight the tech-
nology underpinning metabolic profiling, identify potential 
applications of metabolomics in clinical practice, and discuss 
the translational challenges that the field faces. We searched 
PubMed, MEDLINE, and EMBASE for primary and secondary 
research articles regarding clinical applications of metabolo-
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mics. Metabolic profiling can be performed using mass spec-
trometry and nuclear magnetic resonance-based techniques 
using a variety of biological samples. This is carried out in 
vivo or in vitro following careful sample collection, prepara-
tion, and analysis. The potential clinical applications consti-
tute disruptive innovations in their respective specialities, 
particularly oncology and metabolic medicine. Outstanding 
issues currently preventing widespread clinical use are scal-
ability of data interpretation, standardization of sample han-
dling practice, and e-infrastructure. Routine utilization of 
metabolomics at a patient and population level will consti-
tute an integral part of future healthcare provision.

© 2020 The Author(s).
Published by S. Karger AG, Basel

Introduction

In recent years, the novel field of metabolomics (syn-
onymous with “metabonomics” and “metabolic profil-
ing”), which included in the “omics” subclass of biologi-
cal studies, has gained increasing attention from both 
clinical and academic health circles. Metabolomics refers 
to the “systematic identification and quantification of the 
small molecule metabolic products (the metabolome, 
which consists of 40,000 metabolites in humans [1]) of a 
biological system at a specific point in time” [2]. It has 
emerged as a fertile area for research and development 
given its inherently vast translational promise. The fun-
damental paradigm underpinning clinical metabolic phe-
notyping is that any localized metabolic, physical, or his-
tological perturbation in the human body will result in 
global changes characterized in biological samples. These 
changes are statistically connected to both the disease 
process and complex gene-environment interactions. 
Through this, predictions regarding disease risk and 
treatment responses may be estimated at an individual 
level [2]. These benefits have tangible health and socio-
economic benefits as effective provision of care improves 
patient safety and increases the cost-effectiveness of de-
livered therapies [3].

Further to the fundamental tenants of the field, this 
technology embraces several concepts popular within 
contemporary healthcare. Metabolomics feeds into the 
relatively novel concept of systems medicine [4–6], 
which supports the importance of viewing each patient 
as a distinct combination of biochemical, physiological, 
and environmental interactions. In turn, this holistic ap-
preciation facilitates the paradigm shift in care provision 
towards a “P4” approach, consisting of prediction, pre-
vention, personalization, and participation [7]. As such, 

metabolomics is a foundation exemplar of precision 
medicine [8] and fulfils the needs of offering the power-
ful strengths of mathematics and analytics to healthcare 
(iatromathematics) [9]. However, despite the vast trans-
lational potential of this field, there is relatively scarce 
knowledge of this field outside research circles, particu-
larly in comparison to other “omic” based ventures as 
such the Human Genome Project [10]. As a consequence, 
the uptake of this potentially disruptive innovation may 
be hamstrung by a lack of clinician awareness of its pend-
ing utility within clinical practice. This gap in collective 
knowledge may subsequently result in substandard care 
with respect to both individual and population health as 
a whole. This review aims to highlight the technology 
underpinning metabolic profiling, identify potential ap-
plications of metabolomics in clinical practice, and dis-
cuss the translational challenges that metabolomics fac-
es.

Technology

The process of attaining relevant metabolomic data re-
quires 3 steps [11]: 
1.	 Sample collection
2.	 Sample preparation
3.	 Sample analysis
4.	 Sample collection

Metabolic profiling can be performed on both in vivo 
and in vitro samples [12]. These include a range of sam-
ples consisting of cells, fluids, or tissues. In practice, bio-
fluids are amongst the easiest to acquire and work with. 
Such samples include serum, plasma, urine, saliva, or fae-
cal content. All samples require precise handling as meta-
bolic pathways are highly susceptible to exogenous envi-
ronmental factors, which can lead to inaccurate results 
upon analysis. Therefore, for example, maintaining a low 
temperature as well as ensuring consistent sample extrac-
tion is vital for both modalities.

