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Abstract
Purpose  An indication for surgical therapy includes balancing benefits against risk, which remains a key task in all surgical 
disciplines. Decisions are oftentimes based on clinical experience while guidelines lack evidence-based background. Various 
medical fields capitalized the application of machine learning (ML), and preliminary research suggests promising implica-
tions in surgeons’ workflow. Hence, we evaluated ML’s contemporary and possible future role in clinical decision-making 
(CDM) focusing on abdominal surgery.
Methods  Using the PICO framework, relevant keywords and research questions were identified. Following the PRISMA 
guidelines, a systemic search strategy in the PubMed database was conducted. Results were filtered by distinct criteria and 
selected articles were manually full text reviewed.
Results  Literature review revealed 4,396 articles, of which 47 matched the search criteria. The mean number of patients 
included was 55,843. A total of eight distinct ML techniques were evaluated whereas AUROC was applied by most authors 
for comparing ML predictions vs. conventional CDM routines. Most authors (N = 30/47, 63.8%) stated ML’s superiority in 
the prediction of benefits and risks of surgery. The identification of highly relevant parameters to be integrated into algorithms 
allowing a more precise prognosis was emphasized as the main advantage of ML in CDM.
Conclusions  A potential value of ML for surgical decision-making was demonstrated in several scientific articles. However, 
the low number of publications with only few collaborative studies between surgeons and computer scientists underpins 
the early phase of this highly promising field. Interdisciplinary research initiatives combining existing clinical datasets and 
emerging techniques of data processing may likely improve CDM in abdominal surgery in the future.

Keywords  Abdominal surgery · Machine learning · Clinical decision-making · Risk prediction · Postoperative 
complications · Digitalization

Introduction

Abdominal surgery is associated with the risk for severe 
morbidity and mortality, which is why clinical decision-
making (CDM), and particularly the indication for an opera-
tion, remains a critical task of all surgical disciplines [1]. 
Here, a potential imbalance between risks and benefits needs 

to be avoided by processing and interpreting perioperative 
data to improve CDM. Treatment guidelines for virtually any 
diagnosis were created to utilize this vastly available data 
consisting of medical history, radiologic data, and molecular 
data to determine the need (benefit of) for surgery [2]. How-
ever, these oftentimes provide consensus-level recommenda-
tions rather than statistical evidence, which is why surgeon 
and patient are left with uncertainty regarding a procedures 
benefit [3]. Furthermore, various risk scores have been 
established to support CDM by minimizing the human error 
source using statistical evidence in their model [4, 5]. Yet, 
such scores lack the option to properly adapt to individual 
medical histories since their statistical assumptions are quite 
general. Additionally, larger prospective studies supporting 
the scores’ performance are scarce [6]. In conclusion, neither 
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benefits nor risks can yet be evaluated on an individual and 
higher evidence-based level.

National registries, like the Study, Documentation and 
Quality Center (StuDoQ) of the German Association for 
General and Visceral Surgery (DGAV), aimed at support-
ing quality management of surgical therapy by collecting 
high-quality perioperative data maintained in a standard-
ized prospective multicenter fashion. Such databases showed 
excellence performance in assessing the uses and risks of 
operations and therefore represent a foundation for inno-
vative approaches of data analyses [7]. Growth of medical 
data collections is additionally facilitated by modern tools of 
automated data mining (e.g., natural language processing), 
which is why adequate analysis is rendered even more labo-
rious [8]. There are numerous examples of successful appli-
cations of modern computational tools for data interpretation 
in modern medicine with spectacular advances (i.e., pathol-
ogy and radiology) [9, 10]. For example, supervised machine 
learning (ML), as a subdomain of artificial intelligence (AI), 
intends to learn classification rules based on given exam-
ples. In detail, supervised learning uses annotated data (i.e., 
known predictor and outcome variables from retrospective 
cases) to calculate predictions for unknown cases given the 
values of the predictor variables [11]. The combination and 
integration of both datasets and modern data science tech-
niques are attributed to a possibility to revolutionize CDM 
in surgery [12]. Extensive national and international research 
programs (e.g., National Strategy for Artificial Intelligence, 
Federal Ministry of Education and Research, Germany, or 
the Coordinated Plan on Artificial Intelligence of the Euro-
pean Union) highlight the political support and appreci-
ated significance of AI and the opportunity of a success-
ful implementation. With existing uncertainties in surgical 
CDM, there is an urge to assess the potential power of the 
recently defined field of surgical data science for improved 
decision support in patient care [12]. To provide an accurate 
overview of ML in CDM, we present a systematic review of 
the literature with focus on abdominal surgery.

