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Abstract
Sleep is one of the most ubiquitous but also complex animal behaviors. It is regulated at the global, systems level scale by
circadian and homeostatic processes. Across the 24-h day, distribution of sleep/wake activity differs between species, with global
sleep states characterized by defined patterns of brain electric activity and electromyography. Sleep patterns have been most
intensely investigated in mammalian species. The present review begins with a brief overview on current understandings on the
regulation of sleep, and its interaction with aging. An overview on age-related variations in the sleep states and associated
electrophysiology and oscillatory events in humans as well as in the most common laboratory rodents follows. We present
findings observed in different studies and meta-analyses, indicating links to putative physiological changes in the aged brain.
Concepts requiring a more integrative view on the role of circadian and homeostatic sleep regulatory mechanisms to explain
aging in sleep are emerging.
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Both aging and sleep affect as well as depend upon complex
mechanisms involving processes at different structural levels.
At the global level, the ventrolateral preoptic nucleus located
in the hypothalamus has long been considered the sleep cen-
ter. However, the existence of wake-sleep regulatory circuits
within the hypothalamus, brainstem, and basal forebrain, char-
acterized by functionally specific cell types, has since been
disclosed. Findings show that no one nucleus contains only,
e.g., sleep-active neurons, but that functionally specific mostly
GABA and glutamatergic cell types are co-distributed with
varying predominance in different regions or nuclei [46].
The discharge of these cells is regulated by neuromodulators
such as acetylcholine, orexin, or norepinephrine, which vary
in their action and efficacy. For instance, non-synaptic release
of norepinephrine from neurons of the locus coeruleus (LC)
enables spatially widespread efficacy, while, at the same time,

LC neuronal activity occurs phase-locked to the sleep slow
oscillation [86]. In the case of orexin, activity is key for main-
tained wakefulness, as indicated by the characteristic wakeful-
ness deficit in narcolepsy when hypothalamic orexinergic ac-
tivity is impaired [47]. Ascending fibers innervate the neocor-
tex and hippocampus which reflect changes in behavioral state
and neuronal activity as well as age-dependent modifications
[e.g., 59, 77]. Due to their laminar cytoarchitecture, the neo-
cortex and hippocampus can generate far field potentials, and
their electrophysiological signals, especially brain rhythms of
the electroencephalogram (EEG), are readily used to assess
sleep states in mammals.

In general, large-scale age-related structural changes such
as cortical thinning, white matter degeneration, neurotransmit-
ter dysregulation, and/or receptor distribution affect sleep and
its electrophysiological representation [27, 78, 120]. Age-
related alterations of many structures and basic physiological
mechanisms addressed in this volume likely also affect sleep
and sleep/wake processes, e.g., astroglial aging (Verkhratsky
& Semyanov, this volume) and changes in energy metabolism
(Lushchak, this volume) as well as in vascular and hemody-
namic properties (Robinson, this volume). Furthermore, we
refer here to some comprehensive recent reviews on sleep-
associated age-related changes in the transcriptome and on
epigenetic aging [2, 38, 39, 98].

Sleep is endowed with a multitude of functions, not only
neuronal, e.g., memory consolidation or synaptic
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downscaling, but also at immune and metabolic levels [4, 53,
63, 99, 107]. In fact, strong evidence suggests that brain
rhythms during sleep are more than merely correlates of neu-
ronal activity. In particular, the slow oscillations of non-rapid
eye movement sleep (NREMS) are suggested to support im-
mune function [5] and serve waste clearance by reinforcing
the glymphatic system function [3]. More recently, studies
lend evidence to a restorative function of sleep for the ge-
nome, e.g., for DNA break down repair [69].

We aim here to highlight the most robust findings on the
impact of aging on sleep in three mammalian species (Fig. 1)
as assessed by brain electric activity. The first section gives an
overview on the regulation of sleep and the second to fourth
on age-related effects on sleep EEG in humans, laboratory
mice, and rats respectively.