Sample Preparation

The compounds within a given sample are usually of a 
complex nature. These sample constituents may be sepa-
rated to allow for siphoning of pertinent analytes from 
others that cannot be resolved by the detector [13]. The 
preparation of the sample is highly dependent on the de-
tection modality that is subsequently used. Of the 2 prin-
ciples modalities, nuclear magnetic resonance (NMR) 
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spectroscopy and mass spectroscopy (MS) [14], NMR 
techniques often omit a separation phase.

Sample pretreatment depends on whether a targeted 
or non-targeted study is being performed [15]. Pertinent-
ly for non-targeted studies, minimal pretreatment is de-
sired so that metabolites are not lost. There are a number 
of pretreatment separation modalities used with MS that 
hold distinct advantages in characterizing particular as-
pects of a metabolome.

The principle separation modalities used with MS in-
clude the following: gas chromatography allows for gas 
phase separation of molecules [16]. It is most useful for 
analysis of trace amounts of volatile compounds. High-
performance liquid chromatography [17] uses chromato-
graphic columns, which are filled with microparticles, to 
allow for high pressure elution of the sample, allowing for 
increased chromatographic separation. It is the most 
commonly used analytical technique given its versatility 
and ability to retain a number of compounds.

Capillary electrophoresis [18] allows for the electroki-
netic separation of the sample. It is another versatile tech-
nique which enables separation of a wide range of ana-
lytes ranging from small inorganic ions to larger proteins.

It should be noted that there are many further pre-
analytical considerations of vital importance, which in-
clude the collection of samples from either fasting or fed 
states, the importance of circadian rhythms, the consid-
eration of which additives are added to collection tubes as 
well as the potential for sample haemolysis. These are out-
side the scope of this review but are covered in detail in 
other reports [19, 20].

Detection Methods

As mentioned earlier, metabolic profiling is based 
upon 2 principle analytical modalities: NMR spectrosco-
py and MS. Both are able to simultaneously identify and 
quantify information on a wide range of molecules. More-
over, both require only a small amount of sample.

NMR spectroscopy relies upon the ability of spin ac-
tive nuclei to absorb and re-emit pulsed electromagnetic 
radiation when placed within a magnetic field [21, 22]. 
The frequency pattern, a signature which is a conse-
quence of the interaction of the nuclei with the electro-
magnetic field, provides information regarding the mo-
lecular structure, motion, and chemical environment. In 
biological samples, hydrogen is the most commonly tar-
geted nucleus, due to its abundance in biological samples. 
Other atoms such as carbon and phosphorus may also be 

targeted. NMR is perceived to be a highly reproducible 
and rapid platform which crucially offers a non-destruc-
tive method of sample analysis, which may be either fluid 
or solid. It offers exact quantification of a wide range of 
chemical structures and remains the only tool that can 
provide atom-centred information. Practically, it is rela-
tively low cost per sample, requires minimal sample prep-
aration, and offers prompt throughput (15 min per sam-
ple). Moreover, samples subjected to NMR analysis may 
be subsequently further analysed by MS. Deficiencies of 
this technology are that it is insensitive, requires high user 
skills, and that there is an initial high start-up cost in or-
der to acquire the instruments.

In comparison, mass spectrometry is a destructive an-
alytical process which relies upon the formation of gas 
phase ions, which are subsequently separated by their 
mass/charge ratio. The ions then hit a detector, which ac-
counts for the number of ions for each mass/charge ratio 
[23]. This is subsequently analysed and compared against 
available mass spectral databases in order to predict the 
molecular identity of the constituents. MS is a highly sen-
sitive method of sample analysis, which can be used for 
targeted and non-targeted analyses. However, the sensi-
tivity and accuracy of the detection are highly dependent 
upon the experimental conditions and the instrument 
settings.

