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Abstract
Long non-coding RNAs were once considered as “junk” RNA produced by aberrant DNA transcription. They are now under-
stood to play central roles in diverse cellular processes from proliferation and migration to differentiation, senescence and 
DNA damage control. LncRNAs are classed as transcripts longer than 200 nucleotides that do not encode a peptide. They are 
relevant to many physiological and pathophysiological processes through their control of fundamental molecular functions. 
This review summarises the recent progress in lncRNA research and highlights the far-reaching physiological relevance 
of lncRNAs. The main areas of lncRNA research encompassing their characterisation, classification and mechanisms of 
action will be discussed. In particular, the regulation of gene expression and chromatin landscape through lncRNA control 
of proteins, DNA and other RNAs will be introduced. This will be exemplified with a selected number of lncRNAs that 
have been described in numerous physiological contexts and that should be largely representative of the tens-of-thousands 
of mammalian lncRNAs. To some extent, these lncRNAs have inspired the current thinking on the central dogmas of epi-
genetics, RNA and DNA mechanisms.
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LncRNA characteristics and classification

The advancement of next generation sequencing and bioin-
formatic techniques in the last 20 years has led to the detec-
tion of genome-wide transcriptional events within non-cod-
ing regions and the subsequent discovery of thousands of 
long non-coding RNAs (lncRNAs). Countless studies have 
already revealed that lncRNAs are relevant for many physi-
ological and pathophysiological processes (Fig. 1A–C) and 
that these can often be connected to the respective lncRNA 
molecular mechanisms of action.

Only a small fraction of the human transcriptome is trans-
lated into proteins since the majority of RNA transcripts 
are non-coding. These non-coding RNAs can be further 
divided into small non-coding RNAs, such as miRNAs, 
tRNAs, snoRNAs and snRNAs, and long non-coding RNAs 

(lncRNAs) which are longer than 200 nucleotides (Fig. 2A) 
[61]. Current estimates place the number of human lncRNAs 
at around 100,000 according to the NONCODE (v6) data-
base [78]. Despite their lack of coding potential, lncRNAs 
share multiple features with mRNAs including (1) RNA 
polymerase II–mediated transcription regulated by com-
mon epigenetic marks such as tri-methylation of lysine 4 
of histone 3 (H3K4me3); (2) a 7-methyl guanosine (m7G) 
5′-Cap and Poly-A tail; and (3) splicing of multi-exonic tran-
scripts, albeit less efficiently for lncRNAs than for mRNAs 
[61]. lncRNAs can be found anywhere in the cell but with 
the majority being localised to the nucleus; potentially a 
consequence of inefficient splicing events [56]. In contrast to 
mRNAs, many lncRNAs are relatively lowly expressed, less 
well conserved evolutionarily and highly cell type– or tissue-
specific [61]. This difference is supported by studies demon-
strating that lncRNA promoters contain fewer transcription 
factor (TF) binding motifs and TF binding events. Addi-
tionally, it is believed that the lower abundance of lncRNA 
transcripts cannot be explained by RNA degradation alone 
[56]. LncRNAs also form secondary and tertiary structures 
and contain functional RNA elements and nuclear localisa-
tion sequences, which are assumed to be important primarily 
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for gene regulation [56, 67]. These regulatory motifs and 
higher order structures enable an exceedingly diverse range 
of lncRNA functions.

An official and appropriate classification that encom-
passes all lncRNAs does not yet exist [46]. One proposed 
method of lncRNA classification is based on their genomic 
position relative to other genes, such as protein-coding genes 
(Fig. 2B): (1) Divergent and antisense lncRNAs either over-
lap or are in close proximity to a sense gene and are localised 
on the opposite DNA strand; (2) intronic lncRNAs are tran-
scribed from the intron of a sense or antisense gene; and (3) 
intergenic lncRNA genes which do not overlap other genes 
[46]. Each of these genomic arrangements are able to pro-
duce molecular and physiologically relevant lncRNAs. Other 
means of classification can be based on lncRNA modes of 

action and regulation, which include but are not limited to 
target gene regulation (by cis- or trans-acting lncRNAs, 
Fig. 2C) [46], molecular role (e.g. competitive endogenous 
RNAs [63], enhancer RNAs [32], architectural RNAs [8]), 
their transcriptional regulation (e.g. stress-induced pro-
moter-associated antisense lncRNAs [20], damage-induced 
lncRNAs [50]) or their physiological relevance (e.g. Angio-
LncRs [74]). More recently, it has been suggested that the 
process of transcription itself could have an important func-
tion independent of the lncRNA transcript produced from 
that transcriptional activity. For example, the locus could 
be part of a 3D nuclear construct permissive to chromatin 
environment and gene regulation at the neighbouring locus 
[1]. Similarly, some lncRNAs may not be entirely non-cod-
ing and, despite their low coding potential, may give rise to 

Figure 1   Publications about 
lncRNAs are existing in many 
different physiological areas. 
A–C Number of pubmed entries 
since 2008 for lncRNA and the 
individual tissue (A), cell type 
(B) or disease (C). PubMed 
searches were performed 
with the following terms: 
(“LncRNA” AND “search 
term”) OR (“Long non-coding 
RNA” AND “search term”) OR 
(“long non coding RNA” AND 
“search term”), as of date 5th 
October 2021.
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small functional peptides (so-called micropeptides) while 
retaining an independent RNA function (Fig. 2D) [61]. This 
highlights that our understanding of the lncRNA landscape 
is subject to change and that an appropriate method of clas-
sification encompassing all lncRNAs remains a challenge.

