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Abstract
CD4+ T cells play an essential role in orchestrating adequate immunity, but their overactivity has been associated with 
the development of immune-mediated inflammatory diseases, including liver inflammatory diseases. These cells can be 
subclassified according to their maturation stage, cytokine profile, and pro or anti-inflammatory functions, i.e., functional 
heterogeneity. In this review, we summarize what has been discovered so far regarding the role of the different CD4+ T cell 
polarization states in the progression of two prominent and still different liver inflammatory diseases: non-alcoholic stea-
tohepatitis (NASH) and autoimmune hepatitis (AIH). Finally, the potential of CD4+ T cells as a therapeutic target in both 
NASH and AIH is discussed.

Introduction

In healthy conditions, the liver can tolerate the influx of 
food- and bacterial-derived antigens and pathogen-associ-
ated molecular patters (PAMPs). This is possible due to sev-
eral immunoregulatory mechanisms including a tight control 
of T cell activation by, for example, regulatory T cells [14, 
68, 90]. However, a variety of environmental and genetic 
factors such as viral infection, alcohol, obesity, and HLA 
risk alleles can favor inflammatory liver diseases of which 
non-alcoholic steatohepatitis (NASH) and autoimmune 
hepatitis (AIH) are among the most common ones creating 
a severe public health challenge [2, 86, 109, 113, 138].

Obesity and metabolic syndrome promote accumula-
tion of lipids in the liver and thereby cause NAFLD (non-
alcoholic fatty liver disease). The accumulation of lipids is 
accompanied by cellular stress and leads, in some patients, 
to tissue damage and inflammation (NASH, non-alcoholic 
steatohepatitis) [49]. NASH development has been associ-
ated with high intake of nutrients, but also with an altered 
microbiota [11, 131]. A potentially detrimental effect of the 
intestinal microbiota on the progression from NAFLD to 
NASH has so far only been shown in mouse models. While 
germ-free mice on a high-fat diet (HFD) are protected from 
NASH, transplantation of stool from dysbiotic mice acceler-
ates disease [4, 42, 121]. Translocation of bacterial antigens 
due to increased gut leakiness has also been suggested to 
link the intestine and the liver and thereby to further enhance 
inflammation and disease progression [30, 99].

AIH is characterized by destruction of the hepatic paren-
chyma by an autoreactive immune response. Clinical mani-
festations of early AIH are rather heterogeneous across 
patients, but characteristic to all of them is a progressive 
and detrimental disease with high titers of auto-antibodies 
and liver infiltrating plasma cells [5, 71, 82]. Tissue damage 
in AIH is directly mediated by immune cells and is usually 
accompanied by stronger infiltration of lymphocytes com-
pared to NASH patients [125].

Both NASH and AIH can be followed by cirrhosis and 
hepatocellular carcinoma (HCC) [1, 122]. HCC caused 
roughly 782 000 deaths worldwide in 2018 [13].

The mechanism driving both NASH and AIH is not clear, 
but there is evidence of an important role of T cells.
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T cells are the central orchestrators of inflammatory 
responses. Indeed, in an experimental mouse model of 
NASH, the blockade of CD4+ T cell infiltration into liver 
and small intestine protects the mice from the development 
of NASH [100]. In this model, an increased number of 
peripheral T cells express the integrins α4β5 when compar-
ing MCD diet fed mice to those on a normal diet. At the 
same time, the expression of the α4β5 ligand MAdCAM-1 
is elevated in the gut and liver tissue. The expression of 
MAdCAM-1 is dependent on the microbiota since antibi-
otic treatment reduces its expression. Infiltration of CD4+ T 
cells in both tissues can be blocked by α4β5 antibodies and 
protect from liver inflammation [100].

Evidence of the role of CD4+ T cells in AIH were pro-
vided using different mouse models. Conditional expression 
of autoantigen in the liver was shown to cause spontaneous 
development of AIH by autoreactive CD4+ T cells. Simi-
larly, a defect in central tolerance due to a deletion of med-
ullary thymic epithelial cells or by thymectomy of neonatal 
PD1−/− mice caused AIH in a T cell-dependent mechanism. 
Finally, transfer of CD4+ T cells of mice suffering from AIH 
could induce liver inflammation in recipient mice.