Sample Analysis

There is a need for rapid and accurate statistical tools 
that can process the complexity and volume of the vast 
amount of data that is generated. Different metabolomic 
features may be used as the input for data analysis. These 
include spectral peak areas, metabolite concentrations, 
and spectral bin areas [24]. A number of univariate and 
multivariate statistical approaches can be performed, 
which also focus upon data pre- and post-processing 
tasks such as signal extraction/peak detection, noise re-
duction, correction of run order drifts or batches, and 
peak fitting. As a class, they are known as chemometric 
methods [25].

Univariate methods analyse the metabolomic features 
independently [26]. They are often easier to interpret as 
they employ more commonly used and understood sta-
tistical approaches. However, this analysis does not con-
sider the presence of interactions between different meta-
bolic features. Confounding variables such as gender, 
diet, or BMI are not accounted for. This leads to an in-
creased probability of incorrect results. The choice of sta-
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tistical analysis is particularly important given the num-
ber of features that are simultaneously analysed, thus in-
creasing the risk of a false-positive statistical result, known 
as the multiple testing problem. However, it can also be 
argued that situations which harbour significant con-
founders are best solved by careful cohort stratification 
from the outset.

In contrast to univariate analysis, multivariate analysis 
considers all the imputed metabolomic features and at-
tempts to identify relationships between them [27]. These 
methods can be classified into 2 groups, supervised and 
unsupervised methods. Unsupervised methods are able 
to effectively detect data patterns with biological vari-
ables, with the most common unsupervised method be-
ing principal component analysis. Supervised methods 
identify patterns within variables of interest while down-
weighting other sources of variance. The most common 
supervised statistical method is partial least squares re-
gression analysis.

Clinical Applications

Although there are admittedly limited clinical applica-
tions for metabolomics currently, there are a burgeoning 
number of potential applications that could disrupt clini-
cal practice in the near future. As noted, the conceptual 
appeal of the field is to provide biomarkers, which may be 
either predictive, diagnostic, or prognostic.

Oncology
Metabolomics offers a particularly broad set of onco-

logical applications, particularly with respect to provid-
ing serum [28] or imaging-based biomarkers of cancer. 
Metabolic profiling will assist in the diagnosis of several 
tumour types. This has been prominently noted with 
breast cancer in particular. There have been over 30 en-
dogenous metabolites which have been noted in breast 
cancer specimens, including tCHo levels (resulting from 
increased phosphocholine), low glycerophosphocho-
line, and low glucose [29]. Moreover, Bathen et al. [30] 
stated that a malignant phenotype can be reliably de-
tected against normal tissue with sensitivity and sensi-
bility between 83 and 100% for tumour size, lymph node 
status, hormone status, and histology. Metabolic signa-
tures have also been mapped for ovarian cancer [31], 
lung cancer [32], endometrial cancer [33], and colorec-
tal cancer.

There has also been particular focus upon harnessing 
metabolomics to guide oncological surgery. Inglese et al. 

[34] highlighted the potential of combining 3D mass 
spectrometry imaging with unsupervised neural net-
work-based techniques to precisely determine the extent 
of malignant tissue clusters pre-operatively. Intra-opera-
tively, rapid ionization mass spectrometry has been suc-
cessfully coupled to electrosurgical tools to allow for near 
real-time characterization of margins during cautery-led 
tumour dissection [35, 36]. This device, known as the “in-
telligent knife” (iKnife) has been tested in vivo and has 
garnered promising post-operative histopathological 
support [37]. However, current limitations with respect 
to the iKnife include the costly start-up costs as well as the 
need for robust, histologically specific mass spectral li-
braries.

