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Long-term water conservation is fostered by smart meter-based
feedback and digital user engagement
Andrea Cominola 1,2✉, Matteo Giuliani 3, Andrea Castelletti 3✉, Piero Fraternali3, Sergio Luis Herrera Gonzalez3,
Joan Carles Guardiola Herrero4, Jasminko Novak5,6 and Andrea Emilio Rizzoli 7

Consumption-based feedback has been demonstrated to encourage water conservation behaviors. Smart meters and digital
solutions can support customized feedback and reinforce behavioral change. Yet, most of the studies documenting water
conservation effects induced by feedback and smart meter data visualization evaluate them in short-term experimental trials only.
Here we show that water conservation behaviors promoted by smart meter-based consumption feedback and digital user
engagement interventions might persist in the long term. We developed an analysis of 334 households in Valencia, Spain. We find
that approximately 47% of the households engaged in our water conservation program achieved a long-term 8% reduction of
volumetric water consumption, compared with pre-treatment observations. Water conservation behaviors persisted more than two
years after the beginning of the program, especially for the households receiving sub-daily smart meter information. Our results
provide empirical evidence that smart meter-based water consumption feedback and digital user engagement can effectively
promote durable conservation behaviors.
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INTRODUCTION
Changing individual and community water consumption beha-
viors is essential to achieve community-wide and state-wide water
conservation targets and address water security in the near
future1–3. Consumption-based feedback and user engagement are
powerful enablers of behavioral change as they overcome the
drawbacks of mandatory interventions4,5. The implementation
and extent of conservation strategies such as mandatory water
usage restrictions or price-based strategies are limited by ethics,
equity, and acceptance issues, along with the generally low price
elasticity of water demand6–8.
The effectiveness of feedback interventions to promote

conservation behaviors has been extensively documented in the
energy sector9–13. Behavioral programs with randomized con-
trolled trials led to savings ranging from 1% to over 20% also in
the absence of volunteer selection bias and monetary incen-
tives14,15. While there is less evidence on the effectiveness of
similar programs in the water sector, the increased deployment of
smart water meters and the digital transformation of the utility
sector is revealing the potential for the customization of
consumption-based feedback16,17. A growing body of experimen-
tal and observational studies shows that short-term water savings
between 2.5% and 28% can be achieved by consumption-based
feedback in near-real time4. However, the variability of these
empirical results does not support a conclusive assessment of the
effectiveness of consumption-based feedback due to their
differences in research design, context, type of feedback, and
sample size. In addition, understanding how consumption-based
feedback impacts long-term behavior change, before rebound
effects emerge, remains an open question, hindered so far by the
limited time frame of most behavioral studies and smart water
metering trials4,17.

Here, we quantify for the first time the long-term effects of
smart meter-based water consumption feedback and digital user
engagement on residential water consumption. We formulate this
overarching research question: Can smart meter-based feedback
and digital user engagement foster long-term water conservation
efforts in the residential sector?
To address this question, we conducted an observational study

with case-control design and longitudinal measurements on 334
households in Valencia, Spain, by monitoring changes in water
consumption over a three-year observation period. Differently
from previous studies that investigated long-term changes in
residential water and energy consumption in relation to the
evolving socio-hydrologic and policy context18,19, here we
investigate behavior change in relation to water consumption
feedback based on smart meter data that are communicated to
customers via web/mobile media. At the beginning of the
observational study (see “Methods” section), we provided a subset
of the monitored households (treatment group) with access to the
SmartH2O digital user awareness platform20,21 (see “Methods”
section, Supplementary Figs. 1–7, and Supplementary Notes 1).
Anonymized smart meter data of the treatment group gathered at
different time frames during the observational study are
compared with the pre-treatment water consumption data and
with the behavior of a self-selected control group of other
households. The control group had no access to either smart
meter-based consumption feedback or the SmartH2O application
for the whole duration of the longitudinal study.
This investigation on long-term residential water consumption

behavior changes addresses our main research question from a
three-fold angle. First, we inquire whether any water consumption
change emerges from the study population considered as a
whole, at different times in the observational study. To tackle this

1Chair of Smart Water Networks, Technische Universität Berlin, Berlin, Germany. 2Einstein Center Digital Future, Berlin, Germany. 3Department of Electronics, Information and
Bioengineering, Politecnico di Milano, Milano, Italy. 4Global Omnium Idrica, Valencia, Spain. 5IACS-Institute for Applied Computer Science, University of Applied Sciences
Stralsund, Stralsund, Germany. 6European Institute of Participatory Media, Berlin, Germany. 7IDSIA, USI-SUPSI, Lugano, Switzerland. ✉email: andrea.cominola@tu-berlin.de ;
andrea.castelletti@polimi.it