Regulation of sleep

How is sleep regulated? The most widely used conceptual
model for sleep regulation for the timing and intensity of sleep
at the systems level is the Two Process Model by Borbély,
first published in 1982 and extensively updated in 2016 [9]. At
its core, sleep is regulated by the interaction of a process
controlled by the circadian pacemaker C (Process C) and a
homeostatic process S (Process S). Thus, effects of aging on
functions within either of these two processes may affect
sleep. Relevant EEG markers for Process S are slow wave

activity (SWA), and theta activity. Both frequency bands re-
veal regional differentiation, putatively linked to plasticity-
related processes of learning during wakefulness and synaptic
homeostasis during sleep [9, 44]. The homeostatic increases in
SWA in response to prolonged prior wakefulness are blunted
in older relative to younger subjects in humans [55, 61, 70]
and rodents [17, 51, 65, 82, 101]. Features of slow waves are
discussed below.

The major substance ascribed a homeostatic, centrally me-
diated function in Process S and expressed in magnitude of
EEG slow wave activity is adenosine. Neuronal activity dur-
ing waking leads via neuro-glial circuitry to a global incre-
ment in extracellular adenosine concentrations, with a de-
crease adenosine occurring during the rest phase [6, 9].
Aging is suggested to impact homeostatic function in cortical
and subcortical regions by modulating production of adeno-
sine, reduced binding sites, binding potential, or efficacy [15,
27, 68, 71, 78]. Recently, using optogenetic activation, gluta-
matergic neurons in the basal forebrain were found critically
involved in this sleep homeostatic dynamics of adenosine
[84]. Mainly protein levels of vesicular glutamate transporter
2 (vGluT2), which transports glutamate into secretory vesi-
cles, reveal age-related changes [94]. Together with the find-
ing that sleep/wake activity drives posttranscriptional process-
es in forebrain synaptosomes [75], an age-dependent shift in
transcriptional vs. posttranscriptional activity may contribute
to aging sleep [48].

Which processes are associated to Process C? Melatonin
and core body temperature represent the dominant markers of
the central pacemaker, the suprachiasmatic nucleus (SCN).
The melatonin nocturnal level is strongly reduced from young
to middle-aged/elderly [109, 121]. The circadian core body
temperature rhythm is also weakened in aging [111]. Both
the circadian phase of melatonin and of core body temperature
are reported to move earlier, i.e., phase advance, with age as
compared to young adults, yet age-related changes in sleep
timing are not attributed to a shortening of circadian period
[25]. Common to humans and most rodents, a decrease in
amplitude or functional impairment in circadian rhythm is
observed, which some studies indicate result from age-
related changes in the molecular machinery of the SCN and
non-SCN clocks [18, 23, 73, 114, 119].

A study by Cajochen and colleagues [10] compared age-
related changes in the circadian and homeostatic regulation of
sleep between elderly and young adults and concluded that
weaker circadian regulation rather than homeostatic regulation
underlies age-related changes in sleep. They measured signif-
icantly reduced melatonin secretion, reduced circadian modu-
lation of rapid eye movement sleep (REMS), and sleep spindle
frequency, but homeostatic responses (measured as SWA re-
sponse to different levels of sleep deprivation) were only se-
lectively reduced, i.e., over the frontal cortex. This relatively
stronger effect of age-related changes in Process C than in

Fig. 1 Comparison of the normal sleep architecture during the inactive
sleep period of the three species discussed in this review. Lights out was
at 0 h for the human subject and sleep was recorded during 8 h. The
rodent species were held on a 12:12 L:D regime, with lights on
depicted at 0 h and sleep recorded through 12 h. Sleep architecture is
determined from EEG and electromyography recordings. Note the
typical difference in sleep cycle lengths across species. W wake, REM
rapid eye movement sleep, stages N1–N3 in human sleep; W wake, R
rapid eye movement sleep, N non-rapid eye movement sleep in the rodent
species. Rat data were kindly provided by Gina R. Poe, University of
California, Los Angeles (UCLA)
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Process S is reflected in other studies on circadian-sleep inter-
action. Sleep in older as compared to younger subjects is
much more vulnerable to circadian misalignment [25], which
might be due to a reduced sensitivity or responsiveness of the
suprachiasmatic nucleus (SCN) to environmental cues and
non-image forming functions to light [20, 26].