In addition to diagnosis, metabolic profiling can be 
used in prognosticating clinical outcomes. NMR-based 
techniques have predicted which samples of human glio-
ma cell cultures would be drug sensitive and drug resis-
tant prior to treatment with either chemotherapy or hor-
monal therapy. Glunde et al. [38] demonstrated that a 
decrease in tCHO signal equates to a promising response 
to chemotherapy and may be an early marker of thera-
peutic effect, which is detectable prior to changes in con-
ventional imaging in breast, brain, or prostate cancer. 
Moreover, micrometastases were predicted in a study of 
patients with breast cancer [39], who were noted to have 
higher levels of plasma glucose proline, lysine, phenylala-
nine, N-acetylcysteine, and lower lipid levels. Further-
more, Tenori et al. [40] demonstrated that pretreatment 
serum samples for patients with metastatic breast cancer 
are predictive for overall survival, time to progression and 
treatment toxicity, according to serum phenylalanine, 
glutamate, and glucose levels respectively.

Endocrinology
Quantifying the individual risk of type 2 diabetes has 

also been a key target for the field of metabolomics [41]. 
Wang et al. [42] suggest that the metabolite 2-aminoad-
ipic acid (2-AAA) is a marker of diabetes risk and a po-
tential modulator of glucose homeostasis in humans. 
They performed a nested case-control study over 12 years 
on 188 individuals who had developed diabetes and 188 
propensity-matched normoglycemic controls identified 
from the Framingham Heart Study. It was demonstrated 
that those with 2-AAA concentrations in the top quartile 
had a >4-fold risk of developing diabetes. It was observed 
to be elevated up to 12 years before the onset of a clini-
cally appreciable disease state. Moreover, it was noted 
that 2-AAA concentrated were not well correlated with 
other metabolite biomarkers of diabetes, which suggests 
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that 2-AAA is from a distinct pathophysiological path-
way. Furthermore, 2-AAA treatment enhanced insulin 
secretion from a pancreatic β cell line as well as from mu-
rine and human islets. However, no human trials with 
2-AAA analogues have been conducted.

Rheumatology
There appears to be a use for metabolomics in the pro-

duction of diagnostic biomarkers of both inflammatory 
and non-inflammatory rheumatological conditions [43]. 
Ouyang et al. [44] demonstrated that serum from patients 
with systemic lupus erythematosus had significant reduc-
tions in valine, tyrosine, phenylalanine, lysine, isoleucine, 
histidine, glutamine, and alanine amongst others in com-
parison to patients with rheumatoid arthritis and healthy 
controls. Kim et al. [45] have shown that over 20 metabo-
lites are potential biomarkers to discriminate rheumatoid 
arthritis from other conditions such as ankylosing spon-
dylitis, Behçet’s disease, and gout. In addition to these 
inflammatory conditions, Adams et al. [46] demonstrat-
ed that collagen degradation products contribute to an 
osteoarthritis (OA) signature in blood with identification 
possible between healthy controls, early OA, and end-
stage OA. However, the authors did note that these dif-
ferences may be secondary to age-related chondrocyte 
changes.

Neurology
In neurological disorders, the use of metabolomics is 

rapidly increasing [47]. In the field of Alzheimer’s dis-
ease, identified metabolites are consistently associated 
with cognition, dementia, and particular lifestyle fac-
tors, which suggests that there may be novel targets for 
the prevention of cognitive decline and dementia [48]. 
In Parkinson’s disease, metabolomics has deepened the 
knowledge about alterations in biochemical pathways 
involved in Parkinson’s disease pathogenesis [49]. Me-
tabolomics enables neurodegenerative disease stratifi-
cation [50] as well as a diagnosis of disease severity in 
multiple sclerosis [51]. Another promising area is the 
use of metabolomics in the early diagnosis of traumatic 
brain injury (TBI) as well as the patient specific prog-
nosis. Recently, a metabolic signature was identified in 
the serum of patients after TBI that may be indicative 
of a disrupted blood-brain barrier, offering a new ave-
nue towards more precise TBI patient stratification in 
clinical practice [52].

Respirology
NMR-based metabolomic assays of urine and plasma 

have demonstrated 3 particular urinary metabolites 
which are correlated with lung function, in cohorts of pa-
tients with and without chronic obstructive pulmonary 
disease [53]. Of the 3 metabolites, trigonelline was noted 
to have the strongest correlation with baseline pulmonary 
function. Increased hippurate and formate were associ-
ated with better lung function. It has also been deter-
mined that children with asthma and allergic rhinitis may 
be differentiated from age-matched controls based upon 
the alkane and aldehyde content of their breath conden-
sate [54].