www.nature.com/npjcleanwater

Published in partnership with King Fahd University of Petroleum & Minerals

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41545-021-00119-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41545-021-00119-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41545-021-00119-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41545-021-00119-0&domain=pdf
http://orcid.org/0000-0002-4031-4704
http://orcid.org/0000-0002-4031-4704
http://orcid.org/0000-0002-4031-4704
http://orcid.org/0000-0002-4031-4704
http://orcid.org/0000-0002-4031-4704
http://orcid.org/0000-0002-4780-9347
http://orcid.org/0000-0002-4780-9347
http://orcid.org/0000-0002-4780-9347
http://orcid.org/0000-0002-4780-9347
http://orcid.org/0000-0002-4780-9347
http://orcid.org/0000-0002-7923-1498
http://orcid.org/0000-0002-7923-1498
http://orcid.org/0000-0002-7923-1498
http://orcid.org/0000-0002-7923-1498
http://orcid.org/0000-0002-7923-1498
http://orcid.org/0000-0001-8179-0750
http://orcid.org/0000-0001-8179-0750
http://orcid.org/0000-0001-8179-0750
http://orcid.org/0000-0001-8179-0750
http://orcid.org/0000-0001-8179-0750
https://doi.org/10.1038/s41545-021-00119-0
mailto:andrea.cominola@tu-berlin.de
mailto:andrea.castelletti@polimi.it
www.nature.com/npjcleanwater


question, we assess average water consumption changes across
all households in the two groups during the entire period of the
observational study. Second, we investigate whether heteroge-
neous water consumption and behavior change patterns could be
identified for different subgroups of the study population.
Behavior change patterns of interest include durable/incremental
conservation patterns and rebound effects. We thus run a
segmentation analysis (see “Methods” section) and group the
long-term behavior change patterns of different households in the
treatment group in separate clusters. Finally, we discover which
features of the behavior change program have most likely
influenced the observed behavioral change. We correlate the
identified household segments with the temporal smart meter
sampling frequency and the level of usage of the digital
application (see “Methods” section), to derive conclusions and
draw recommendations for future digitally enabled water
conservation and behavior change interventions.

RESULTS
Long-term behavior change by smart meter-based feedback
and digital user engagement
At the beginning of 2016, we recruited volunteer households in
Valencia to take part in our observational study (see details on the
quantitative variables used in this study, population, study
timeline, and exclusion criteria in the “Methods” section). All
houses were previously equipped with smart water meters by the
local water utility Global Omnium—EMIVASA, providing a pre-
treatment baseline period. From June 2016 to February 2017 we
provided the treatment group with access to the SmartH2O digital
platform20,21, a web and mobile application where they could
visualize smart meter-based information and feedback about their
water consumption and compare it with the water consumption
of peer households (Supplementary Figs. 1–2), set individual water
conservation targets (Supplementary Fig. 3), interactively learn
and share water-saving tips (Supplementary Fig. 4), and engage
with gamified tasks to earn points, badges, and rewards
(Supplementary Figs. 5–6). Throughout the treatment period, we
collected anonymized user activities on our platform (see
“Methods” section). At the end of the treatment period, we
continued to monitor water consumption till February 2019.
The overall data we collected allows quantifying the short-term

change during the treatment period (June 1st, 2016–February 2nd,
2017), the medium-term change one year after the treatment
(June 1st, 2017–February 2nd, 2018), and the long-term change
nearly two years after the end of the treatment intervention (June
1st, 2018–February 2nd, 2019). In addition, a control group of self-
selected households was used to comparatively quantify water
consumption levels in households not provided with the
SmartH2O digital platform or consumption-based feedback for
the same observation and baseline periods. We quantify average
water consumption changes for the treatment and control groups
by first computing inter-annual differences of water consumption
for each household and then calculating average changes across
households in the two groups.
Our analysis of average water consumption changes reveals that

water conservation behaviors were already visible for the treatment
group during the first period of adoption of the SmartH2O platform
(Fig. 1). In the short term, these households reduced their water
consumption, each with respect to its pre-treatment baseline period
by approximately 3.9% on average (Fig. 1a; 4.1% median value
reported in Fig. 1b). The prominence of this behavioral change
emerges when looking at the water consumption of the households
in the control group: during the same period, they registered an
average 19% increase (15.7% median value) relative to their
baseline reference. The relative consumption changes in the
treatment group correspond to an average water consumption

decrease of 14.8 L/day for each household. Saving 14.8 L/day would
lead, in a month, to an avoided water consumption equivalent to
the volume of water normally used for about 9 showers with a
duration of 5min (a flow of 9.5 L/min is considered in this
calculation22). Our longitudinal study demonstrates the potential
for behavior change also in the medium and long term. In the
medium term, households in the treatment group reduced their
water consumption by approximately 5.9% on average (9.1%
median value), each with respect to its baseline consumption level,
with an overall 10.6% reduction of volumetric water in 2017–2018
(Fig. 1c). Average water conservation weakens in the long term, with
households in the treatment group reducing their water consump-
tion on average by 1.25% with respect to their baseline values (Fig.
1a). Yet, the comparison of these average values with the 9.5% long-
term individual median water consumption reduction (Fig. 1b) and
with the 8% overall long-term reduction of volumetric water used
by the treatment group (Fig. 1c) suggests that only a subset of the
households in the treatment group rebounded the water con-
sumption behavior to pre-treatment levels. Substantial behavioral
differences between the treatment group and the control group
emerge consistently during the entire duration of the longitudinal
study. The degree of difference and similarity between these two
groups changes in different periods of our longitudinal study and
the behavior changes observed for each group in the short term,
medium term, and long term in comparison to baseline values
(Fig. 1a–c) are also statistically significant in most of the cases
(significance level of 5%, see Supplementary Notes 2 and
Supplementary Tables 1–2 for more details). The conservation
efforts of households in the treatment group resulted in overall
volumetric water use reductions between 5.6% and 10.6% per year
(Fig. 1c), while the control group increased its total volumetric water
usage with respect to the baseline level by approximately 15.5% in
2016–2017 to 19.5% in 2017–2018.
Our results suggest that this trend for the control group can be