One major hub for the interaction of aging circadian and
homeostatic functions is the hypothalamus and related sys-
tems [49, 90]. For instance, melatonin directly inhibits several
responses to the adrenocorticotropic hormone (ACTH) in the
human adrenal gland, such as cortisol and progesterone pro-
duction [11]. Cortisol is the peripheral end-point of the neu-
roendocrine hypothalamic-pituitary-adrenocortical system
that interacts reciprocally with the hypothalamic-pituitary-
somatotrophic system, thus suggesting convergent age-
dependent regulators of sleep-related hormone secretion and
sleep EEG [40, 105, 108]. Thus, any of the above structures or
functions that change over the course of a lifespan can thereby
clearly impact sleep. In the original Two Process Model,
Processes C and S were regulated independently and repre-
sented global entities only. Advances at the biochemical and
molecular level have deepened our understanding on the com-
plexity of sleep regulatory processes and disclosed common
signaling pathways for regulation of the two global processes
[52]. Non-SCN circadian clocks in the brain and in the periph-
ery affect sleep [31, 34, 66, 90]. Moreover, extra-SCN clock
gene expression in the brain, especially in the cortex, is de-
pendent upon prior sleep-wake activity [9, 19]. In fact, Noya
and colleagues revealed that gene expression in synapses is
regulated in a circadian fashion while gene translation occurs
in response to sleep/wake activity [75].

Furthermore, the concept of an essential contribution of
local to global sleep has arisen [52]. Most intensely investi-
gated (local) sleep regulatory substances, i.e., substances that
are synthetized or released in an activity-dependent way, and
involved in homeostatic regulation are proinflammatory cyto-
kines, such as tumor necrosis factor alpha and interleukin 1b,
or nitric oxide. These substances and/or their signaling cas-
cades reveal age-dependent changes [29, 37, 53, 54].

Age-related effects on sleep EEG in humans

We define healthy aging human subjects in accordance to a
review by Scullin [100] as ≥ 60 years old, with young and
middle-aged defined as < 30 years and 30–60 years old, respec-
tively. A meta-analyses by Ohayon and colleagues [76] includ-
ing way over 20 studies used slightly different borders, and
included in addition a group of old elderly (≥ 70 years). Of all
polysomnographic features, only sleep efficiency, i.e., the ratio
of total sleep time (TST) compared to the total time in bed, was
lower in this group, attributed most likely to increased sleep
fragmentation: From 30 to 60 years of age, wake after sleep

onset increased strongly, by about 10 min per decade, and re-
vealed a strong effect size in the meta-analyses of Ohayon and
colleagues. However, after the age of 60, neither TST, times
spent in the different sleep stages, nor wake time after sleep
onset changed significantly.

Martin and colleagues reported a moderate increase in
sleep latency, i.e., the time required after lights out to reach
sleep, with age [64]. Increases seem most apparent within the
years after the 30s [58, 76]. Overall, from young to elderly, the
amount of time spent in slow wave sleep (SWS) and REMS
decreases, whereas time in lighter NREMS stages N2 and N1
increases [13, 58, 64, 76]. Interestingly, although effects of
aging within males and females were generally similar, in
the meta-analyses by Ohayon and colleagues [76], larger ef-
fect sizes were observed for women in TST, sleep efficiency,
and percentage in stage 1 sleep, meaning that age effected
these parameters in women more strongly than in men.
Women revealed longer TST but also longer sleep latency,
than similarly aged men. However, they revealed a greater
percentage of SWS as well as less percentage of stage 2 sleep.
Despite differences in magnitude in some parameters, the di-
rection of change in both genders was similar. It appears gen-
der differences more than an interaction between gender and
age exist [36]. Not considered in this review are the interac-
tions of sleep with menstrual cycle and sex-related circadian
variations [8]. A lower percentage of time spent in REMS is
frequently reported in middle-aged compared to young sub-
jects, but no further decrease in elderly [60, 62, 64].