Gastroenterology
Dawiskiba et al. [55] undertook a profiling study 

with inflammatory bowel disease (IBD) and concluded 
that there is no clear separation between ulcerative coli-
tis and Crohn’s disease; however, they did note evi-
dence of characteristic signatures between active IBD 
and IBD in remission. These results were contrasted by 
Williams et al. [56] who stated that it is possible to dis-
tinguish Crohn’s disease from ulcerative colitis in a 
similarly sized age- and gender-matched cohort, based 
upon choline, lipoprotein, and N-acetylated glycopro-
tein levels. Between IBD and healthy individuals, there 
is evidence of increased phenylalanine in the serum 
samples of patients with IBD, whereas higher glycine 
and lower acetoacetate levels were observed in urinary 
samples [57]. With respect to viral hepatitis, urinary 
metabolomics have shown 11 discriminant metabolites 
distinguishing patients with hepatitis B from those with 
cirrhosis or liver cancer [58].

Cardiovascular Disease
Metabolic profiling of atherosclerosis, the predomi-

nant underlying process of cardiovascular disease, has 
been a longstanding population health priority [59]. 
Wurtz et al. [60] demonstrated that serum docosahexae-
noic acid, glutamine, and tyrosine may be potential pre-
dictors for atherosclerosis development. Brindle et al. 
[61] published a seminal NMR-based study which noted 
promising separation between blood samples between 
patients who have coronary heart disease against healthy 
participants. Sabatine et al. [62] demonstrated that there 
is an increase in lactic acid and metabolites involved in 
AMP-mediated skeletal muscle catabolism in both 
healthy patients as well as those with inducible ischaemia. 
However, the rise in the citric acid cycle products was 
seen only in patients with inducible ischaemia. Further 
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metabolic separation was noted by Vallejo et al. [63] in 
patients who were diagnosed with acute coronary syn-
drome against healthy controls both acutely and after 6 
months. With respect to heart failure, Dunn et al. [64] 
demonstrated that pseudouridine, 2-oxoglutarate, 2-hy-
droxy 2-methylpropanoic acid, erythritol, and 2,4,6-tri-
hydroxypyrimidine were noted as potential biomarkers 
when discriminating between patients with heart failure 
and healthy individuals.

Paediatrics
Given the relative simplicity, safety, and non-invasive-

ness of the approach, the application of metabolomic 
analyses is particularly suitable to the field of paediatrics. 
There is particular use in the diagnosis inborn errors of 
metabolism [65]. Metabolic profiling has shown promise 
in detecting putative gain-of-function of prevalent muta-
tions in genes encoding metabolic enzymes such as isoci-
trate dehydrogenase (IDH). Metabolomics approaches 
have shown that mutated IDH1 and IDH2 proteins ca-
talyse an additional reaction resulting in the formation of 
2-hydroxyglutarate (2-HG), which is a metabolite absent 
when IDH is not mutated. This “new” metabolite inhibits 
α-ketoglutarate-dependent dioxygenases that play a key 
role in regulating the epigenetic state of cells. On the basis 
of these findings, phase I trials with selective inhibitors of 
mutated IDHs have been performed in patients with ad-
vanced haematologic malignancies, which have demon-
strated an objective response rate ranging from 31 to 40% 
with durable responses (>1 year). Furthermore, IDH in-
hibitors have demonstrated early signs of activity in solid 
tumours with IDH mutations, including cholangiocarci-
nomas and low-grade gliomas [66].

Translational Challenges

Successful translation requires widespread under-
standing of the underpinning science, acceptance of stan-
dard operating procedures, training in the interpretation 
of results, and presence of reliable metabolomic data li-
braries. As such, the transition from a research tool to a 
viable clinical tool requires further co-ordination across 
a variety of disciplines on a local level. Currently, issues 
are related to equipment design, experimental validation, 
standardization of methods, and interpretability in a reli-
able and reproducible fashion.