explained by the observed increase in water consumption during
the dry summer period, likely related to outdoor water usage.
Notably, while all four years considered here registered average
summer temperatures above the 1950–2018 average in July and
August (Supplementary Fig. 8a–b), abnormally dry conditions were
registered especially in the month of July in 2016–2018, with
precipitation values well below the 1950–2018 average. In
particular, no precipitation events were recorded in July 2016
and dry records with less than 5mm cumulative monthly
precipitation were registered also in July 2017–2018 (Supplemen-
tary Fig. 8c). In these conditions, the total volumetric water usage
of the control group increased by 9.8% in July and August 2016,
with respect to the baseline water consumption level in
July–August 2015 (Fig. 1d). This is equivalent to an average
additional consumption of 17.5 L/day per household with respect
to baseline levels (corresponding to the water needed for 11
additional showers in a month, each with a duration of 5min).
Total volumetric water usage of the control group increased by
over 14% in summer 2018, corresponding to 29.6 additional L/day
per household (over 18 additional 5-min showers in a month).
Conversely, households in the treatment group show a positive
water conservation outcome across the whole longitudinal study.
This effect might be primarily attributed to the initial household
motivations and high engagement in our behavior change trial
started at the beginning of summer 2016. However, water meter
observations reveal that the treatment group exhibited effective
water conservation efforts also in the summer of 2017 and 2018,
with total volumetric water consumption change ranging between
−5.4% and −5.6% with respect to baseline summer values.
The consistent behavioral differences between the treatment

group and the uninformed control group illustrate that the short-
term effects of smart meter-based feedback and digital user
engagement persisted in the medium and long term and can thus
foster durable water conservation efforts. Yet, the discrepancy
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between average and median values of water consumption
changes in the treatment group, along with the scattered
distribution of individual water consumption change values (Fig.
2), demonstrates highly heterogeneous individual responses to
our stimuli. The key question is whether these heterogeneous
behaviors reveal defined characteristics that can be used to design
more effective behavioral programs23,24.

Durable conservation behaviors and rebound effects
To analyze behavior change patterns and identify different long-
term responses to our behavior change program, we clustered the
households in the treatment group in eleven distinct segments,
each representing a specific behavior change pattern (see
“Methods” section and Supplementary Fig. 9). The five largest
clusters expose the main heterogeneous behaviors (Fig. 3). Three
clusters (Fig. 3a–c) reveal durable water conservation behaviors
and comprise households that cumulatively represent nearly half
(47%) of the treatment group members. Households in these three
segments show clear short-term, medium-term, and/or long-term
decreases in their average water consumption and can be thus
considered water savers. Among the water savers, we can
distinguish different patterns of behavior change: 20.6% of the
households in the treatment group exhibit a steep decrease of
average water consumption in the medium term (Fig. 3b), while

9.4% present more visible conservation results in the long term
(Fig. 3c). Conversely, 17% of the households in the treatment
group displayed a substantial water consumption reduction right
after the beginning of the treatment period (Fig. 3a). Their
behavior change appears primarily driven by a strong early-stage
engagement, but the effects of the treatment intervention flatten
in the long term.
Only approximately 10% of the households in the treatment

group manifest a rebound effect5,25 in the long term (Fig. 3d), i.e.,
after an initial water conservation effect, their water consumption
does not maintain a decreasing trend but goes back to pre-
treatment values. Notably, the short-term and medium-term water
consumption saving trend of this cluster is comparable to that of
short-term water-saving households (Fig. 3a). Yet, their average
water consumption rebounded almost to pre-treatment levels in
the long term.
Finally, 9% of the households in the treatment group show an

almost steady average water consumption in the short and
medium term, which in some cases increases by nearly 40% in
the long term (Fig. 3e). While a detailed interpretation of this
behavior change pattern is not straightforward with the available
information for this study, the steady water consumption level in
the baseline and short-term and medium-term periods might
suggest that these households might have had limited water-

Fig. 1 Water consumption change. Water consumption changes are evaluated for the households in the treatment group (blue bars) and for
the households in the control group (gray bars). Short-term, medium-term, and long-term water consumption changes are evaluated as
averages (a) and medians (b) of percentage household water consumption changes with respect to individual baseline consumption levels,
and total volumetric water use changes for the two groups over group-wide baseline consumption levels (c). Baseline consumption levels
refer to pre-treatment average consumption levels observed in the period June 1st, 2015–April 30th, 2016. Short term refers to the treatment
period (June 1st, 2016–February 2nd, 2017), medium term to a period one year after the treatment (June 1st, 2017–February 2nd, 2018), and
long term to a period two years after the treatment (June 1st, 2018–February 2nd, 2019). Summer water consumption changes (d) are
evaluated for the months of July and August in 2016, 2017, and 2018 as total volumetric water use changes for the two groups over group-
wide baseline consumption levels (water consumption levels in July–August 2015).
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saving opportunities. This might have discouraged their engage-
ment, resulting in an undesired long-term increase in daily water
consumption.
In addition to the behavior change patterns described above for

the main household clusters, we identified six additional clusters,
each of them including less than 7% of the households in the
treatment group (Supplementary Fig. 9). The small size of these
clusters and their generally oscillating water consumption
patterns suggest that they include secondary behaviors justified
by other drivers, i.e., households only marginally engaged with the
SmartH2O platform and not aware or not willing to commit to
water conservation.