The diverse functions of lncRNAs

LncRNAs usually enact their functions by interacting with 
proteins, metabolites, DNA or even other RNAs. Addition-
ally, important regulatory elements may be embedded within 
the gene body of lncRNA genes where transcriptional activ-
ity can influence genome structure, chromatin accessibility 
and neighbouring gene activity [1]. lncRNAs themselves are 
highly modifiable with many different “post-transcriptional” 
modifications reported so far, such as N6-methyladenosine 
(m6A), pseudouridine (Ψ), 5-methylcytosine (m5C) and 
N1-methyladenosine (m1A) [14, 15, 40, 49, 60, 77], where 
m6A for example can influence RNA structure to alter pro-
tein interactions [42] or lncRNA functions [43]. LncRNAs 
have been shown to be involved in many cellular processes, 
mainly in transcriptional regulation, post-transcriptional 
regulation (e.g. splicing), cell organellar and structural 
organisation and genome integrity [61]. The mechanisms 
of gene expression regulation by lncRNAs are particularly 
diverse since lncRNAs bind other molecules in abundance. 
This allows for multiple mechanisms whereby lncRNAs per-
mit or inhibit the interactions between these molecules; for 
example the recruitment or decoying of chromatin remodel-
ling complexes, proteins mediating histone modifications, 
transcription factor binding to gene regulatory regions or the 
interaction of RNA with DNA that leads to R-Loop or triplex 

formation [61]. This not only impacts on transcription but 
also on genome stability. LncRNAs frequently serve as scaf-
folds as in the case of several forms of nuclear condensates, 
which are membraneless RNA–protein compartments [61]. 
Post-transcriptional functions of lncRNAs include the inter-
ference of mRNA splicing, turnover, decay and translation. 
LncRNAs can also affect cellular function through interac-
tion with other ncRNAs, such as miRNAs. This so-called 
competitive endogenous RNA function often leads to the 
protection of miRNA-targets [61]. Finally, the homeostasis 
of organelles such as exosomes and mitochondria has even 
been linked to lncRNAs [61]. Taken together, these diverse 
means of regulation and the mechanisms through which 
lncRNAs subsequently enact their functions allow for the 
fine-tuning and regulation of cellular processes that have 
consequences for many physiological processes.

LncRNAs are physiologically relevant

Despite the fact that most lncRNAs are so far uncharac-
terised, there already exists an exhaustive list of lncRNAs 
that have been investigated across almost all physiologi-
cal systems. Bioinformatic databases, as reviewed in [53], 
or RNA analysis tools, such as the RNA atlas [45] (R2: 
Genomics Analysis and Visualization Platform (http://​r2.​
amc.​nl)), provide an abundance of lncRNA data which can 
be exploited by researchers working in many different areas 
of physiology.

Here, we will present examples of highly physiologi-
cally relevant lncRNAs and describe their mechanisms of 
action (Fig. 3). It should be stressed that we cannot cover 
all physiological processes and systems in one review and 

Figure 2   Research outlines 
and lncRNA characteristics. A 
LncRNA transcripts are defined 
as non-coding RNAs longer 
than 200nt apparently lacking 
protein coding potential. Typi-
cally, the majority of lncRNAs 
are mRNA-like RNAs harbour-
ing a 5′Cap and a polyA tail. B 
Genomic location of lncRNA 
genes. C LncRNAs can act in 
cis to regulate the immediate 
locus from which the lncRNA 
was transcribed, in trans to 
function elsewhere in the cell 
or trans-secreted. D For some 
lncRNA genes, functions on 
their gene itself, their transcript 
or peptide are known increasing 
the layer of complexity for their 
mode of operations.
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instead select a handful of lncRNAs that should be largely 
representative of the functions of this class of molecules. 
Additionally, many of these lncRNAs are involved in patho-
physiological processes that have, for the most part, been 
historically characterised from a protein perspective. Finally, 
this review should also exemplify the strong influence that 
single lncRNAs can have on disease outcome: knowledge 
that can hopefully provide a platform for future basic and 
therapeutic RNA research.

Loss of expression studies revealed that lncRNAs 
play critical roles in vivo

As early as 2013, a study with 18 lncRNA knockout mouse 
strains revealed that lncRNAs are important for viability and 
are involved in the development of lungs and the cerebral 
cortex. Peri- and postnatal lethal phenotypes were observed 
in lncRNA Fendrr (FOXF1 Adjacent Non-Coding Develop-
mental Regulatory RNA), Peril, and Mdgt mutant strains and 
growth defects were reported for linc–Brn1b and linc–Pint. 
Fendrr−/− neonates displayed defects in multiple organs. 
Linc–Brn1b−/− mutants showed distinct abnormalities in 
the generation of upper layer II–IV neurons in the neocor-
tex [58]. Lai et al. analysed 20 different lncRNA knockouts 
with a variety of phenotypes in mice, ranging from perinatal 
lethality to defects associated with premature aging and mor-
phological and functional abnormalities in the lungs, skel-
eton and muscle [35]. An increased expression with age of 
the lncRNA Lincpint was observed in parallel with a reduc-
tion in body weight, probably due to reduced total body fat 
and lower femur bone mineral density, and the development 

of lordokyphosis. Knockout of Fendrr led to an abnormal 
lung morphology, Hotair knockout mice displayed a home-
otic transformation in the 4th caudal vertebra and Hottip 
knockout showed hindlimb malformations [35]. In a large-
scale cell culture analysis, as part of the FANTOM6 project, 
Ramilowski et al. knocked down 194 lncRNAs with at least 
two antisense oligonucleotides in human dermal fibroblasts 
and quantified cellular growth, morphological changes and 
transcriptomic responses with Capped Analysis of Gene 
Expression (CAGE) to measure the molecular phenotype. 
The authors observed that around 30% of the lncRNAs were 
associated with cell growth and morphological changes [54].