Translation hinges upon several hurdles. The first is 
the standardization of experimental procedures and 
equipment, particularly through the adoption of standard 

operating procedures [22]. Data quality and reproduc-
ibility requires standardization. In keeping with this, the 
NIHR-MRC National Phenome Centre has prioritized 
the standardization of sample collection and analysis 
[67]. Targeted metabolomic profiling relies on commer-
cial kits which offer highly standardized measurements 
on a restricted set of known metabolites. While coverage 
of the metabolic space is limited, the reduced cost means 
large cohorts can be characterized. This can lead to valu-
able insights into disease aetiology. Moreover, owing to 
their affordability and their highly standardized protocol, 
these kit-based approaches have gained popularity.

Two such suppliers, Biocrates and Metabolon, offer 
quantification of a few hundred metabolites in a fast and 
semi-quantitative manner. In so-called “ring trials,” Sis-
kos et al. [68] have demonstrated a median inter-labo-
ratory coefficient of variation of 7.6% when using differ-
ent instrumentation but a common protocol. Inter-lab-
oratory reproducibility of targeted platforms [68], which 
underlines the potential of the Biocrates platform to 
monitor human serum in plasma-targeted metabolite 
profiling. The study also provided a better understand-
ing of the platform error model. These are particularly 
useful for data scientists carrying out meta-analysis and 
working towards integrating datasets. Several groups 
have elected to apply this molecular phenotyping tech-
nique to large cohorts. A pertinent example is the KORA 
cohort, which has been extensively used by Jourdan et 
al. [69] where 1,614 subjects from KORA S4 (aged 54–75 
years at the time of examination) and 3,061 subjects in 
KORA F4 (aged 31–82 years) have had their serum me-
tabolite profile evaluated and correlated to the body fat-
free mass index (FFMI), with a particular focus on 
branched-chain amino acids. Lending weight to previ-
ous findings, recently, nearly 10,000 patients have been 
profiled to test for a link between diabetes type-2 onset 
and high levels of circulating branched-chain amino ac-
ids [70]. Dutch researchers identified genetic contribu-
tors to serum metabolite variation based on Biocrates 
profiling of nearly 7,500 patients [71]. These studies are 
testament of how metabolite profiling can be used effi-
ciently to support the understanding of disease and how 
the technique can inform clinical decision in routine 
practice.

The second major hurdle is in data analysis and inter-
pretation. As noted, the 2 major analytical approaches, 
NMR and MS, have significantly different requirements. 
Firstly, for the purpose of data collection, there are sample 
size and time issues. Data processing is also troublesome 
as 1 must account for correction of experimental arte-
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facts, equipment differences, batch correction, and nor-
malization. This leads to major differences in the stan-
dardization of data for analysis. NMR is intrinsically 
more reproducible given standard conditions, partly be-
cause the sample does not come into physical contact 
with the detector. MS, despite higher sensitivity, suffers 
from poorer reproducibility due to changes in instrument 
response over time and across operators or laboratories 
[72, 73]. As such, significant efforts are required in mass 
spectrometry to obtain reproducible data necessary for 
translation to the clinic.