Designing effective digitally enabled behavioral interventions
To further investigate the main factors that influenced the
individual responses of different households, we correlate by
logistic regression whether a household belongs to a specific
behavior change pattern (or group of behavior change patterns)
with descriptive data about the temporal sampling frequency of
its smart meter and its level of engagement with the digital
SmartH2O application, as described by the digital user engage-
ment variables (i.e., the total number of logins, number of
interactive actions in the application not associated with any
reward, number of actions rewarded with gamification points, and
cumulative reward importance, which accounts for the total
amount of points, badges, and rewards).
The numerical results reveal meaningful associations (Fig. 4).

The likelihood of households to be classified as water savers in the
short, medium, and long term is positively correlated with their
frequency of logins in the SmartH2O application and with the
access to water consumption data at 1-h resolution (green line in
Fig. 4). This empirical evidence suggests that durable water
conservation behavior can be achieved by providing water
consumers with detailed information on their water usage.
Collecting high-resolution smart meter information and develop-
ing digital tools that enable users to visualize and interpret their
water consumption in near real-time should thus be prioritized in
the design of digitally enabled behavioral interventions. The
cumulative reward importance is also positively weighted and, for
a sub-set of water savers households, the number of actions

rewarded with gamification points, too. Advanced data collection
and communication should be complemented with rewarded
programs and non-monetary incentives to increase the retention
of less environmentally minded or engaged households.
However, our results suggest that such incentives can be

ineffective to achieve long-term conservation, when not coupled
with sub-daily smart meter information. The access to hourly
smart meter information emerges as an important factor that
contributes to achieving long-term conservation effects (orange
line in Fig. 4), along with intrinsic attitudes (non rewarded actions)
and reward importance. Conversely, coarse information can
produce undesired effects in the long term. Our results show
that households are more likely to belong in the rebound segment
when they receive smart meter information with a daily resolution,
even if the coefficients for their non-rewarded actions (and, for
some household, also rewarded actions) in the application
suggest a good level of engagement (blue line in Fig. 4). This
means that ICT-mediated engagement alone is not sufficient to
motivate durable savings and must be backed by high-frequency
consumption feedback.
Finally, the classification performance obtained for the logistic

regression classifier (Supplementary Table 3) shows that we
cannot classify the households in the different segments of the
treatment group with high accuracy only by analyzing the
temporal sampling frequency of their smart meters and their
level of engagement with the digital SmartH2O platform. In many
cases, the classification results are just slightly better than the
expected performance of a random guess. Individual behaviors
can be influenced by numerous physical and psychological
determinants and the design of behavior change programs would
benefit from detailed knowledge of such factors2,24,25.

DISCUSSION
Long-term household water conservation behaviors are fostered
by smart meter-based consumption feedback and digital user
engagement. Most behavioral studies on water conservation
document savings in household water consumption induced by
feedback interventions in the short term, often followed by
rebounding effects after the experimental trial as conservation
awareness easily fades away4,5,17. Here, our longitudinal study
provides quantitative evidence that durable household water
conservation behaviors can be observed in the presence of
consumption feedback informed by smart meter data and user
engagement mediated by a digital platform providing data
visualization and interpretation, recommendations for water
saving, and a gamification program. More than half (nearly 58%)
of the households in the treatment group achieved substantial
water savings in the short term. Almost half (47%) of all
households in the treatment group also preserved durable water
conservation behaviors two years after the start of the treatment.
We acknowledge that not all households engaged equally,

some of them did not exhibit any predominant short-term or
long-term behavior change, and a non-negligible fraction of them
exhibited rebounding water consumption patterns. In addition,
while average behavior changes are realistic, some extreme
changes in water consumption might be due to variations in
household and family composition or technological upgrades of
indoor and outdoor water fixtures. Still, our observational study
records a long-term 8% reduction in volumetric water consump-
tion that is magnified by comparison with non-treated house-
holds, which conversely increased their total volumetric water
usage by approximately 15.5% to 19.5% over the study period.
We observe more frequent conservation behaviors for the

households that received smart meter information with hourly
sampling frequency, rather than daily, suggesting that the availability
of high-frequency consumption data appears to be a prerequisite for
an effective digital engagement of water users. This is a crucial result