X‑chromosome inactivation, the first paradigm 
for a function of a lncRNA

X-inactive specific transcript (XIST) was one of the earliest 
described lncRNAs and, as such, studies on this lncRNA 
have provided an invaluable framework for research in the 
lncRNA field. Xist is responsible for X-chromosome inacti-
vation; a process which achieves dosage compensation of the 
sex chromosomal genes between females and males. Both 
X chromosomes, the Xa (active) and Xi (inactive) chromo-
somes, contain the XIST gene, with the Xi gene initiating 
X-chromosomal inactivation during early development. Xist 
is transcribed and spreads in cis across the X-chromosome to 
coat Xi, but not Xa. The lncRNA triggers gene silencing by 
recruiting chromatin modifying factors including the poly-
comb-repressive complex 2 (PRC2), which results in a huge 
structural reorganization of the X-chromosome [17, 44].

Figure 3   lncRNAs in vari-
ous physiological systems and 
processes. LncRNAs have 
been shown to be fundamental 
in almost all physiological 
systems and processes. Example 
lncRNAs are provided for the 
major physiological systems and 
for a select number of general 
physiological processes to 
highlight the ubiquitous nature 
of lncRNAs.
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lncRNA loci can be functionally highly complex as dem-
onstrated in a study by Lewandowski et al. The authors 
identified that the widely expressed and highly conserved 
Tug1 lncRNA is important for male fertility. Tug1-knockout 
mice were sterile with underlying defects in spermatogen-
esis as indicated by a low sperm count and abnormal sperm 
morphology. Molecular characterisation revealed that Tug1, 
however, functions beyond its role as a lncRNA: the locus 
acts as a cis-DNA repressor regulating neighbouring gene 
expression, whereas the lncRNA itself has a trans-regulatory 
function. Furthermore, the overexpression of an evolution-
arily conserved open reading frame of Tug1 encoded a pro-
tein identified to be important for mitochondrial membrane 
potential [39].

Mice lacking the 3′ half of paternally expressed gene, 
Peg13, which is part of a complex of imprinted genes on 
chromosome 15 in mice, showed distinct behavioural differ-
ences: they prefer to associate with their own sex after losing 
interest in the opposite sex. They also develop a higher level 
of anxiety, lowered activity and curiosity, and a deficiency in 
pup retrieval behaviour. The authors analysed whole-brain 
RNA of 16-week-old Peg13-deficient mice and revealed that 
expression of genes involved in the serotonergic system, 
formation of glutamatergic synapses, olfactory processing, 
and estrogen signalling and several others of the imprinted 
genes on chromosome 15 were changed. It was concluded 
that Peg13 is part of a regulatory network that governs the 
female–male differentiation of the brain, as well as the neu-
robiology of social interactions [31].

Developmental processes are dependent 
on lncRNAs

LncRNAs are also known to be central in developmental 
processes where their altered regulation often promotes dis-
ease. Grote et al. identified the lateral mesoderm-specific 
lncRNA Fendrr which regulates the development of the 
heart and body wall of developing mouse embryos [21]. 
In a similar manner as many other lncRNAs, Fendrr binds 
chromatin-associated protein complexes, specifically PRC2, 
and recruits it to genes where PRC2 deposits Histone3 
Lysine27 trimethylation (H3K27me3) marks, leading to 
transcriptional repression. Concomitantly, Fendrr represses 
the Trithorax group/mixed lineage leukaemia complex 
(TrxG/MLL) at the same gene targets to prevent H3K4me3 
deposition, normally associated with gene activation. This 
work highlights the cell-type specificity yet crucial roles of 
lncRNAs, where their perturbation can have drastic conse-
quences on fundamental physiological processes such as 
organ development.

MAENLI (master activator of engrailed-1 in the limb) 
is a lncRNA whose transcriptional activity is important for 
the deposition of active histone marks (Fig. 4A). Its deletion 

causes a severe human Mendelian disease [2]. Allou et al. 
identified homozygous 27–63 kb deletions located 300 kb 
upstream of the engrailed-1 gene (EN1) on human chro-
mosome 2 in patients with a severe, recessively inherited 
congenital limb malformation featuring mesomelic short-
ening, syndactyly and ventral nails (dorsal dimelia). These 
deletions led to the loss of En1 expression in the limbs of 
mice and a similar phenotypic outcome. Interestingly, they 
identified an unknown limb-expressed lncRNA within the 
deleted region, which they termed Maenli and which is part 
of an En1 topologically associated domain, the central locus 
control element during embryonic limb development. The 
Maenli locus itself is essential to drive limb-specific En1 
activation in cis simply through its transcriptional activity. 
Mechanistically, Maenli transcription led to the deposi-
tion of H3K4me3 epigenetic marks on the En1 and Maenli 
loci and the surrounding regulatory landscape. A similar 
effect on limb malformation was also seen after depletion of 
lncRNA Hottip in mice [35] and chicks [68], where Wang 
et al. showed that active chromatin of the 5′ HOXA cluster 
was controlled by Hottip RNA [68].