Methods

Identification and selection of studies

We performed a systematic literature search to assess the 
evidence of ML’s use for CDM in abdominal surgery. To 
establish a relevant query, the PICO framework was applied 
[13]. Insufficient evidence in CDM in abdominal surgery 
depicts the addressed problem. We aimed to evaluate ML’s 
use as intervention and compared it to conventional deci-
sion-making. Outcome of interest was a more precise deter-
mination of either benefits or risks of abdominal operations 
for a subsequently more personalized CDM. Assessed risks 

included mortality and morbidity and benefits were assumed 
if a desired effect of a given operation (i.e., cancer survival, 
cure of disease, positive effect of surgery) was given. A dis-
tinct search algorithm was applied using the PubMed data-
base, whereas the search was guided by The PRISMA State-
ment for systematic reviews [14]. The query was conducted 
January 2021 by inserting the keywords “surgery machine 
learning” into PubMed. Each article was processed using 
a standardized procedure: We considered articles between 
1st of January 1990 and 31st of December 2020 that were 
published in peer-reviewed journals in the English language. 
Reviews, comments, and any other articles representing no 
original research were excluded. Articles were then screened 
for their contribution to CDM in abdominal surgery, whereas 
only articles that aimed for assessment of perioperative risk 
or benefits for surgery were included. At first, titles were 
analyzed and in case of interest associated abstracts were 
extracted and examined. Secondly, full-text review was 
undertaken whenever the abstract fulfilled our criteria and 
addressed the search question. References of every article 
included were scrutinized for additional research studies of 
interest. Figure 1 shows the PRISMA flow diagram of our 
query.

Data extraction and analysis

Subsequently, a qualitative and quantitative analysis of the 
included articles was conducted. Full-text review was per-
formed as defined within the PICO Framework. Hence, all 
selected articles were examined for journal topic, surgical 
domain, number and composition of cohorts, study timing, 
whether it was conducted retro- or prospectively, outcome 
focused on, ML technique applied, number of included 
predictor variables, method to compare ML with, results 
of comparison, strengths, and limitations, and finally pre-
dicted impact on CDM. If applicable, reported AUROC 
values with 95% confidence intervals were retrieved for ML 
and compared conventional technique. To allow for overall 
better analysis, the best performing ML and conventional 
technique were used. Analyses were conducted in Micro-
soft Excel, Version 2102 (Microsoft, Baltimore, USA); R 
(R Foundation for Statistical Computing, Vienna, Austria); 
and RStudio version 1.3.1093 (RStudio, Inc., Boston, USA).

Results

Study characteristics and design

Our search resulted in 4,396 records, of which a total of 47 
articles were included in the final literature review process. 
A large fraction of articles (N = 1,708) was excluded for non-
English language or lack of original research. Furthermore, 
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2,627 records were excluded because they were not address-
ing topics in abdominal surgery (e.g., neuro-, cardiotho-
racic-, trauma-, orthopedic-, and ENT-surgery). After full-
text review, fourteen articles were excluded since articles did 
not investigate the assessment of risks or benefits of surgery. 
From 1990 until today, the number of studies regarding ML 
in abdominal surgery has increased with significant rise in 
the past decade (see Fig. 2). Articles were mainly published 
in journals of the following medical areas: surgery (N = 19, 
40.4%), internal medicine (N = 8, 17.0%), bioinformatics 
(N = 8, 17.0%), anesthesia (N = 3, 6.4%), and others (N = 9, 
19.1%). To provide an overview of encompassed fields of 
diagnosis, those publications were grouped into the follow-
ing clinical domains: general surgery (N = 13, 27.7%), colo-
rectal surgery (N = 7, 14.9%), liver transplantation (N = 6, 
12.8%), acute appendicitis (N = 5, 10.6%), bariatric surgery 
(N = 4, 8.5%), pancreatic surgery (N = 4, 8.5%), hepatic sur-
gery (N = 3, 6.4%), emergency surgery (N = 2, 4.3%), onco-
logic surgery (N = 2, 4.3%), and esophagus surgery (N = 1, 
2.1%). In Table 1, an overview of included research articles 
is provided. The mean patient number was 55,842.5 (SD, 
167,592.3; median, 1003.0; IQR 377.0–47,189.5). Mean 
period of research was 95.5 months (SD, 66.8; median, 
82.5; IQR, 49.3–130.0). With exception of one prospective 
study [15], all other research was conducted in a retrospec-
tive fashion. Studies either focused on predicting the risk 
(N = 26, 55.3%) or the benefit (N = 21, 44.7%) of procedures.