Considering that T cells, in particular CD4+ T cells, play 
a key role in both NASH and AIH, here we will dissect the 
contribution of the different subsets of CD4+ T cells in the 
pathogenesis of these immune-mediated inflammatory liver 
diseases.

Naïve CD4+ T cells

Priming of naïve CD4+ T cells usually occurs in secondary 
lymphoid organs such as spleen and lymph nodes. Naïve 
CD4+ T cells are found in circulation, and by expressing 
a particular combination of receptors (e.g., CCR7 and 
CD62L), they are able to home to the lymphnodes (e.g., 
CCR7) but not to enter tissue [18, 23, 47, 66, 102]. How-
ever, in contrast to other tissues, the architecture of the liver 
allows interaction of blood circulating T cells with antigen-
presenting cells of the liver in the sinusoids [8, 22, 129]. 
Consequently, the liver might not only represent an addi-
tional site of T cell priming, but its unique environment 
might also predetermine the fate of CD4+ T effector cells 
during inflammatory liver disease. The anatomical site of 
priming of naïve CD4+ T cells is proposed as an important 
factor determining subsequent CD4+ T cell polarization 
and their capacity to infiltrate tissues. Recently, we have 
demonstrated the presence of resident naïve like T cells in 
human livers; however whether these cells are primed in 
the tissue and whether this determines their potential patho-
genic fate remains still unclear, especially in the context of 
liver inflammation. Despite the lack of data on the above 

mentioned concept, there is data on the possibility that naïve 
T cells can be directly primed in the liver.

Professional antigen-presenting cells in the liver are liver 
sinusoidal endothelial cells (LSEC) and Kupffer cells, both 
lining the liver sinusoids which makes them easily acces-
sible for blood circulating naïve T cells. In in vitro culture, 
LSEC are able to efficiently present antigens and activate 
naïve CD4+ T cells. In this system, CD4+ T cells start pro-
ducing the cytokines IL-10, IL-4, and IFN-γ [60]. However, 
CD45− CD31bright cells, which might either represent LSEC 
or vascular endothelial cells, were not able to activate naïve 
CD4+ T cells [58]. Therefore, further studies are needed to 
fully elucidate the role of LSEC in priming naïve CD4+ T 
cells in vivo.

Kupffer cells are macrophages specialized to the liver 
environment. They reside in the sinusoids and express high 
levels of MHCII and co-stimulatory molecules and are able 
to activate naïve CD4+ T cells even though to a lesser extent 
than splenic dendritic cells [75, 135].

Transgenic mouse models expressing specific antigens in 
the liver have been used to study T cell activation in vivo. 
Using a mouse model of antigen (i.e., ovalbumin) specific 
activation, the activation of antigen-specific CD8+ T cells 
was observed, while the activation of CD4+ T cells failed 
[25, 130]. However, another study suggests that the above-
mentioned effect is at least partially dependent on the type of 
antigen, since in a similar transgenic mouse model in which 
antigen derived from mycobacterium instead of ovalbumin 
is expressed, naïve CD4+ T cells could be activated in the 
liver by Kupffer cells [118].

Additionally, ectopic expression of neural antigen in 
the liver leads to development of naive CD4+ T cells into 
Foxp3+ TREG cells, which in turn protect from experimental 
autoimmune encephalomyelitis (EAE)/immunopathology in 
the central nervous system (CNS) [19, 78]. This suggests 
that naïve CD4+ T cells can infiltrate the liver and, at least 
under physiological conditions, will acquire a regulatory 
phenotype promoting tolerance to antigen present in the 
liver.

Less accessible than LSECs and Kupffer cells are hepatic 
stellate cells (HSC) which are located in the perisinusoidal 
space. Despite being less accessible, in vitro cultures and 
adoptive transfer experiments in which mice are lacking 
MHCI showed that HSC cells can present antigen to T cells 
[128].

During inflammatory conditions, the portfolio of 
antigen-presenting cells in the liver might be expanded 
to hepatocytes. Hepatocytes express no or low levels of 
MHCII during physiological conditions. However, MHCII 
expression on hepatocytes can be detected in alcoholic 
and non-alcoholic hepatitis [77]. In a transgenic mouse 
model expressing MHCII on hepatocytes, CD4+ T cells 
can indeed be activated [45] (Fig. 1). Whether priming 
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of naïve T cells by hepatocytes is taking place in NASH 
or AIH still needs to be confirmed.