Haematopoiesis and the immune system are 
controlled by lncRNAs

LncRNA FIRRE is a trans-acting lncRNA that regulates 
lymphopoiesis. Mice with Firre mutations have been 
shown to exhibit cell-specific lymphocyte phenotypes dis-
played by a reduction in the abundance of CD4 and CD8 T 
cells. Moreover, upon exposure to lipopolysaccharide, mice 
overexpressing Firre exhibited increased levels of the pro-
inflammatory cytokines TNFα, IL12-p40, and MIP-2 and 
impaired survival [38].

Morrbid is a cis-acting lncRNA tightly controlling the 
lifespan of neutrophils, eosinophils and classical monocytes 
in response to pro-survival cytokines in mice. Mechanisti-
cally, the lncRNA promotes the enrichment of PRC2 and 
H3K27me3 at the promoter of its neighbouring gene, the 
pro-apoptotic gene Bcl2l11 (BIM), which leads to repression 
of transcription. The lncRNA was found to be upregulated in 
individuals with hypereosinophilic syndrome, which is char-
acterised by a persistently elevated eosinophil count [34].

LncRNAs associated with aging

Aging is one of the main risk factors for numerous dis-
eases. Trembinski et al. identified the conserved lncRNA 
Sarrah (SCOT1-antisense RNA regulated during aging 
in the heart), also known as OXCT1-AS1, as downregu-
lated in aged mice and infarcted hearts [64]. Loss of the 
lncRNA impaired contractile force development in human 
engineered heart tissue. Sarrah was responsible for cardio-
myocyte survival as its silencing led to apoptosis while 
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its overexpression in mice improved their recovery from 
acute myocardial infarction. Mechanistically, the authors 
suggested that SARRAH forms RNA-DNA triplexes at 
gene promoters, which were downregulated after SAR-
RAH silencing. An induction of NRF2 and the binding of 
CRIP2 and p300 facilitated transcriptional activation of 
SARRAH target genes.

Another lncRNA involved in aging is NORAD, which 
protects the genome by reducing the activity of PUMILIO 
proteins. NORAD depletion leads to overactivation of 
PUMILIO proteins with augmented repression of a pro-
gram of target mRNAs that includes key regulators of 
mitosis, DNA repair, and DNA replication. Dysregulation 
of these genes could result in genomic instability in Norad-
deficient cells reflected by faster aging in animals. Such 
a relationship is putatively seen since PUMILIO levels 
increase with age while those of NORAD decrease [48]. 
The investigation of the physiological function of lncRNA 
Norad by Kopp et al. revealed that Norad depletion led to 
a degenerative phenotype characterised by increased alo-
pecia, gray fur, kyphosis and aging-associated pathologies 
within the central nervous system, which is the conse-
quence of genomic instability and mitochondrial dysfunc-
tion, explained by PUMILIO2 overexpression [33].

LncRNAs and their function in individual 
organ systems

The cardiovascular system

Cardiovascular disease encompasses a diverse range of 
pathologies that make it the number one cause of death 
worldwide [70]. It is therefore unsurprising that many 
lncRNAs have been studied in the context of cardiovascu-
lar physiology and pathophysiology.

The lncRNA MALAT1 is one of the few very highly 
expressed lncRNAs. Initially identified as a cancer bio-
marker [30], MALAT1 has diverse roles in multiple differ-
ent cancer types [62]. In the cardiovascular system, it was 
shown to be associated with atherosclerotic lesion forma-
tion in mice and with human atherosclerotic disease [10]. 
Reduced levels of Malat1 had pro-atherosclerotic effects, 
which resulted from an increased accumulation of haemat-
opoietic cells at the murine carotid artery vessel wall [10]. 
In failing hearts of mice, pigs and humans, expression of 
the lncRNA H19 was reduced and an H19 vector–based, 
cardiomyocyte-directed gene therapy was able to attenuate 
heart failure [66].

Figure  4   MAENLI, ANRIL, BACE1-AS1 and PCAT19 as examples 
of physiologically relevant lncRNA mechanisms. A For normal limb 
development, transcriptional activity of the MAENLI locus itself is 
required to activate EN1 expression. Homozygous loss or deletion 
of the MAENLI locus abolish its transcriptional activity leading to 
the loss of EN1 expression and limb malformation. B Linear ANRIL 
expression is increased in patients with coronary artery disease 
(CAD) patients and has pro-atherogenic functions through epigenetic 
rearrangements leading to altered expression of genes involved in ath-
erosclerosis. Circular ANRIL, whose expression is decreased in CAD 
patients, is important for controlling rRNA maturation to protect from 
over-proliferation of vascular cells. C LncRNA BACE1-AS increases 