Technical approaches

Conventional measures of CDM were represented by vari-
ous scores and tests, including logistic regression (N = 16, 
34.0%), specific scores (N = 14, 29.8%), expert opinion 
(N = 2, 4.3%), and Cox regression (N = 1, 2.1%). The 
remaining articles (N = 14, 29.8%) did not perform statis-
tical comparison. Specific scores comprised ASA classifi-
cation, ACS NSQIP Surgical Risk, Charlson comorbidity 
index, DiaRem, Donor Risk Index for Liver Transplanta-
tion, Elixhauser comorbidity index, Model for End-stage 
Liver Disease (MELD), appendiceal diameter, and sur-
vival outcomes following liver transplantation (SOFT). 
Authors held insufficient precision (N = 26, 55.3%), the 
predictors linearity (N = 5, 10.6%), missing automation 
(N = 5, 10.6%), and subjectiveness (N = 2, 4.3%) respon-
sible for conventional CDM’ insufficiency, while nine 
authors (19.1%) did not specify. There were eight common 
ML techniques applied: artificial neural network (N = 16, 
34.0%), random forest (N = 16, 34.0%), support vector 
machine (N = 4, 8.5%), gradient boosting (N = 3, 6.4%), 
and Bayesian network (N = 2, 4.3%). Five studies (10.6%) 
used individually constructed and named algorithms. Also, 
some articles made use of natural language processing to 
extract data. Furthermore, the outline of every ML method 
used varied among the publications ranging from detailed 
technical workflows in the “Methods” section to a simple 

Fig. 1   PRISMA flowchart for 
selecting relevant publica-
tions. All nine citations from 
other sources were found in 
references of finally included 
publications
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statement which algorithm was used. The mean number of 
predictor variables integrated in ML algorithms was 116.1 
(SD, 171.8; median, 34.0; IQR 16.0–150.0). All studies 
relied on preoperative predictor variables, while 4 (8.5%) 
studies additionally included intraoperative data. Over 
two-thirds of included studies (N = 32, 68.1%) emphasized 
the importance of variable selection when designing ML 
approaches. Many authors (N = 27, 57.4%) used internal 
cross-validation, of which three additionally used external 
validation [18, 25, 31].

Primary outcome

Most studies (N = 41, 87.2%) used the receiver operating 
characteristic curve (ROC) to contrast the true positive 
rate against the false positive rate. Then, the area under the 
ROC curve (AUC) was calculated, resulting in AUROC 
values. The remaining six studies (12.8%) either used other 
or no measures to display their results. The mean AUROC 
for ML techniques in the observed articles was 0.84 (SD, 
0.10; median, 0.84; IQR, 0.78–0.91). In contrast, the cho-
sen benchmarks (i.e., conventional techniques) reached 
a mean AUROC of 0.76 (SD, 0.11; median, 0.77; IQR, 
0.69–0.86), resulting in a mean difference of 0.08 (SD, 
0.07; median, 0.07; IQR, 0.03–0.10). Herein, all but one 
study stated ML’s superiority over the chosen benchmark 
(see Table 1).

Considerable aspect

In addition to ML’s performance, every third (N = 16, 34.0%) 
article concluded that ML will strongly enhance personal-
ized medicine. Furthermore, many authors (N = 12, 25.5%) 
elaborated that ML can spare the already scarce monetary 
resources in healthcare systems. While improved allocation 
was mostly (N = 9/12, 75.0%) held accountable, remaining 
authors (N = 3/12, 25.0%) stressed the low cost of ML tech-
niques. However, only three articles in detail explicated how 
the application of ML might save healthcare costs. Nearly 
half (N = 19, 40.4%) of all studies distinctively address the 
surgeons (physicians) role when using ML for CDM. Of 
those, most authors discussed support (N = 11/19, 57.9%) 
and guidance (N = 6/19, 31.6%) by ML for clinicians, 
whereas one study highlighted the physician’s role in imple-
menting ML into CDM.