Additionally, the impact of naïve T cells activated by 
hepatocytes during chronic inflammation on the disease 
progression needs further investigation. A study per-
formed in a transgenic mouse model expressing anti-
gen on hepatocytes observed indeed an impaired T cell 
response during LCMV infection. In this model, T cells 
showed a decreased INF-γ production and transgenic 
mice were impaired in virus control [127].

In summary, data from in vitro cultures and transgenic 
mouse models suggest that naïve CD4+ T cell can be 
primed in the liver. However, the consequences of this 
ectopic activation for human inflammatory liver diseases 
need to be further investigated.

Effector T cells

It has been suggested that CD4+ effector T cells play 
important roles in both protecting the liver from infections 
and also causing hepatocellular damage and autoimmunity 
[97]. Early stages of liver inflammation are dominated by 
CD4+ effector T cells and followed by a cytotoxic CD8+ 
T cell response [91, 112, 116]. Effector CD4+ T cells 
can acquire different cell states (i.e., TH1, TH2, and TH17 
cells), here referred to as subsets, which are characterized 
by different cytokine profiles. Moreover, it has been shown 
that CD4+ T cell subsets can display a mixed phenotype 
characterized by the concomitant features of different 
polarization states, e.g., cytokines, and even potentially 

Fig. 1   Liver CD4+ T cells 
and their role in NASH and 
AIH. Naïve CD4+ T cells can 
be primed directly in the liver 
by different types of antigen-
presenting cells (APC) and 
then mature into effector T 
cells with different polariza-
tion states, namely TH1, TH2, 
and TH17. The cytokine profile 
of the effector cells has been 
associated with the development 
of NASH and AIH. Effector T 
cells can form effector memory 
(TEM) and central memory T 
(TCM) cells, and their cytokine 
profile has also been associ-
ated with the development of 
NASH. In AIH, the frequency 
of memory TREG cells was 
found to be not significantly 
different between AIH patients 
and healthy subjects. Finally, 
it has been proposed that 
Foxp3+ TREG cells can undergo 
apoptosis in the inflamed liver 
and thus, probably, unleash the 
pathogenic activity of the effec-
tor T cells
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loose their originally polarization state acquiring a differ-
ent one. For example, TH17 cells can acquire both a TH1 
phenotype under chronic inflammation [39, 46, 57] and 
an anti-inflammatory phenotype during the resolution of 
the inflammation [34, 132]. The above described cellular 
phenomenon is here defined as T cell plasticity.

The different role of CD4+ T cell subsets in NASH and 
AIH patients has begun to be elucidated (Fig. 1). However, 
the role of plasticity in the context of AIH and NASH has 
scarcely been investigated.

Below we provide a summary of the role of the different 
CD4+ T cells subsets in NASH and AIH.

TH1 cells

The infiltration of the liver by TH1 cells, which are charac-
terized by the production of IFN-γ, was shown to correlate 
also strongly with disease progression and liver injury of 
AIH patients [108].

TH1 cells were found to be enriched in the liver of NASH 
patients [7, 50]. Furthermore, investigating the NASH 
hepatic gene signature, IFN-γ response pathway genes 
showed the highest enrichment [38]. In the peripheral blood 
of NAFLD patients, Rau et al. also showed an increase in 
TH1 cells compared to healthy controls [101]. The potential 
pathogenic role of IFN-γ in the liver is probably attributed 
to its multiple detrimental functions, including induction of 
hepatocyte apoptosis and cell cycle arrest [111], induction 
of expression of chemokines such as CCR2 and their recep-
tors on liver cells [51], and activation of Kupffer cells [142].

CD4+ T cells can adapt in response to a changing envi-
ronment and therefore exhibit different polarization states 
[34, 132]. However, studies exploring the role of T cells 
in NASH are so far limited to selected key cytokines, such 
as IFN-γ, and do not investigate the potential plasticity of 
T cells.

In the liver of AIH patients, an increase of IFN-γ–produc-
ing cells was observed [74, 139, 140]. In addition, in a con-
canavalin A (ConA) mouse model of immune-mediated liver 
injury, a reduction of serum IFN-γ levels lead to decreased 
liver injury [141].