the mRNA stability of BACE1, resulting in an increased protein 
level of the β-secretase, which produces amyloid beta 1-42. This in 
turn activates BACE1-AS expression in a positive feedback loop. D 
PCAT19 has two isoforms, a long and a short isoform. The short 
form is dominating and promoted by binding of the transcription 
factors NKX3.1 and YY1 to the short isoform promoter. Two risk 
SNPs for prostate cancer are located within the promoter of PCAT19-
short, preventing NKX3.1 and YY1 from binding. The SNP-affected 
PCAT19-short promoter switches to an enhancer, promoting the 
expression of PCAT19-long. PCAT19-long activates transcription of 
genes involved in cell cycle and the growth and metastasis of prostate 
cancer cells.
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Multiple studies have been performed on the Chr9p21 
locus, where numerous CAD risk SNPs accumulated within 
the gene encoding the lncRNA ANRIL (antisense non-
coding RNA in the INK4 locus). ANRIL is an example of a 
lncRNA locus transcribing multiple isoforms, two of which 
are highly physiologically relevant: a linear lncRNA and 
a circular RNA with opposing functions (Fig. 4B). Linear 
ANRIL has pro-atherogenic effects involving mechanisms 
with Alu elements important for epigenetic gene regulation; 
however, the circular ANRIL isoform has putative protec-
tive functions which are mediated by inhibition of circular 
ANRIL’s interaction partner Pescadillo Ribosomal Biogen-
esis Factor 1 (PES1), a member of the PeBoW (Pes1, Bop1 
and WDR12) complex. Inhibition of PeBoW leads to defects 
in rRNA maturation, increased nucleolar stress and activa-
tion of p53, which inhibits cell proliferation and increases 
apoptosis, whereas linear ANRIL confers overproliferation 
[26].

MANTIS is an example of a nuclear scaffolding lncRNA 
having a critical function in endothelial cells. Its depletion 
leads to a loss of the ability of endothelial cells to align 
in the direction of flow. Moreover, MANTIS is required to 
promote angiogenesis, limit inflammatory gene expression 
and maintain angiogenic capacity [36, 37]. Consequently, 
knockdown of MANTIS increased the adhesion of monocytes 
to endothelial cells in an ICAM-1-dependent manner. Statin 
therapy induced MANTIS in vitro and in patients with carotid 
artery disease. MANTIS also maintained the pleiotropic 
responses of endothelial cells to atorvastatin. Central to 
these effects is the interaction of MANTIS with the SWI/SNF 
chromatin remodelling complex member, BRG1. MANTIS 
guides BRG1 to its different effector genes, resulting in acti-
vation of pro-angiogenic gene expression and inhibition of 
inflammatory gene expression in endothelial cells [37].

LncRNA Mhrt is also connected to the chromatin remod-
eller BRG1. The lncRNA functions to limit cardiac hyper-
trophy by binding to and inhibiting the helicase domain of 
BRG1 to create a transcriptional feedback loop [22]. The 
inhibition of DNA-binding proteins is a common lncRNA 
mechanism of action that has profound effects on patho-
physiological outcome.

The lncRNA Caren (Cardiomyocyte-enriched transcript) 
is a prime example of a cytoplasm-enriched lncRNA with 
a pivotal role in the development of a highly complex dis-
ease. It protects against the development of heart failure in 
pressure-overloaded hearts by inhibiting Hint1. Hint1 is a 
tumour suppressor that activates the ATM kinase and the 
DNA damage response (DDR), a process that is prominent 
in cardiomyocytes of patients with heart failure. Caren’s pro-
tective effects are related to the inhibition of Hint1-mediated 
mitochondrial dysfunction and DDR signalling through 
ATM. At least in mice, the overexpression of Caren alone 
is sufficient to prevent heart failure [57].

The nervous system

lncRNA studies in the central nervous system have 
revealed a striking specificity of lncRNA expression in 
nervous tissue. Neurogenesis, the differentiation of neural 
stem cells (NSC) to neurons is a highly complex but well-
orchestrated process that involves multiple physiological, 
molecular and genetic pathways. It is becoming evident 
that lncRNAs provide an additional layer of molecular 
control and that this is particularly true in neurogenesis 
and the complex differentiation of the brain.

Pnky (previously called lnc-pou3f2) is an evolutionarily 
conserved and neural-specific lncRNA involved in embry-
onic and postnatal neurogenesis. Pnky interacts with the 
RNA splicing regulator PTBP1 to mediate the expression 
and alternative splicing of transcripts important for limit-
ing neural differentiation and neurogenesis [55]. PTBP1 
has the ability to drive brain tumour growth and invasive-
ness [18], exemplifying the importance of PTBP1 inhibi-
tion by Pnky. Other prominent lncRNAs such as RMST 
(rhabdomyosarcoma 2–associated transcript) [52], TUNA 
(Tcl1 Upstream Neuron-Associated lincRNA) [41] and 
Dali (DNMT1-Associated Long Intergenic) [6] also func-
tion in neurogenesis by physically interacting with proteins 
important for the regulation of neural gene expression. 
lncRNAs have also been shown to function in other cen-
tral nervous processes such as synaptogenesis. Expres-
sion of the Brain-Derived Neurotrophic Factor (BDNF), 
which is essential for neuronal differentiation, maturation 
and growth, is inhibited by the BDNF antisense lncRNA, 
BDNF-AS [51]. Malat1, mentioned above for its function 
in tumours and the cardiovascular system, also controls the 
expression of genes involved in synaptogenesis and syn-
apse function [4]. Many of the lncRNAs mentioned here 
are highly cell-type specific. On the other hand, MALAT1 
is ubiquitously expressed and has been shown to perform 
fundamental tasks in many cell types.