It is to note that not all studies comparing nocturnal sleep in
elderly with that of younger adults mention in the methods
whether daytime napping occurred. As discussed intensely by
Li et al. [58]. this is no trivial matter, since napping effects
Process S. Napping is more frequent in older subjects, yet omis-
sion of habitual napping for experimental purposes may bias
results, if we are interested inmeasuring “normal sleep behavior”
within a 24-h period. Obviously, permitting habitual naps influ-
ences nocturnal sleep drive, and the ability to match parameters
of napping such as time of day and duration presents a further
challenge. Cognitive performance and physiological (e.g., car-
diovascular) functions have been associated positively with nap-
ping, thus potentially introducing a further bias when including
or excluding habitual nappers [30, 67, 74]. In addition to changes
in spontaneous sleep, aging may involve a decreased capacity to
respond or decreased sensitivity to the accumulation of wake-
associated substances. Several studies report that nocturnal sleep
deprivation is associated with less SWS rebound in middle-aged
than young adults [36, 93].

Information provided from sleep stages and the amplitude
or power of EEG brain rhythms is often complimentary.
Consistent with reductions in time spent in SWS, spectral
power of slow wave activity (SWA, < 4 Hz) is reduced in
middle-aged and further in older compared to young adults
(reviewed in [61]). The slow wave/slow oscillation features
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amplitude and density largely decrease with aging [13, 24, 61,
cp. Fig. 2]. Decreased SWA and thus glymphatic system func-
tion may potentially lead to increased accumulation of toxic
brain waste. Notably, several lifestyle factors aside from sleep
also influence the glymphatic system [88].

In the course of the night, slow wave slope typically be-
comes less steep with decreased homeostatic drive [89]. In
middle-aged as compared to younger subjects, nocturnal slow
wave slopes are decreased, even after controlling for the effect
of slow wave amplitude [13]. Absolute theta power was like-
wise reported to decline with age in nocturnal sleep within the
first sleep cycles [36]. Studies imply that slow wave and theta
activity share cortical network properties [32, 50].

Whereas N2 duration characteristically increases with age,
after reaching a maximum density, duration, and length of
sleep, spindles decrease, however with different dynamics.
Whereas spindle density declines steadily from adolescence
onward to old age, spindle amplitude peaks during childhood
and decreases steadily with age. Spindle length peaks already
early in life. From young adults to elderly, spindle topography
shifts from a wider to a narrower distribution restricted to
central sites [16]. In general, the decrement from young to
middle-aged adults in spindle power, spindle density and am-
plitude, slow wave power, amplitude, density, and slope oc-
curs predominantly over frontal/prefrontal regions (Fig. 2)
[61, 64, 104]. Impaired spindle features have been speculated
to be associated with both reduced white and gray matter and
thalamocortical circuit changes (Fig. 2) [16, 61, 62]. In fact,

selective atrophy within the medial frontal cortex in older
adults predicted a lower degree of SW-spindle coupling of
subjects [42].

Chronobiological age and studies in rodents

Rodents are nocturnal animals and sleep mostly, but not only,
during the day in short periods with frequent short awakenings
[103, 113, c.p. Fig. 1], thus studies on sleep usually investigate
the whole 24-h light-dark phase. In laboratory animals, typi-
cally a 12:12 light regime, consisting of 12-h light (inactive)
phase and 12-h dark (active) phase, is maintained. The
lifespans of mice with about 24 months [45] and of rats with
about 3 years [87] are significantly shorter than of humans.
Adult mice are mature at an age of 3–6 months, which corre-
sponds to young adults between 20 and 30 years. Mice of 10–
14 months are considered middle-aged corresponding to
humans between 38 and 47 years and old mice range from
18 to 24 months corresponding to 56–69 years in humans
[33]. Adult rats are mature at 6–12 months, middle-aged at
about 18 months, and old at an age above 24 months [1].
However, as in human studies, defined age ranges differ be-
tween research groups.