Furthermore, the presence of TH17 cells and T cells co-
producing IFN-γ and TNF-α was reported in AIH [12, 103]: 
Findings indicated that TNF-α-producing CD4+ T cells 
were significantly expanded, both in blood and liver of AIH 
patients. However, the majority of the TNF-α-producing 
CD4+ T cells in AIH also co-produced IFN-γ, suggesting 
that these cells might represent a pathogenic activation state 
of TH1 cells [12].

CD4+ T cells co-producing IFN-γ and IL-17A (TH1/
TH17 cells) were found to be decreased in the early stages 
of AIH pathogenesis in the blood, consistent with a 

working hypothesis of an enhanced recruitment of cells 
into the liver. Interestingly, AIH patients under standard 
immunosuppression (corticosteroids, azathioprine) failed 
to correct these TH1/TH17 imbalances in the blood and a 
persistent infiltration in the liver was observed, demon-
strating that a deeper immunological restoration of tol-
erance does not occur despite satisfactory resolution of 
hepatitis [103].

These findings indicate that AIH is not only associated 
with classical TH cell subsets, but rather with a larger spec-
trum of mixed TH cell subsets with different polarization 
states, which should be further investigated (Fig. 1).

TH2 cells

TH2 cells ensure protective immunity against helminthic 
infections and play a key role in the pathogenesis of aller-
gic diseases [124]. In the liver, TH2 cells were shown to 
have a strong pro-fibrogenic effect, and inhibition of IL-13 
signaling blocks fibrosis development [95]. Few studies 
have thoroughly investigated this subset in the context of 
NAFLD and AIH and their role in these diseases remains 
unknown.

Rau et al. described an increase in circulating TH2 cells 
of NAFLD patients compared to healthy normal-weight 
controls, who were not matched for age [101]. Interest-
ingly, 12 months after bariatric surgery, the TH2/ Foxp3+ 
TREG ratio was decreased. However, other authors did not 
find any differences in TH2 numbers, neither in periph-
eral blood nor in the liver when they compared NASH 
patients and NAFLD patients or controls [31, 50]. To our 
knowledge, the involvement of the TH2 subset has not been 
thoroughly investigated in an animal model of NAFLD.

In AIH, the role of TH2 cells still remains elusive. Early 
studies showed that the TH2 cytokines IL-5 and IL-13 were 
present in the late cirrhotic stage of AIH patients [24, 26, 
91, 92]. In type I autoimmune hepatitis in children, an 
increased mRNA expression of Il4 was observed in liver 
samples [21]. Furthermore, it is known that the cytokines 
IL-4 and IL-6 can regulate B-cell activation and promote 
the production of antinuclear antibodies (ANA) and anti-
smooth muscle antibodies (SMA) [110]. However, no 
significant differences in Il4 mRNA expression levels 
between patients and healthy subjects were observed in 
peripheral blood mononuclear cells (PBMCs) [6].

In mouse models, IL-4 producing TH2 cells play an 
essential role in inducing ConA-immune-mediated liver 
injury via activation of STAT6. STAT6 upregulates the 
expression of the chemoattractant eotaxin in hepatocytes 
and sinusoidal endothelial cells and induces IL-5 expres-
sion, resulting in eosinophil and neutrophil recruitment 
into the liver and leading to hepatitis [52] (Fig. 1).
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TH17 cells

TH17 cells are characterized by the production of IL-17A, 
IL-17F, and IL-22 and are believed to play an important 
role in the development of a variety of autoimmune dis-
eases [64].

TH17 cells were shown to be present in larger numbers 
in the liver of NASH patients in comparison to healthy con-
trols [36, 101, 123]. Moreover, Rau et al. report a decrease 
of TH17 cells in peripheral blood, as well as in the TH17/ 
Foxp3+ TREG ratio, when NASH patients were re-evaluated 
12 months after bariatric surgery [101].

Furthermore, TH17 cells were also shown to be present in 
larger numbers in the liver and peripheral blood of NAFLD 
mouse models [81, 106, 115]. The IL-17A and IL-17F axis 
was shown to be important in the development and progres-
sion of NASH. IL-17RA−/−, IL-17A−/−, and IL-17F−/− mice 
exhibited decreased steatohepatitis and hepatocellular dam-
age [35, 41, 106]. In line with these findings, the use of an 
anti-IL-17 monoclonal antibody significantly improved liver 
function, attenuated hepatic lipid accumulation, suppressed 
Kupffer cell activation, and decreased pro-inflammatory 
cytokine levels in a model of HFD induced NAFLD [133, 
134]. Simultaneous blocking of CD25 or IL-17A and IL-
17F shifted the TH17/Foxp3+ TREG imbalance from MCD 
diet-induced TH17 dominance to Foxp3+ TREG dominance 
and also decreased hepatic steatosis and inflammation [73].