Fig. 2 Average daily household water consumption change
distribution. Average daily water consumption changes in liters/
day are evaluated for each household in the treatment group (blue
boxes) and in the control group (gray boxes). Short-term, medium-
term, and long-term water consumption changes are evaluated with
respect to pre-treatment average consumption levels observed in
the baseline period June 1st, 2015–April 30th, 2016. The line in the
middle of each box represents the median value, boxes mark the
first and third quartile. The length of box whiskers is equal to 1.5
times the interquartile range. Diamond markers are outliers.
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to substantiate the ongoing debate on the benefits and costs of
different smart meter technologies and of other digital user
engagement tools for water conservation, water utilities, and water
consumers23,26,27. We argue that consumption feedback based on
fine-grained information can be more effective to help water
consumers understand their consumption, identify opportunities
for conservation, and monitor their conservation achievements.
From the findings of our study, we can derive some

recommendations for the design of future water conservation
and behavior change programs. Comprehensive data collection
campaigns on water consumers’ socio-demographic and

contextual information, and larger samples of participating
households could help better characterize the most influential
factors of a behavioral treatment program from other, non-
controlled, effects at different temporal and spatial scales2,28. It is
suggested that possible biases are mitigated by performing future
studies without volunteer selection bias14. Comparing the long-
term effect of feedback-based interventions with other monetary
and non-monetary demand management strategies in different
social, economic, cultural, and geographical contexts, or in
combination with other programs for sustainable water demand
and supply and natural resources development29–32, would help

Fig. 3 Long-term water consumption change patterns. Five household segments (clusters) are represented as a selection of the eleven
clusters obtained via household segmentation (Supplementary Fig. 9). Households in the treatment group are clustered in different segments
based on the correlation distance of their water consumption pattern over the longitudinal study, where a water consumption pattern
consists of the four values of average daily household water consumption during the 2015 baseline period and the three observation periods
in 2016–2019. Each subplot represents a behavior change pattern, described by the labels on top. The percentage on top of each plot reports
the percentage of households in the treatment group included in each household segment. Shaded blue areas are defined by the standard
deviation around the mean (thick colored line in each subplot).
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understand how scalable and general our results are33. This study
highlights the importance of individual engagement, smart meter
technologies, and digital platforms as key elements to promote
durable long-term water conservation behaviors.

METHODS
Quantitative variables
The intervention described here relies on the IT platform “SmartH2O” for
the collection and visualization of smart meter data, the provision of
consumption feedback to the user, the delivery of water-saving
recommendations, and the engagement of the consumer through a
gamification program20,21,34,35. We embedded a gamification mechanism
in the digital platform to maximize user retention and stimulate the
exploration and sharing of content and the setting and achievement of
personal saving goals. Via the gamification mechanisms, users could collect
reward points for different actions performed in the digital platform or the
achievement of water-saving targets. Reward points consisted of virtual
points that the users could redeem for physical rewards. The design of the
SmartH2O digital platform and the behavioral change stimuli that have
been introduced in the Valencia case-control study (e.g., web and mobile
app, different reward schemes), along with their individual elements and
the corresponding illustrative screenshots of the platform are provided in
the Supplementary Information, consistently with the information
published in a previous study21. Other platforms similar to SmartH2O or
approaches for water conservation based on digital technologies are
reported in the literature, including, e.g., real-time water consumption
feedback on in-home displays, interactive dashboards, and games36,37. Yet,
to the author’s knowledge, SmartH2O is the first platform of its kind whose
effect is rigorously assessed in the medium term and long term.

Household-scale water consumption data and smart meter sampling
frequency. Water consumption readings measured at the household scale
constitute the main quantitative variable of interest used in this observational
study to identify behavior changes. The SmartH2O digital platform relies on
water consumption information stored in a central database and enables
data communication from the water utility to the water consumers (see
Supplementary Fig. 1 for its software architecture). Water consumption data
are collected by smart meters installed at the household premises, according
to a schedule that considers the maximum available frequency of data
sampling at each installation (hourly or daily). The consumption data are

anonymized by the utility company, filtered, and transferred to the central
database of the SmartH2O platform. The content of the central database is
published to the user via a web portal and a mobile application, which are
the entry points of all users’ interactions with the platform.
Besides the time series of water consumption, we also stored the sampling

frequency allowed by each household-scale smart meter. Two types of
sampling frequencies were available in the considered population, depend-
ing on the installed smart meter hardware: hourly or daily.

Digital user engagement variables. The central database of the SmartH2O
platform comprises content for improving user awareness, such as water-
saving recommendations, and for implementing the gamification program,
such as the description of virtual and physical rewards. The interaction of
the users with the platform and the overall user experience features
several functionalities, including user login, water consumption and smart
meter-based feedback visualization, conservation goal settings, and
different gamified water conservation awareness actions (see also
Supplementary Notes 1). We monitored the activity of each user in the
SmartH2O platform for the entire duration of the treatment period and
gathered quantitative data on these four digital user engagement variables:

(i) Login count, defined as the total number of logins executed by
each user.

(ii) Non-rewarded action count, defined as the total number of actions
performed by each user, with no reward points associated.

(iii) Rewarded action count, defined as the total number of actions
performed by each user, with associated reward points upon their
completion.

(iv) Cumulative reward importance, defined as the total amount of points
achieved by each user by completing the rewarded actions. It
accounts for the total amount of points, badges, and rewards
achieved by an individual user in the SmartH2O platform.