Risks and benefits of surgery

Risk stratification of surgery itself was mostly addressed 
by large population-driven studies (mean number of 
patients, 99,795.8; SD, 215,498.9; median 44,002.0; IQR, 
824.0–61,394.3). An average number of 176.4 predictor 
variables were included into the trained ML models (SD, 
207.0; median, 87.0; IQR, 28.5–285.0). Patients and their 
outcome were followed over a mean time of 73.7 months 
(SD, 42.0; median 60.0; IQR, 40.0–98.0). In detail, those 

Fig. 2   Number of articles (a) 
retrieved by unfiltered search 
query and (b) eventually 
included in the review. Years 
are displayed on the x-axis, 
whereas number (a) is shown 
on the left y-axis and (b) on the 
right y-axis
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studies demonstrated that ML could outperform con-
ventional CDM in precisely predicting risk for adverse 
events after surgical intervention. For example, Chiew 
et al. used a set of 90,785 patients for precise prediction 
of postoperative mortality. They furthermore concluded 
that ML techniques can include more clinical features 
than conventional CDM and even have the possibility for 
real-time updates once new crucial features are identi-
fied [42]. Additionally, Fritz et al. anticipated that ML 
may help clinicians to identify patients with particularly 
lethal risk with the chance to adapt their clinical deci-
sions to this hazard [49]. Likewise, Bihorac et al. suc-
cessfully used records from 51,457 patients to test ML 
in predicting complications, with exciting results [38]. 
Subsequently, the same group prospectively tested their 
innovative ML application against conventional “clinical 
judgement” and demonstrated that their ML algorithm 
outperformed the clinical experts [15]. Furthermore, this 
review unveiled reasonable evidence for improvement of 
perioperative care through ML. Specifically, two stud-
ies discussed the use of ML in the prediction of need 
for intensive care resources, stating that better allocation 
will improve individual treatment [42, 52]. Despite these 
obvious advantages of large cohorts, disease-specific 
questions, especially assessment of benefits of surgery, 
are mainly tackled by well-curated datasets for an exactly 
defined clinical scenario (mean number of patients, 
1424.2; SD, 3427.2; median, 690.0; IQR, 180.0–999.0). 
In general, those studies included less predictor variables 
(mean, 39.1; SD, 43.0; median, 19.0; IQR, 11.0–44.5) 
but included data from larger time spans (mean months, 
121.5; SD, 80.2; median, 120.0; IQR, 64.0–156.0). For 
instance, Hsieh et al. were able to facilitate a random 
forest model to succeed other scores in the safe diag-
nosis of acute appendicitis, proving that ML is a useful 
tool to evaluate patients in need for surgery [23]. In an 
oncological setting, Ichimasa et al. focused on patients 
who underwent endoscopic resection for T1 colorec-
tal cancer and evaluated the use of ML in predicting if 
patients suffered from simultaneous lymph node metas-
tasis. In consequence, patients identified through this 
approach would be referred to additional surgical resec-
tion for improved outcome. Thus, the group successfully 
demonstrated that there is a realistic chance of reducing 
unnecessary operations [24]. Furthermore, Springer et al. 
charged a comprehensive test with molecular data from 
pancreatic cysts and clinical features and were able to 
identify patients more adequately in need for pancreatic 
surgery [34]. Finally, Johnston et al. implemented ML to 
predict the need of anti-hyperglycemic medication after 
laparoscopic metabolic surgery and their model showed 
promising results in enhanced patient selection [25].