Moreover, multiple experimental murine and in vitro 
models showed that IL-17A administration can lead to an 
increase in hepatic steatosis [41, 44]. IL-17A was reported 
to have a pro-fibrotic effect through activation of hepatic 
stellate cells [114] and an in vitro study showed that IL-17A 
enhances the expression of pro-fibrotic genes (e.g., ACTA2 
and COL1A1) through an upregulation of TGF-β receptor 
[28].

AIH has been associated with IL-17A expression [12, 
37, 63, 70, 139, 140], although the role of TH17 cells in the 
pathogenesis of AIH remains controversial.

The frequency of circulating TH17 cells and the expres-
sion of the key transcription factor for these cells, RORɣt, 
were elevated in PBMCs of AIH patients [6, 136, 139, 140]. 
In the liver of AIH patients, the frequency of IL-17A pro-
ducing cells and the expression of TH17-related cytokines 
(IL-23, IL-21, IL-1β, and IL-6) was also significantly ele-
vated [139, 140]. Interestingly, the duration and severity of 
hepatitis may be dependent on TH17 cells in AIH [117].

In ConA-induced liver injury, IL-17A-deficient mice 
develop the same level of liver injury as wild-type mice 
[137]. In contrast, the results from two independent research 
studies indicated that IL-17A-deficient mice had a signifi-
cant reduction in liver injury compared with wild-type mice 
[63, 88]. The reason for the discrepancy between the find-
ings is not clear, but the authors speculate that they could be 

attributed to the different environment of the animal facili-
ties that may affect IL-17A−/− mice.

While IL-17A and IL-17F seem to play an important role 
in inducing liver inflammation via stimulating multiple types 
of liver non-parenchymal cells to produce pro-inflammatory 
cytokines and chemokines, IL-22 appears to be an important 
factor in promoting hepatocyte survival and proliferation. 
It was demonstrated that treatment with IL-22 prevents, 
while treatment with IL-22 neutralizing antibodies enhances 
ConA-induced liver injury [98]. The hepatoprotective role of 
IL-22 in T-cell hepatitis was also confirmed by other studies 
using IL-22-deficient mice [59, 137] (Fig. 1).

Memory T cells

Following the expansion phase of effector T cells, three 
main populations of memory cells can be recognized: cen-
tral memory T cells (TCM), effector memory T cells (TEM), 
and tissue-resident memory T cells (TRM). At present, these 
memory T cell subsets are primarily characterized by their 
phenotype, migratory properties, and tissue homing patterns, 
which in many instances imply unique functional attributes 
[3, 87]. Memory T cells are not only involved in promot-
ing physiological immunity, but also in promoting autoim-
mune responses. Due to rapid pro-inflammatory qualities 
of TRM cells, they can lead a misguided action and result in 
immunopathology [62]. The role of CD4+ memory T cells 
in NASH and AIH has scarcely been investigated and the 
phenotypic markers used to define memory T cells are not 
consistent between studies.

In NASH, patients showed increased numbers of IFN-
γ+ memory (CD45RO+) CD4+ and CD8+ T cells compared 
with controls, while numbers of CD4+ and CD8+ CD45RA+ 
subsets were decreased [50]. One of the molecular mecha-
nisms driving T cell infiltration into the liver is increased 
chemotaxis, as peripheral CD4+ T cells from obese mice and 
NASH patients migrate more readily toward the chemokine 
CXCL12 compared to T cells from healthy mice or healthy 
donors [10]. In line with this finding, a longitudinal analy-
sis of peripheral blood of humanized mice showed that 
central memory (CCR7+CD45RA–) and effector memory 
(CCR7–CD45RA–) CD4+ T cells and their associated 
cytokines IL-17A and IFN-γ expanded with time and infil-
trated the liver (Her et al.,2020).