Methods utilized for measuring the electrophysiological
activity during sleep in laboratory rodents differ from typical
human measurements. Human scalp electrodes assess the ac-
tivity of larger cortical networks as compared to the invasive

Fig. 2 Age-related modulations
in slow wave activity and sleep
spindle density in humans
predominate over frontal cortical
regions. a Representative head
plots of slow wave activity (< 4.6
Hz, absolute power as measured
in μV2; left) and density (number
of SW/min; right); warmer colors
indicate higher values. The
middle topoplots reveal the
topographical differences in EEG
activity between young and older
human adults in which the cooler
colors indicate greater
differences. b Differences in the
aged EEG activity in the fast sleep
spindle density (13.5–15 Hz;
bottom left) and slow sleep
spindle density (12–13.5 Hz;
bottom right). Figure taken and
modified with permission from
Mander and colleagues, Neuron
(2017) 94 (1):19–36 [61]
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EEG electrodes in rodents. Local field potential recordings
reflect activity of even smaller networks [21, 65].

Age-related effects on sleep
electrophysiology in mice

Most investigations on aging were conducted with the C57BL
strain [28, 65, 72, 82, 102, 103, 115, 117] while a few studies
investigated other strains, e.g., DBA/2J [28], the wild type
from Tg2576 [43], or CBA/J [83]. Age-related changes in
sleep EEG have been observed (see below), albeit they differ
slightly among strains [28, 41]. Furthermore, almost all stud-
ies except for one [43] investigated male mice. Sleep in both
sexes was analyzed and compared only once by Sigalas and
colleagues [102]. In general, measured sleep parameters
across research groups are less consistent than in human re-
search; thus, degree of generalization is lower.

The most consistent result among studies is an increase in
NREMS at old ages across a 24-h period [65, 103, 115, 117].
This increment in NREMS corresponds mostly to the augmen-
tation of NREMS during the dark phase [82, 103, 115, 117].
Decreased time spent awake, again especially during the dark
phase, appears characteristic of aged mice [65, 82, 103, 115,
117]. TST across a 24-h period measured by electrophysiology
[65] and by piezoelectric tracking of activity by Paulose et al.
[83] also increased with age. Overall, there were no significant
changes in REMS time with age in mice (Fig. 3) [65, 103, 117].

Similar to humans, mice present more fragmentation in
their sleep during healthy aging. When analyzing sleep and
wake bouts (bout refers to the consecutive epochs of a given
stage), most studies reported difficulties in wake maintenance

and higher sleep pressure that is more evidenced during the
dark phase [72, 82, 115, 117]. Whereas SWA in the dark
phase is often increased in aged mice [65, 82], Wimmer
et al. measured a decrease in the relative SWA during the dark
phase [117]. An increase in sleep pressure introduced by sleep
deprivation, produced in older animals a lower rebound in
SWA or a reduced decay rate, suggested to reflect a reduced
capacity toward a homeostatic recovery process [41, 65, 82].
To specifically investigate homeostatic features, Panagiotou
and colleagues measured slow oscillation/slow wave parame-
ters, and found an increased amplitude and steeper amplitudes
underscoring the concept that healthy older mice live under a
condition of higher sleep pressure [82]. Theta activity during
wakefulness is a correlate of arousal and is reported to posi-
tively correlate SWA [112]. Theta peak frequency during
REMS in the light phase as well as during wake in the dark
phase was slower in older mice suggesting reduced vigilance
[117], but no other significant differences were observed for
REMS [82, 117].