Each user profile in the SmartH2O platform was associated with a unique
smart meter ID, which allowed linking the user activity in the platform with
the household water consumption data. User confidentiality was main-
tained throughout the full study as data were anonymized by the water
utility managing the water meters and the central database.

Population and study size
Our observational study was conducted in the city of Valencia, Spain. With
a population of 794,288 inhabitants, as reported in 2019 by the Spanish

Fig. 4 Influence of smart meter data frequency and level of engagement with the digital SmartH2O application on household behavior
change patterns. The coefficients of a logistic regression classifier weighting five normalized independent variables, i.e., smart meter hourly
data frequency (binary variable for hourly vs. daily data), login count, non-rewarded action count, rewarded action count, and cumulative
reward importance, are reported for three different tests. The first test (green line) classifies water savers against rebound or consumption
increase households. The second test (orange line) classifies long-term water savers against short-term water savers. The third test (blue line)
classifies water savers against rebound households. The different household clusters are characterized in Fig. 3. The shaded area around each
line is defined by the standard deviation.
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National Institute of Statistics (Institudo Nacional de Estadística)38, Valencia
is the third-largest city in Spain. The water utility of Valencia (Global
Omnium–EMIVASA) has installed more than 425,000 smart water meters
since the early developments in 2006 to monitor the water consumption of
nearly all the population39 (the last official census data, recorded in 2011,
report 419,994 households in total in Valencia40). The total population
considered in this study after application of the exclusion criteria described
in the next section included 334 individual households, each equipped
with a water meter.
The architecture of the smart metering infrastructure deployed in

Valencia has been designed in order to be vendor-independent, so it
allows for different smart metering solutions to be integrated39. While this
is clearly an advantage for procurement, the diversity of hardware has an
impact on data sampling and only one of the available technologies
supports hourly data collection, which is a preferred requirement for water
consumption data quality assessment and provision of sub-daily water
consumption information to households in our case-control study. The
number of hourly reading meters in Valencia amounts to 168,172 as of July
12th, 2020. EMIVASA also offered its customers access to a web platform
where bills and invoices could be managed and also information about the
current (daily and monthly) water consumption data was made available.
During our observational study, we integrated the digital SmartH2O

platform20,21 in the EMIVASA portal. We invited users who already had an
account in the platform and a compatible meter reading frequency to
voluntarily join our observational study and sign up to the SmartH2O
platform. The recruitment campaign was performed using different media
channels, namely, newspaper articles on consumer magazines, radio
programs, banners on the digital and printed invoices sent to EMIVASA
customers, and also a Facebook campaign targeting the Valencia area. At
the end of the recruitment campaign, we received 525 applications out of
which we obtained a treatment group composed of 223 households after
application of the inclusion/exclusion criteria. Out of the households who
did not apply to join the case-control study during the recruitment phase,
111 households agreed to be monitored as part of the self-selected control
group to be considered as a benchmark group not subject to treatment,
after active recruitment via phone by the EMIVASA call center (client
service management). Households in the control group had only access to
their water consumption data through the already existing platform, which
did not offer any type of smart meter-based consumption feedback,
behavioral stimuli, and/or gamification elements.
Informed consent was obtained from the households monitored in this

study. Moreover, the water utility (Global Omnium–EMIVASA) supervised
and approved the collection, usage, and processing of the anonymized
quantitative variables above described in compliance with the EU General
Data Protection Regulation 2016/679 and the pre-existing Spanish law 15/
1999 LOPD of 1999 (the SmartH2O study started before the adoption of
the GDPR in 2016).

Baseline and observation periods
The treatment period of the case-control study lasted 8.5 months, from
June 2016 to February 2017. We also continuously collected anonymized
water consumption data for the study population from June 2016 to
February 2019 both to conduct the longitudinal study presented in this
paper and evaluate water consumption changes over time in comparison
with a pre-treatment baseline (June 1st, 2015– April 30th, 2016), as well as
to compare water consumption changes in the treatment and control
groups. Consistently with the months included in the treatment period
(short-term behavior change), we identify the observation period June 1st,
2017–February 2nd, 2018 for medium-term behavior change assessment,
and the observation period June 1st, 2018–February 2nd, 2019 for long-
term behavior change.

Exclusion criteria
The population considered for analysis of water consumption changes in
this observational study was obtained by sequential application of the
following exclusion criteria.

1. Exclusion of empty households. First, we excluded the households
with no data in the baseline and treatment period. We classified in
this category also the households with a cumulative water
consumption lower than 1.5 m3 over the whole baseline and
treatment period (which together last nearly 20 months). This
threshold value was identified as a conservative choice after
consultation with the local water utility and comparison with the

average values of water consumption in the entire population
(slightly above 0.21m3/day) and the European average water
consumption, which amounts to 128 liters per inhabitant per day
(0.128m3/day)41. A household in the considered population would
use ~1.5m3 in one week (0.21 m3/day × 7 days). While lower values
than the average consumption are observed in those days in which
the inhabitants spend little time at home, a cumulative consumption
of 1.5 m3 over the course of more than 1 year can indicate that the
house is generally empty (and possibly the observed water
consumption is due to leaks).