Given their roles in neuronal differentiation and devel-
opment, it stands to reason that lncRNAs are involved 
in diseases of the nervous system, like neurodegenera-
tion. For example, a central protein in the development 
of Alzheimer’s disease (AD), β-secretase (BACE1), pro-
duces the β amyloid plaques that are a hallmark of AD 
pathophysiology [11]. Interestingly, BACE1 expression 
is regulated to some degree by its antisense transcript, 
BACE1-AS (Fig. 4C). Disease-promoting factors such as 
amyloid-beta 1-42 upregulate BACE1-AS which promotes 
BACE1 expression and BACE1 mRNA stability to pro-
duce more amyloid beta 1-42 in a positive feedback loop 
[16]. This opens the possibility for RNA therapeutics tar-
geting BACE1-AS and therefore BACE1 expression, which 
itself has already been the focus of intense AD therapeutic 
research [9].
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The respiratory system

As mentioned above already, lncRNAs are required for tis-
sue and organ development, and this is also true for lung 
tissue. The lncRNA NANCI (Nkx2.1-associated non-coding 
intergenic RNA) associates with and promotes the expres-
sion of the Nkx2.1 transcription factor, which is crucial for 
pulmonary development and homeostasis. Loss of NANCI 
itself is not sufficient to limit development, since it is nor-
mally inhibited by Nkx2.1 in a negative feedback loop; how-
ever, mutations which impact both NANCI and Nkx2.1 lead 
to severe lung degeneration [25].

The lncRNA TYKRIL (tyrosine kinase receptor-inducing 
lncRNA) was found to be strongly upregulated in the pul-
monary arterial pericytes and smooth muscle cells (SMC) 
of patients with idiopathic pulmonary arterial hypertension 
(IPAH) [75]. TYKRIL was shown to promote proliferation 
under the hypoxic conditions that are characteristic of IPAH. 
Interestingly, knockdown of TYKRIL was found to increase 
p53 levels which consequently repressed platelet-derived 
growth factor receptor β (PDGFRβ), a known driver of SMC 
proliferation. As such, TYKRIL has a profound influence on 
the development of PAH. Many lncRNAs have been shown 
to interact with and regulate p53 [7]; however, TYKRIL is 
the first lncRNA demonstrated to mediate the p53/PDGFRβ 
axis specifically. This exemplifies the fact that individual 
lncRNAs are capable of mediating common RNA-binding 
proteins in a precise and distinct manner.

One study demonstrated that the lung tissue from smok-
ers with chronic obstructive pulmonary disorder (COPD) 
expressed 120 upregulated and 43 downregulated lncRNAs 
compared to smokers without COPD [12]. Similarly, smok-
ers without COPD expressed 87 upregulated and 244 down-
regulated lncRNAs compared to non-smokers. This study 
nicely illustrates that whole networks of lncRNAs can be 
differentially expressed in a cell-type- and condition-specific 
manner.

The digestive system

The intestinal barrier includes the chemical mucosal and 
physical epithelial layers that allow for selective absorp-
tion of nutrients, ions and water into the bloodstream. Bar-
rier integrity is upheld by the tight junction proteins which 
are tightly regulated through multiple signalling pathways; 
dysregulation of which predisposes to inflammatory bowel 
diseases and metabolic disorders. lncRNAs also play a role 
in the context of intestinal barrier integrity. For example, 
depletion of the lncRNA SPRY4-IT1 disrupted barrier integ-
rity by reducing the stability of mRNAs encoding tight junc-
tion proteins claudin-1, claudin-3, occludin and JAM-1 [71]. 
Similarly, the lncRNA H19, heavily studied in the cardiovas-
cular and cancer fields, is also involved in barrier integrity. 

H19 acts as a precursor for microRNA 675 (miR-675) which 
represses the expression and reduces the stability of tight 
junction proteins ZO-1 and E-cadherin through its interac-
tion with the RNA-binding protein HuR [79].

Zhang et al. identified the multi-functional lnc-LFAR1 
(liver fibrosis-associated lncRNA1) that promotes liver 
fibrosis, a disease characterised by extracellular matrix com-
ponent accumulation in the liver leading to hepatic dysfunc-
tion. Silencing of lnc-LFAR1 impaired hepatic stellate cells 
activation, reduced TGFβ-induced hepatocytes apoptosis 
and attenuated the CCl4- and bile duct ligation-induced liver 
fibrosis in mice. The authors revealed that Lnc-LFAR1 has 
multiple functions organising Smad2/3 binding, phospho-
rylation and induction to promote liver fibrosis leading to the 
activation of the TGFβ and Notch pathways [76].

Musculoskeletal system

By definition, lncRNAs should lack protein-coding potential. 
However, as in the case for the lncRNA Tug1 mentioned 
above, a peptide coded by the Myoregulin (MLN) lncRNA 
was shown to be important for skeletal muscle performance. 
MLN KO mice had improved skeletal muscle exercise per-
formance and muscle Ca2+ handling. The conserved micro-
peptide of the lncRNA, which encodes a transmembrane 
alpha helix with strong structural resemblance to phos-
pholamban and sarcolipin—direct interactors with SERCA 
in the sarcoplasmatic reticulum membrane—co-localises 
with SERCA and regulates Ca2+ handling by inhibiting 
SERCA pump activity [3].