As detailed by McKillop and colleagues, differences in
sleep with aging between humans and mice are associated
with their discrepant ecological roles, brain/body size, and
metabolism [65]. At a finer scale, not only different strains
but substrains of wild-type mice reveal significantly different
behavior which may well impact sleep and the expression of
aging [12, 35]. As in humans, sleep EEG in old mice may be
modulated by external variables such as exercise [81], diet
[79], and light regime [80].

Two of the studies investigating age-related effects on
sleep EEG in mice performed their experiments in vitro using
brain slices. Sigalas et al. [102] analyzed the barrel cortex in
slices with a thickness of 400 μm and found a shortened du-
ration of the UP states in the old group, but no differences in

Fig. 3 Age-related differences of sleep states within a sleep-wake cycle
of undisturbed sleep in C57BL/6J mice. Diagrams show the time course
of wake (left), NREMS (central), and REMS (right) in percentage (mean
± SEM) across a 24-h recording period. White and gray top bars indicate
the light (inactive) and dark (active) phases, correspondingly.
Comparisons are made between early adults (EA, blue), late adulthood
(LA, cyan), and old adults (OA, purple) with significant differences

comparing EA vs LA (blue), LA vs OA (cyan), and EA vs OA
(purple). Data indicate that old mice had a significantly decreased wake
and increased NREMS time as compared to younger animals, an effect
that is more evident during their active phase. Figure taken and modified
with permission from McKillop and colleagues, J Neurosci (2018)
38(16):3911–3928 [65]
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either UP states’ density, slow oscillation peak amplitude,
peak latency, or in the relative power of the frequencies within
the delta to gamma bands. On the other hand, in stratum
pyramidale of the CA1 area in hippocampal slices (450 μm
thickness), Hermann et al. [43] found a decline in both the
sharp wave frequency and the ripple oscillation energy with
age that can be explained by a loss in synaptic strength and
presynaptic plasticity in the area.

Naidoo and colleagues found a failure of wake orexinergic
and noradrenergic neurons in aged mice to increase activity
(as measured by c-fos) in response to sleep deprivation, with
activity significantly lower than in young mice. This de-
creased responsiveness of wake active neurons may contribute
to wake instability (e.g., shorter duration of wake bouts in the
active phase) and dysregulation in the wake/sleep rhythm in
aged mice [72]. Orexin (hypocretin) knockout mice, which
serve as a model for narcolepsy [14], a sleep disorder in which
a loss of orexin has been observed in humans [85, 106], show
an increment in sleep intrusion episodes and hypersomno-
lence during the dark phase. A lower sensitivity to sleep pres-
sure in aging is supported by findings of reduced adenosine
A1 receptor levels in the hippocampus, cortex, basal ganglia,
thalamus, and cerebellum of old mice [27, 78].

Age-related effects on sleep
electrophysiology in rats

The effect of healthy aging in the sleep electrophysiology has
been investigated in different strains, such as Fisher 344 rats
[51, 71, 92, 101, 116], Sprague-Dawley [101, 118], Wistar
[17, 110], and Long Evans [57, 96]. All studies were per-
formed in males, except the study by Kostin et al. [51] that
used and compared both sexes. Since strain differences in rat
sleep have been discovered [91, 101], the age-related effects
will be described by strain.

Results on aging in Fisher 344 male rats differ to some
extent. Wake time was increased with age within 24 h [92],
although Kostin et al. specified that this effect is observed in
quiet wake and not in active wake [51]. NREMS remained
unchanged with age during 24-h recordings [92, 101], how-
ever was reported to decrease during the light phase and
increase during the dark phase in another study [51].
REMS time was decreased with age across 24 h in the early
study [92]; however, recent studies observed a decrease in
REMS only during the light phase [51, 101]. Despite the
maintenance of NREMS, Shiromani and colleagues ob-
served a decrease in delta power across 24 h [101], whereas
similar to findings for NREMS, Rosenberg et al. [92] failed
to find age-related differences in any frequency band.
Similar to humans and mice, in Fisher 344 disturbed
sleep-wake regulation with age was reflected by a more
fragmented sleep with wake and sleep intrusions [51, 71,

92]. When sleep macrostructure across the lifespan was an-
alyzed in females, the main difference to males was that
aged Fisher 344 females had an increment in REMS during
the dark phase [51]. Interactions with external variables
were reported for aged F344 rats. For instance, exercise
had positive consequences in the sleep EEG from old
F344 rats [7]. However, no differences were observed when
F344 rats were fed a hypocaloric diet [95].