2. Exclusion of households with insufficient data length. We removed the
households with water consumption readings for less than 1000 h
(approximately 6 weeks). This step guarantees a minimum
representation of weekend/weekday water demand variation for
more than 1 month (please note that the total duration of the
treatment period is 8.5 months).

3. Exclusion of partially empty households. We excluded the households
with more than 90% water consumption readings equal to zero in
the baseline or observation period or completely lacking data for
one of these two periods. We considered these households to be
empty or equipped with faulty meters at least during one of the two
short-term periods of interest. The above value threshold of 90%
was identified with a trial-and-error procedure and expert-based
data analysis that balance the rate of exclusion with the size of the
remaining dataset.

4. Exclusion of households lacking day-of-week representation. We
excluded the households with available observations for less than
7 unique day types, to guarantee a minimum representation of
water consumption routines that depend on the day of the week.
For those households with smart meters recording water consump-
tion with hourly sampling frequency, we removed days with more
than 4 h of gaps from the smart meter time series (anomalous meter
data logging).

5. Exclusion of households with anomalous high water consumption. We
considered hourly water consumption readings larger than 1m3 as
outliers (we thus removed these hourly readings) and we removed
the households with a daily average water consumption larger than
1m3 in at least one phase of the longitudinal study. High values of
water consumption can be observed for specific days (e.g., when
customers use water for outdoor irrigation or filling up a pool), yet
average daily water consumption values over the selected threshold
are more than three times higher than the European average
(equivalent to approximately 0.3 m3/day per household). We did not
apply more restrictive thresholds, in order not to bias our analysis
and avoid unjustified exclusion of high water consumers.

6. Exclusion of households with unrealistic short-term consumption
change levels. We excluded the households with extreme values of
short-term consumption change during the treatment period, which
were identified as outliers by Tukey’s fences42. According to Tukey’s
fences, a data point xi is considered an outlier if:

xi=2½Q1 � k Q3 � Q1ð Þ;Q3 þ kðQ3 � Q1Þ� (1)

where Q1 is the 25th empirical quartile (i.e., 25% of the data is
lower than this point) and Q3 is the 75th empirical quartile (i.e., 75%
of the data is lower than this point), and k= 1.5. Tukey’s fences with
k= 1.5 approximate the 99.7% confidence interval defined for
normal distributions by a distance of three standard deviations from
the mean.

7. Exclusion of households with anomalous conditions in medium-term
and long-term. We excluded 51 households that met the above
exclusion criteria 1–6 during either the medium-term or long-term
observation periods. Water consumption change patterns would be
incomplete/anomalous for these households, with at least one
missing/anomalous period out of the four periods of interest (i.e.,
baseline, treatment period, or following observation periods in 2018
and 2019).

With the above exclusion criteria, we obtained the 334 households
considered for behavior change analysis in this observational study. More
details on the population size after application of each exclusion criteria
are reported with a flow diagram in Supplementary Fig. 1043. It is worth
noting that only less than 2% of high consumption households have been
excluded, while most of the other excluded households had insufficient
data or unrealistically low consumption levels. Also, the number of
households in the sample considered here differ from those considered in
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the evaluation of the SmartH2O project44, due to the different temporal
length of the two studies and the application of the exclusion criteria on
data recorded in different periods (the SmartH2O project only included the
baseline and treatment periods).
Adopting the same criteria to exclude households from the behavior

change analysis only during the summer period (Fig. 1d) resulted in a
reduced population of 179 households (101 households in the treatment
group and 78 households in the control group), due to limited data
availability for the summer period. Similarly, a subset of 198 households in
the treatment group was considered for the correlation analysis by logistic
regression (Fig. 4), as the excluded 25 households presented incomplete
smart meter data or incomplete information on their usage of the digital
SmartH2O application.

Data analysis and statistical methods
We performed customer segmentation to analyze heterogeneous long-
term behavior change patterns (Fig. 3 and Supplementary Fig. 9). We
applied agglomerative hierarchical clustering45 to the patterns of average
daily household water consumption during the entire duration of the
longitudinal study. Here, a water consumption pattern of a household is a
vector that contains four values of average daily water consumption, i.e.,
one for each period of the observational study, including the baseline (see
“Methods” section–Baseline and observation periods). The only variable
given as input to the hierarchical clustering algorithm consists of
household-scale average water consumption per day for each phase of
our observational study, which spans the baseline and the three
observation periods in 2017, 2018, and 2019. Complete linkage and
correlation distance were considered for hierarchical clustering. Complete
linkage calculates the distance between two household clusters as the
distance between the farthest pair of household water consumption
patterns in the two household clusters, i.e., the maximum distance
formulated as follows:46

d u; vð Þ ¼ max dist u xið Þ; v zið Þð Þð (2)

where d(u,v) is the distance between clusters u and v, xi are the points
belonging to cluster u and zi those belonging to cluster v. Given two
vectors of observations xi and xj, which in our study correspond to the
water consumption patterns of two households (each with N elements,
with N= 4, where each element is the household-scale average water
consumption per day for the baseline and three observation periods) and
their mean values (xi and xj) the correlation distance used by hierarchical
clustering is calculated as follows:47

dist xi ; xj
� � ¼ 1� ðxi � xiÞ � ðxj � xjÞ

xi � xik k2 xj � xj
�� ��

2

(3)