Limitations

While most authors did outline specific limitations to their 
studies (N = 37, 78.7%), none was specified in ten publica-
tions (21.3%). Limitations were grouped into insufficient 
data (N = 20), structural weaknesses (N = 19), selection bias 
(N = 9), and problems with interpretability (N = 7). Struc-
tural weaknesses included a lack of external validation and 
single-center approach. Of note, no differences between 
larger (risk stratification) studies and smaller (benefit assess-
ment) ones were observed for interpretability, structural 
weaknesses, or selection bias. However, studies with larger 
patient cohorts for risk stratification more often mentioned 
problems with insufficient data. Eventually, most studies 
(N = 29, 61.7%) outlined the need for proper evaluation by 
extended research. Additionally, the so-called black box 
phenomenon was repeatedly stated: some ML techniques 
use algorithms which make the understanding of the con-
nection between factors and predicted outcome demanding. 
In addition to resulting interpretability concerns, the black 
box hinders detection of yet unknown possible causalities.

Discussion

In operative medicine, oncological and emergency surgery 
are disciplines where rapid and vitally important decisions 
are needed. Yet, currently available mechanisms (i.e., treat-
ment guidelines and scores) are insufficient in including 
existing data for suited strategies [34, 42]. Additionally, 
growing datasets that need exploration for possible use are 
expanding rapidly and automatically [8]. This incomplete 
use of already existing and newly available data is unac-
ceptable when human lives are at stake. Thus, evaluation of 
modern techniques (i.e., ML) is imperatively needed to close 
this gap [12]. Fortunately, surgeons, anesthesiologists, and 
data analysis experts seem equally interested in the use of 
ML for surgical CDM, as reflected by journals in which the 
articles were published. For future research, collaboration 
work of those disciplines is urgently desired to guarantee 
improved outcome. Moreover, the growing relevance of ML 
in surgical CDM is reflected by the increasing number of 
studies published recently while this interdisciplinary col-
laborative field is still in its infancy. Even at this infant level, 
presented results show that ML is at least comparable, if not 
superior to conventional CDM mechanisms.

In detail, studies with mostly smaller sample sizes 
already show ML’s capability for a more personalized 
approach in surgical indication. Refined datasets can, 
even for rare conditions, pool worldwide accessible 
data to facilitate a comprehensive algorithm to counsel 
patients and caretakers regarding the need for surgery. For 
example, residents in the emergency room need to make 
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decision under unfavorable conditions (e.g., night shift). 
Although an algorithm predicting the need for emergency 
surgery cannot replace structured diagnosis and consult-
ing a more experienced physician, it might help select-
ing patients in need for dedicated attention. Moreover, 
multidisciplinary tumor boards discussing treatment plan 
for cancer patients could profit from ML counseling for 
a more individualized therapy. On the other hand, large 
population-driven algorithms can be used for precise and 
individualized risk assessment. In a first step, digital assis-
tants (e.g., smartphone app or IT system plugins) could 
analyze patient and hospital sited predictor variables to 
allow for a best-informed decision for both patients and 
surgeons [38]. Once settled for an operation, surgeons and 
anesthesiologists could profit from the risk assessment for 
enhanced resource allocation.

Monetary concerns are growing in our commercialized 
healthcare systems and the so-called super users have been 
identified as a lucrative target for cost reduction. Identify-
ing (aka hot spotting) super users, who have an increased 
demand for resources after surgery, is a known cost-contain-
ment strategy. Here, Hyer et al. demonstrated the effective 
use of ML for improved hot spotting [51]. Moreover, ML is 
capable of further containing cost by its initial low costs as 
well as the ability to enhance (monetary) resource allocation 
by targeting patient at risk with distinct prehabilitation meas-
ures and dedicated perioperative care [25, 41]. However, the 
true effect is yet unknown and needs meticulous evaluation 
by future studies. Herein, carefully assessing the interac-
tion between algorithms and surgeons (physicians) plays a 
central role in lifting ML approaches from digital bench to 
bedside [15]. Currently, authors recognized the elimination 
of subjectiveness and “eminence based” influences in CDM, 
resulting in more data-driven and evidence-based predic-
tions. However, the need for continuous supervision of ML 
applications by surgeons is of sincere concern because evi-
dence of ML’s superiority is still on an investigational level. 
One of the central ethical questions remains if technology 
(i.e., ML) might replace human doctors and the accompany-
ing human relationship between patient and physician [50]. 
On the other hand, interdisciplinary teams already make use 
of statistical and mathematical models (i.e., guidelines for 
cancer treatment relying on staging). So why not make com-
plementary use of ML to, for example, reduce unnecessary 
operations [24]? Thus, surgeons must embrace algorithms 
as an additional tool in their portfolio rather than a menace 
to their integrity. Accordingly, most authors see ML as a 
complementary tool for CDM, rather than a replacement for 
human experience. This is in accordance with Eric Topol’s 
view on the confluence of human and AI, who concluded 
that human health is too precious for eliminating doctors 
completely from the process of diagnosis and therapeutic 
counseling [61].