Recordings of hippocampal ripple activity from the CA1
using tetrodes in male Fisher 344 rats demonstrated that the
mean frequency of the ripples (90–240 Hz) was decreased by
age, but not ripple density or duration [116]. Aged Fisher 344
rats reveal reduced extracellular levels of orexin (hypocretin,
measured in their cerebrospinal fluid) [22]. In vivo
microdialyses measured lower sensitivity of the adenosine
A1 receptor in the basal forebrain of old Fisher 344 rats [71]
reducing the somnogenic activity of adenosine [e.g., 56].

Male Sprague-Dawley rats showed no age-related differ-
ences in wake time, TST, NREMS, REMS, and number or
duration of sleep and wake bouts or in the EEG spectral power
of delta (0.5–4 Hz), SWA (2–8 Hz), or theta (6–9 Hz) [101,
118]. These results manifest the strain differences that can be
found in the sleep EEG data in aged rats, even using the same
experimental conditions.

Two studies investigated effects of aging in male Wistar
rats; however, they used different analyses and comparison is
difficult [17, 110]. Clément and colleagues found across 24 h
more sleep fragmentation with age evidenced by a greater
number yet shorter REMS episodes, and during the dark phase
shorter wake episodes, more wake, NREMS, and REMS ep-
isodes [17]. In contrast, Van Gool and Mirmiran [110] found
age-related changes during the light phase: more wake and
less REMS. Delta (0.5–4 Hz) absolute power was found to
be decreased only in a more recent study [17] while no chang-
es were observed with age in theta power (4–11 Hz) [17, 110].
As observed in mice and in Fisher 344 rats, levels of orexin
[97] and adenosine A1 receptor in the cortex are reduced in
aged male Wistar rats as measured by histochemistry and
analysis of their gene expression, respectively [15].

Similar to aging humans and mice, the three rat strains
discussed above revealed a reduced compensatory increase
in SWS or SWA after experimental sleep deprivation [17,
51, 101] indicating an altered homeostatic process of sleep
with age.

Satinoff et al. [96] studied old Long Evans rats from both
sexes and found an alteration in the peak neuronal discharge
from the SCN, altering the circadian regulation and promoting
sleep-wake instability. When studying only old female Long
Evans rats, the age-related differences in sleep EEG parame-
ters were observed with a decreased amplitude of the circadian
rhythm of body temperature [57]. We are not aware of any
further studies specifically targeting sleep in aging Long
Evans rats.
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Conclusion

Effects of aging on brain electric activity in sleep are more con-
sistent in humans than in rodents, revealing a need for more
systematic studies on aging in rodents. Although sleep fragmen-
tation is seen by humans and rodents alike, rodents do not reveal
the distinguished age-related change in NREMS during the light
(inactive) phase. Mice rather reveal increased sleep during the
dark (active) phase denoting an increased homeostatic sleep
drive, whereas aged humans express a reduced homeostatic sleep
need. Yet in humans, systematic investigations on the interaction
between homeostatic effects on both napping and nocturnal sleep
and circadian process are required. Across species, a deficit in
research on female subjects also prevails, a challenge to be over-
come. Given the relevance of sleep for basic physiological func-
tions, putative impacts on or interactions with sleep regulation
require more intense research. Future research should build on
findings underscoring not only system level but also recently
disclosed molecular interactions between circadian and homeo-
static processes. Translational research must hereby consider es-
sential species-specific differences in regulatory mechanisms.
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