The third step is the interpretation of data, which re-
quires advanced statistical approaches, such as machine 
learning. A key stumbling block is the expertise required 
to fit and interpret these models robustly on a local lev-
el if this technology should permeate into routine clini-
cal work. There have been major strides in recent years 
in both understanding the requirements for data inter-
pretation in this area (eliminating noise, normalization, 
and non-linear approaches to data analysis) and in the 
development of new algorithms for metabolite identifi-
cation [74] and prediction, predominantly through ma-
chine learning techniques [75, 76]. In some cases, such 
as the aforementioned iKnife, this process has been re-
duced to a binary decision: tumour or not tumour. How-
ever, other applications (e.g., analysis of biofluids, such 
as urine) will probably require standardized application 
of computational pipelines that result in reproducible 
and interpretable outputs. This is one of the major aims 
of the EU-2020 program, PhenoMeNal [77], which is a 
European e-infrastructure to provide interoperable 
tools and workflows for modern and large-scale clinical 
metabolomics. Aside to the incorporation of machine 
learning, achieving biologically consistent annotation in 
untargeted metabolomics remains a major challenge 
within the field metabolomics. The current gold stan-
dard for metabolite identification is centred around 
matching detected features with an authenticated stan-
dard, which has been attained using the same methodol-
ogy and the same equipment. This rigidity understand-
ably leads to several practical challenges when attempt-
ing to apply this approach to large datasets. Widely used 
approaches to overcome this is to use spectral libraries, 
which are often incomplete, or alternative computation-
al methods, which can match multiple identities with a 
single feature [78]. This is perceived to be another major 
hurdle in the widespread dissemination of the technol-
ogy currently.

The fourth hurdle is centred around the informatic 
and e-infrastructural support that is required. Many of 

the human metabolomics data are, as of yet, incomplete 
and are housed among fractured sets of databases. Initia-
tives such as PhenoMeNal aim to provide clinical re-
searchers with well-tested and reproducible workflows to 
perform standard analysis of clinical samples. This in-
cludes the computational clustering of metabolomics 
data for patient stratification as well as workflows for bio-
chemical pathway enrichments. In addition, PhenoMe-
Nal also provides easily accessible computational infra-
structures that can sustain large-scale analysis with suf-
ficient compute and storage resources.

The translation of new metabolomics knowledge into 
health-related practices will require the development of 
an ethical framework that ensures compliance and en-
forcement of patient rights. Initiatives such as Tryggve 
(https://neic.no/tryggve), PhenoMeNal (http://phenom-
enal-h2020.eu/home/), and Elixir (https://www.elixir-
europe.org/) are paving the way towards state-of-the art-
scalable cross-border e-infrastructures for efficient, safe, 
and e-compliant storage of sensitive personal data meta-
bolic phenotyping data. These initiatives are also strong-
ly contributing to establish educational competences to 
ensure Findable, Accessible, Interoperable, Reusable 
(FAIR) Data Principles accomplishment in the analysis, 
sharing, and reuse of sensitive personal data. If governed 
appropriately, the ultimate direction of these frame-
works will allow next-generation big data analysis and 
artificial intelligence capabilities to combine and coordi-
nate the improved analysis of these metabolomics datas-
ets.

Conclusions

Metabolomic profiling offers a deeper understanding 
of metabolic and physiological function. Although it is 
argued by some that metabolomics has been a vital part 
of medicine for some time now as well-established labo-
ratory biochemical techniques are essentially targeted 
quantitative metabolomics. However, it is the novel ap-
proach to untargeted analysis using emerging quantita-
tive methods that is unique. Moreover, metabolomics of-
fers a paradigm shift in our perception of disease states 
as we move away from looking for single molecule dis-
ease biomarkers and replace this with a search for more 
complex and dynamic patterns of metabolite concentra-
tions. There is great potential for metabolomics plat-
forms and technology to be harnessed into routine clini-
cal practice to support clinical decisions and to empower 
patients through a clearer understanding of underlying 
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disease dynamics. While the routine utilization of meta-
bolic phenotyping at a patient and population level re-
quires formalized evidence of effectiveness and safety 
through large-scale randomized or pragmatic clinical tri-
als, the current wave of evidence is advocating the mas-
sive benefits of this approach. Ultimately, metabolomics 
can offer a tangible route through which to translate the 
depth of innovation in addressing human health and dis-
ease through the aid of big data analytics and the en-
hanced translation of precision mathematics to precision 
medicine. By doing so, such a multifaceted and wide-
ranging technology assessing metabolism can fulfil the 
200-year-old legacy of René Laennec’s original diagnos-
tic device to render metabolomics the stethoscope of the 
21st century.
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