We considered hierarchical clustering as an appropriate choice because
the analysis of the different hierarchical levels allowed the discovery of
heterogeneous water consumption behaviors that would be potentially
hidden if algorithms requiring a predefined number of clusters were used.
We adopted complete linkage clustering to avoid that individual, mutually
close households would force pairs of clusters representing different
behaviors to merge. Also, we adopted correlation distance as we wanted
to identify similarities in water consumption patterns over time, rather than
in water consumption volumes.
After clustering the households in the treatment group with the above

hierarchical clustering, similarly to a previous study18, we analyzed the
coefficients of a logistic regression classifier cross-validated with binary
tests to identify which candidate factors correlate with the main behavior
change patterns that characterize the households in the treatment group
(Fig. 4 and Supplementary Table 3). In this study, the input candidate
factors consist of five independent variables that comprise the availability
of smart meter hourly data frequency and the four digital user
engagement variables, i.e., login count, non-rewarded action count,
rewarded action count, and cumulative reward importance. First, we
balanced the distribution of the households in the treatment group across
the behavior change segments considered in the binary tests by Synthetic
Minority Over-sampling Technique (SMOTE)48. SMOTE oversamples the
minority class to balance the sample distribution of a labeled dataset over
the different classes. As we consider binary test where only two behavior
change segments (or two groups of behavior change segments) are
compared, the majority class represents the behavior change segment (or
group of behavior change segments) with the highest number of samples
and vice versa for the minority class. According to the SMOTE
formulation48, starting from a sample ci,initial, which in this study is the

vector of input candidate factors for a household i in the minority class, a
new sample ci,new is generated on the line between ci,initial, and one of its k
nearest-neighbors cj,initial, with the following formula:

ci;new ¼ ci;initial þ λðcj;initial � ci;initialÞ (4)

where λ is a random number between 0 and 1, and k= 5 nearest
neighbors computed based on Euclidean distance are considered by
default48. Among the possible options to perform class balancing, here we
adopted a “not majority” strategy to over-sample the minority classes, i.e.,
we resample all classes but the majority class (which, in our binary
problem, is equivalent to resampling the minority class).
Second, we trained a logistic regression classifier49 with k-fold cross-

validation (k= 5) and evaluated its performance via weighted F1 score. In
our binary problem, the logistic regression classifier models the class
membership probability P(yi,p= 1) for household i, where yi,p= 1 indicates
that the household belongs to behavior change pattern p (else yi,p= 0,
according to the following logistic function:

P yi;p ¼ 1
� � ¼ 1

1þ exp�fðciÞ (5)

where f(ci) is a linear function where the input variables ci are weighted by
corresponding coefficients α:

f cið Þ ¼ α0 þ α1ci;1 þ α2ci;2 þ ¼ þ αMci;M þ εi (6)

In this study, M= 5, ci,1 is a binary variable representing the availability
of smart meter with hourly data frequency, ci,{2,3,4,5} are the four digital user
engagement variables defined above, α0 is the intercept of the logistic
regression, and εi is random noise. We normalized the variables before
logistic regression classification by subtracting the mean and dividing by
the standard deviation to rescale them to comparable value ranges. The
analysis of their corresponding logistic regression coefficients reveals how
these variables discriminate among different clusters of water consumers
and, thus, how they are potential determinants of defined water
consumption behaviors. The F1 score (FS) is first calculated for each
behavior change pattern (or group of patterns) p as the harmonic mean of
the precision and recall achieved by the logistic regression classifier,
formulated as follows:

FSp ¼ 2 ´
ðprecisionp ´ recallpÞ
ðprecisionp þ recallpÞ (7)

Precisionp ¼ TPp
TPp þ FPp

(8)

Recallp ¼ TPp
TPp þ FNp

(9)

where, given positive and negative classes, TPp, FPp, and FNp are the
number of true positive elements (the classifier correctly predicts the
positive class for them), false-positive elements (the classifier incorrectly
predicts the positive class), and false negative elements (the classifier
incorrectly predicts the negative class). A weighted average of the FSp is
then computed to account for class imbalance:

FSaverage ¼ 1
H

X

p2P
jpj ´ FSp (10)

where P is the total number of classes p and H is the total number of
elements aggregated across all classes.

Software implementation
We coded the exclusion criteria in Matlab and used the “prctile” function
for the calculation of the quantiles in Tukey’s fences (last Matlab version
tested: R2020b)50. We implemented the customer segmentation analysis
and logistic regression classifier in Python (version 3.7.1): the customer
segmentation analysis relies on the hierarchical clustering included in the
SciPy library51; the logistic regression classifier, along with its k-fold cross-
validation and performance evaluation, were implemented using the
machine learning library Scikit-learn52; SMOTE oversampling was imple-
mented using the Imbalanced-learn toolbox53. A notebook with the
Python code used to generate the results reported in this article is
available in a public GitHub repository54.
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SmartH2O project is available on Zenodo (https://doi.org/10.5281/zenodo.556725)55.
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A notebook with the code used to generate the results reported in this article is
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