Regulatory T cells

Regulatory T cells and the capacity of some effector cells to 
convert into regulatory T cells provide, among others, key 
mechanisms to establish peripheral tolerance. CD4+ T cells 
with regulatory function can be divided into at least two 
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subsets: Foxp3+ TREG cells and Foxp3− IL10+ type 1 regula-
tory T (TR1) cells. Both cell subsets have been described in 
the context of liver tolerance.

In an hepatitis B virus (HBV) carrier mouse model, 
Kupffer cells induce TR1 cells rather than Foxp3+ TREG cells 
[133, 134]. Transfer of CD4+ T cells from HBV carrier mice 
confers systemic tolerance to HBV antigen in recipient mice. 
This tolerogenic effect is dependent on IL-10 expression. 
However, the majority of reports on regulatory T cell subsets 
in the liver focuses on Foxp3+ TREG cells. Specifically in the 
context of NASH and AIH, the role of TR1 cells has not yet 
been investigated.

A first indication for the importance of Foxp3+ TREG cells 
in liver tolerance is provided by the observation that injec-
tion of anti-CD25 antibodies leads to rejection of liver trans-
plants in mice [67]. Foxp3+ TREG cells can be induced both 
by hepatocytes and HSC in in vitro cultures. The induction 
is favored by the presence of TGF-β and Notch signaling 
by hepatocytes and IL-2 and retinoid acid receptor in the 
context of HSC co-culture [17, 27, 54]. In vivo, expression 
of antigen delivered by AAV vectors in hepatocytes leads 
to tolerance towards the antigen which is presumably medi-
ated by Foxp3+ TREG and Kupffer cells [14]. The tolerogenic 
function of the liver can be utilized for therapeutic purposes 
in mouse models. Indeed, application of nanoparticles deliv-
ering neuronal peptide to LSEC protects from immunopa-
thology in EAE through the conversion of T cells to Foxp3+ 
TREG in a TGF-β-dependent mechanism [19]. Hence, Foxp3+ 
TREG cells are generated in the tolerogenic liver environment 
and can support tolerance in the CNS.

During the inflammatory condition of NASH, Foxp3+ 
TREG cells play a key role in disease control. Depletion of 
Foxp3+ TREG cells in a mouse model of NASH aggravates 
disease [105]. The inflammatory environment during NASH 
impairs Foxp3+ TREG cell survival. Oxidative stress, TNF-α, 
and type I interferon produced by Kupffer cells and dendritic 
cells during NASH promote apoptosis of Foxp3+ TREG cells 
[80, 105]. Oxidative stress seems to preferentially induce 
apoptosis in Foxp3+ TREG cells and consequently shifts the 
ratio of effector T cells to Foxp3+ TREG cells towards effec-
tor T cells [80]. More precisely, both the ratio of TH17 and 
TH2 effector cells to TREG cells have been associated with 
severity of inflammation, i.e., the progression of NAFLD 
to NASH. Bariatric surgery could recover the imbalance of 
Foxp3+ TREG and effector T cells [101]. Overall, Foxp3+ 
TREG cells seem to have a protective role during disease pro-
gression in mouse models of NASH. However, the protec-
tive function of Foxp3+ TREG cells might be limited by their 
increased apoptosis rate during inflammation.

The role of Foxp3+ TREG in AIH disease progression is 
still discussed.

Clearly, adoptive transfer of Foxp3+ TREG cells can 
overcome inflammation in experimental mouse models of 

AIH including a model of AIRE-mutation, xenoimmuni-
zation with human autoantigen, and ConA-induced liver 
injury [40, 48, 65]. However, it remains unclear whether 
Foxp3+ TREG cells in AIH patients are impaired in number. 
In part, conflicting results can be explained by different 
approaches to define Foxp3+ TREG cells. In a study inves-
tigating Foxp3+ TREG defined by CD25hi expression, the 
authors observed diminished Foxp3+ TREG cells in AIH 
patients in comparison to healthy controls [76]. Impor-
tantly, CD25 is not only expressed by Foxp3+ TREG but 
also by activated effector T cells. Hence, other studies 
have distinguished Foxp3+ TREG and T effector cells in 
human more precisely by combining CD25, CD127, and 
Foxp3. Using this more stringent definition of Foxp3+ 
TREG cells, no difference in the frequency of Foxp3+ TREG 
in AIH patients compared to healthy controls was observed 
[94]. Also, the frequency of memory Foxp3+ TREG cells 
defined as CD25+CD127‐FOXP3+ CD45RA− were not 
significantly different between AIH patients and healthy 
subjects [103].