As already mentioned for ANRIL, physiologically 
important SNPs are not restricted to protein-coding genes. 
Yang et al. identified a novel mutation on chromosome 2 
(rs3819316 C >T) in the lncRNA Reg1cp that is associated 
with elevated bone mass. Mutant Reg1cp increased the for-
mation of the CD31hiEmcnhi endothelium in the bone mar-
row to stimulate angiogenesis during osteogenesis. They 
identified Krüppel-like factor 3 (KLF3) as a protein interac-
tion partner of mutant, but not wild-type Reg1cp in human 
microvascular ECs, and showed that binding of KLF3 to 
its downstream target JUNB is reduced by mutant Reg1cp. 
Endothelial-specific Klf3 knockout mice also had increased 
CD31hiEmcnhi endothelium and bone formation [73].

Cancer development and progression

Given the expression of lncRNAs across all tissues and their 
involvement in fundamental cellular processes, it is unsur-
prising that lncRNAs have been linked to cancer develop-
ment and progression. Cancer is a highly complex disease 
whose hallmarks include, among others, immune evasion, 
genome instability, angiogenesis and sustained proliferation 
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[23, 24]. Databases such as Lnc2Cancer [19] and Cancer 
LncRNA Census [65] list lncRNAs already identified to be 
involved in cancer.

The lncRNAs PANDA, linc-p21 and LINC-PINT are 
lncRNAs that function to alter transcription factor activ-
ity and binding [13, 29, 47]. One of the main members of 
the coordinated response to genomic instability and muta-
tions arising from DNA damage is the p53 tumour suppres-
sor protein. Hung et al. sought to discover lncRNAs that 
impact p53-induced cell-cycle arrest [29] and found that 
the lncRNA termed PANDA (P21-associated ncRNA DNA 
damage activated) is upregulated by p53. Fibroblasts with 
PANDA knockdown displayed increased DNA damage, and a 
higher sensitivity to DNA damage–induced apoptosis. Inter-
estingly, PANDA interacted with the p53-downstream tran-
scription factor nuclear transcription factor Y subunit alpha 
(NF-YA), which bound more to its target genes after PANDA 
knockdown. These data suggested that PANDA, in response 
to DNA damage, represses NF-YA target gene binding and 
thereby blocks apoptosis to promote cell survival. Huarte 
et al. identified a p53-repressor and pro-apoptotic lncRNA 
termed lincRNA-p21 [28]. lincRNA-p21 functions as a medi-
ator of other p53 gene targets. Independent knockdowns of 
p53 or lincRNA-p21 revealed an overlap of 930 differen-
tially regulated genes, 80% of which were returned to nor-
mal expression levels after a double knockdown of p53 and 
lincRNA-p21. Mechanistically, lincRNA-p21 recruited and 
enabled the localisation of hnRNP-K as a p53-dependent 
repressor that drives the apoptotic response to DNA damage. 
Cancer cells often develop the ability to depart the primary 
tumour and invade other tissues and organs to form metas-
tases. The p53-regulated lncRNA LINC-PINT was shown to 
act as a tumour suppressor, owing to its ability to reduce the 
invasive and migratory potential of cancer cells [47]. LINC-
PINT overexpression was sufficient to downregulate many 
genes that drive invasion such as Early Growth Response 1 
(EGR1), Phospholipase D1 (PLD1), SERPINE1, Fibronec-
tin (FN1) and Integrin alpha 3 (ITGA3), with the upstream 
regulator identified as β-catenin. The mechanistic function 
of LINC-PINT is to recruit PRC2 to these invasion-related 
genes to repress their transcription.

LncRNA TERRA is recruited to telomeres where it stabi-
lises protein-telomere interactions [5]. Telomere shortening 
determines the replicative potential of cells [72]. Telomeres 
are repetitive sequences capping the ends of chromosomes; 
these become shorter with each cell division, eventually los-
ing the ability to protect the chromosome ends and inducing 
replicative senescence. Cancer cells often have higher levels 
of telomerase which can lengthen the telomeres and thereby 
circumvent telomere-induced replicative senescence, impor-
tant to maintain cancer cell replicative immortality [59]. A 
highly conserved lncRNA termed TERRA (telomeric repeat-
containing RNA) is transcribed from telomeres and acts in 

trans as indicated by its ability to regulate telomeres on other 
chromosomes in addition to that from which it was tran-
scribed. TERRA is recruited to telomeres and stabilises the 
interaction of proteins with telomeres. As well as regulat-
ing telomerase directly, TERRA can also form RNA-DNA 
hybrid structures known as R-loops at telomeres to induce 
homologous recombination and delay senescence. This has 
been proposed as the mechanism by which telomeres are 
preserved in the 10% of cancers that do not have elevated 
telomerase levels [5].