The first step for future research approaches in ML must 
comprise a definite research question for following adequate 
methodical considerations. Before developing a tailored 
algorithm, researchers must identify a suitable dataset for 
the desires task. In principle, larger cohorts can improve 
statistical power and thus are preferably used. They come, 
however, with the tendency of not being sufficiently tailored 
to the clinical population of interest. Especially annotation 
of data (i.e., making the data usable for the machine) is an 
important factor for successful algorithms, but is limited by 
time-consuming human work [12]. Specialized multicenter 
registries have proven to effectively pool clinical data in 
rare scenarios, which is why they might be one cornerstone 
in supplying large-scale high-quality data for successfully 
implementing ML in surgical CDM [12, 62]. Additionally, 
automated data annotation needs to get more evaluation for 
a maximized facilitation of larger data volumes [12]. Once 
the dataset is chosen, bias and confounders must be carefully 
assessed and delicately targeted, although they never can 
be eliminated [63]. Next, an appropriate ML algorithm and 
its’ suited benchmark must be chosen. Mainly comparison 
with experts and widely used statistical models (i.e., logistic 
regression) bring the chance of studying ML’s true power 
for real-life applications [64]. Furthermore, the underlying 
creational process must be detailedly outlined to allow for 
transparent reading. In detail, selecting appropriate pre-
dictor variables to include into an algorithm is crucial to 
guarantee successful models [40]. Eventually, for reporting 
results, AUROC seems the most established tool for model 
evaluation. However, most medical applications have skewed 
datasets since diseases or adverse events depict the minor-
ity of observed cases. For example, false-negative predic-
tions are the worst case for patients and caretakers in an 
oncological setting, but the needed sensitivity is not fully 
represented by AUROC. In contrast, precision-based metrics 
like AUPRC demonstrate an algorithms’ weakness to imbal-
anced datasets, thus giving additional crucial information 
[42, 45]. Additionally, it is usually of interest to evaluate 
the accuracy of predicted risk probabilities by model cali-
bration [65]. In conclusion, the use of single performance 
measures is insufficient, which is why future studies must 
include multiple tools and compare their individual strengths 
and weaknesses [66].

Our review has relevant limitations: Firstly, the vast heter-
ogeneity of selected studies regarding ML techniques, cohort 
composition, and surgical disciplines renders comparison 
difficult on some levels. Therefore, technical accuracy was 
sacrificed in favor of a more comprehensive overview of ML 
in abdominal surgery and a statistical meta-analysis could 
not reasonably be conducted. Secondly, by setting search cri-
teria a priori to guarantee objectivity, a complete representa-
tion of all relevant work cannot be achieved. In detail, data-
base searches may leave relevant articles concealed because 
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they possibly did not use certain keywords. The selection 
of articles might be further influenced by the manual full 
text review, which cannot fully exclude subjective factors. 
Finally, as for any review, our results in this rapidly emerg-
ing field are most likely outdated with the day of data acqui-
sition. Yet, the retrospective contemplation of research can 
identify research trends and generate an appropriate outlook.

Conclusion

ML has irreversibly found its way in our daily life and into 
CDM in medicine, while the existing evidence merely allows 
a first glance at this innovative approach. Even though huge 
datasets already exist, and ML has become an established 
technique in the medical field, there is only preliminary work 
to integrate both in surgical decision-making. Reviewed data 
rather allow for a first estimation of ML’s power and pos-
sibilities, whereas ML appears to outperform conventional 
CDM. Improving precision of predicting benefits as well 
as risks holds the opportunity to revolutionize CDM in 
abdominal surgery. While from the current standpoint an 
entire replacement of humans in CDM is unrealistic with 
respect to technical and ethical reason, surgeons should 
start integrating ML and other new technologies into their 
clinical routines. Thus, it is our imperative task to support 
the ongoing digitalization in respect of CDM in abdominal 
surgery by collaborative research with computer scientist for 
an optimized patient outcome.
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