PCAT19 (prostate cancer associated transcript 19) is 
another example of a lncRNA whose SNPs have been linked 
to pathophysiological effects (Fig. 4D). The gene encoding 
lncRNA PCAT19 contains a single-nucleotide polymor-
phism (SNP) that differentially regulates the expression of 
a short and long isoform of PCAT19 [27]. The presence of 
the SNP variant decreases the binding of transcription fac-
tors NKX3.1 and YY1 to the PCAT19-short promoter that 
switches to an enhancer and upregulates the PCAT19-long 
isoform. This long isoform of PCAT19 binds hnRNPAB to 
activate the transcription of genes involved in cell cycle and 
the growth and metastasis of prostate cancer tumours. Sus-
tained proliferation is one of the central characteristics of 
cancer cells.

Conclusion and outlook

The remarkable progress in the field of lncRNA research 
has provided evidence that lncRNAs are highly relevant for 
physiology, development and behaviour. As such, lncRNAs 
are implicated in a number of diseases, often by fine-tuning 
gene regulation. Due to their extensive number of features, 
functions and expression patterns, there is no doubt that 
lncRNAs offer a great potential and perspective for future 
interventions such as tissue regeneration and personalised 
medicine. LncRNA research could lead to innovations that 
engineer synthetically active lncRNAs for RNA-based 
therapeutics.

As is the case for protein-coding genes or other ncRNAs, 
lncRNAs are more than just biomarkers; they are potentially 
highly specific therapeutic targets [69]. Antisense oligo-
nucleotides targeting natural antisense transcripts (NATs) 
are an interesting option and showed promising preclini-
cal results. These so-called antagoNATs were used for gene 
reactivation in the central nervous system and upregulated 
brain-derived neurotrophic factor and the healthy allele of 
sodium voltage-gated channel alpha subunit 1 [69]. Not only 
does this underline the fundamental roles that lncRNAs can 
play, but it also highlights their potential druggability in 
many disease scenarios.

Only a relatively small fraction of lncRNAs has been 
studied so far with the physiological roles of the majority of 

199



Pflügers Archiv - European Journal of Physiology (2022) 474: –191 204	

1 3

lncRNAs remaining unknown. Current research is just begin-
ning to examine whether lncRNA genomic loci are function-
ally independent of the RNA transcript and whether small 
peptide-coding RNAs add an additional layer of regulation 
to the system. This raises important questions surrounding 
the multiple functions of lncRNAs, e.g. on genomic locus-, 
transcript- and peptide-levels. Many lncRNAs are species- 
and tissue-specific, indicating that the role of transcriptional 
activities around the lncRNA loci, the chromatin architecture 
and regulatory sequence elements within or closely attached 
to lncRNA gene bodies could be important. Additionally, 
the structural features of lncRNAs need to be considered. 
Future studies will also reveal the physiological importance 
of lncRNA-containing phase-separated condensates, RNA 
modifications and certain lncRNA isoforms at the single-cell 
level. The classification of this large group of ncRNAs will 
also be simplified once a more complete picture of lncRNA 
biology exists. This could be based on their functionality, 
processing, structural features and interaction with other 
RNAs, DNA or proteins. Here, lncRNA databases should 
take centre stage.

There is no doubt that the progress of lncRNA research 
will lead to a better understanding of physiological and 
pathophysiological processes, their fine-tuning and epige-
netic control, which can then be used interdisciplinarily to 
advance therapies and to improve disease outcome.

Glossary

Alu elements   Short stretches of repetitive DNA that act 
as transposable elements (mobile genetic elements that can 
move around the genome). Alu elements are located across 
the genome and are believed to be functionally relevant, 
particularly in the generation of new genes in the process 
of evolution.

cis-acting lncRNAs   lncRNAs that regulate gene activity 
at the same locus from which the lncRNA is transcribed.

Functional elements   Regions of DNA that have a known 
regulatory function such as promoter regions where tran-
scription factors bind to initiate gene transcription; and 
enhancers where molecules bind to potentiate the activation 
of an associated gene.

Histone modifications   Covalent post-translational modi-
fications of the histone proteins that comprise the nucleo-
some (the basic functional unit of chromatin). Histone modi-
fications include acetylation, methylation, phosphorylation, 
sumoylation and ubiquitylation to name a few and can regu-
late the transcriptional state of a gene.

m7G 5′ cap   A methylated guanine nucleotide with a 
triphosphate linkage on the 5’ end of primary RNA tran-
scripts. This 7-methylguanylate (m7G) functions in nuclear 

export, intron excision, inhibition of degradation and transla-
tion in the case of mRNAs.

Oligonucleotide   Short stretches of DNA or RNA that 
have a wide range of applications in molecular biology 
research.

Poly-A tail   Stretch of RNA consisting exclusively of 
adenine bases. Important for RNA stability, termination of 
transcription, nuclear export and translation.

R-loop   Three-stranded DNA:RNA structure consisting 
of two antiparallel DNA strands and an RNA strand. R-loops 
are involved in gene regulation and genome stability.

SNP   SNPs (single-nucleotide polymorphisms) are sub-
stitutions of a single nucleotide in the genome. The majority 
of SNPs have no functional consequence but some can influ-
ence gene regulation and ultimately disease development, 
depending on their precise location.

Splicing   The process whereby introns are removed from 
a primary RNA transcript and the exons joined to form the 
mature RNA transcript.

trans-acting lncRNA   lncRNAs that leave their site of 
transcription to function elsewhere in the cell.

Triplex   Three-stranded oligonucleotide structures of 
DNA:DNA:RNA in which the RNA occupies the major 
groove of the DNA and binds through Hoogsteen pairing 
with the purines of the Watson-Crick basepairs.
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