Moreover, the frequency of Foxp3+ TREG cells in the 
blood positively correlates with severity of inflammation 
within the group of AIH patients [94]. In line with this 
observation, intrahepatic Foxp3+ TREG cells in untreated 
AIH patients are rather enriched, and the number of these 
cells decreases during immunosuppression [116].

Another study focused on the Foxp3+ TREG to effector 
T cell ratio rather than the plain number of these cells. The 
authors found a dysbalance of Foxp3+ TREG and effector T 
cells in AIH patients [69]. One possible explanation comes 
from data suggesting that Foxp3+ TREG cells are more prone 
to undergo apoptosis in active AIH patients [55]. In addi-
tion, Foxp3+ TREG cells from a proinflammatory enviroment 
exhibit lower levels of the anti-apoptotic molecule c-Flip and 
high expression of CD95, indicating elevated susceptibility 
to Fas-mediated apoptosis [20, 96]. Additionally, Foxp3+ 
TREG cells require the cytokine IL-2 for survival, and the 
concentration of IL-2 was shown be lower in diseased liver 
as compared to healthy liver [20]. Indeed, in vitro studies 
stimulating PBMCs or liver infiltrating lymphocytes from 
patients with autoimmune liver diseases with low doses 
of IL-2 showed improved survival and function of Foxp3+ 
TREG [53]. In line with this, in an experimental mouse model 
of AIH, treatment with complexed IL-2/anti-IL-2 could 
increase the number of Foxp3+ TREG and diminish disease 
severity [16] (Fig. 1).

In conclusion, on the one hand, an increased susceptibil-
ity of Foxp3+ TREG to undergo apoptosis during a pathologi-
cal liver inflammation might explain the restrict capacity of 
these cells to expand in equal proportion to effector T cells. 
On the other hand, the preliminary and promising preclinical 
and clinical studies testing either Foxp3+ TREG cell therapy 
or complexed IL-2 suggest that Foxp3+ TREG are definitely 
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an interesting therapeutic target for AIH and probably also 
for NASH patients.

Therapeutic approaches

While homeostatic inflammation is an aspect of an healthy 
liver, a lack of resolution or chronic liver injury leads to 
progressive liver fibrosis and permanent liver damage. Even-
tually a chronic liver inflammation leads to HCC and to the 
death of the patients.

For the treatment of NASH, there is not a single drug 
approved by the Food and Drug Administration (FDA) or 
European Medicines Agency (EMA). Standard AIH treat-
ment consists of immunosuppressive therapy; however more 
than 70% of patients relapse when treatment withdrawal is 
attempted, suggesting a persistence of pathogenic cells, such 
as autoreactive CD4+ T cells [43, 117].

Approaching liver disease as a range of overlapping path-
ways leading to the dysregulation of homeostatic inflamma-
tory processes provides novel avenues for the development 
of future therapies targeting inflammation and resolution 
within the liver.

There are only a few therapeutic approaches in NASH 
targeting T cells. CCR2 was shown to play an important 
role in T cell differentiation [79]. In hepatic inflamma-
tion and fibrosis the dual CCR2/CCR5 chemokine recep-
tor antagonist (Cenicriviroc) has been efficient [29] and is 
therefore been investigated in current phase III clinical tri-
als in patients with NASH and fibrosis (ClinicalTrials.gov 
Identifier: NCT03028740). However, a decrease in fibrosis 
but no NASH resolution was observed in a phase IIb trial 
(ClinicalTrials.gov Identifier: NCT02217475).

Since TNF-α producing cells, including T cells, were 
shown to be involved in the pathogenesis of AIH, a study by 
Weiler-Norman and colleagues reported the first series of 
AIH patients who were treated with infliximab, an antibody 
targeting TNF-α. The study included 11 difficult-to-treat 
AIH patients to whom the standard treatment did not lead 
to remission. Here, infliximab treatment led to a reduction 
of inflammation [56, 126].

Of note, a retrospective statistical analysis of different 
clinical studies all including patients treated with anti-
TNF-α, and a single center report of 8 cases, showed that 
anti-TNF-α treatment associates with liver damage [33, 104]. 
Therefore, further clinical studies testing the effect of anti-
TNF-α treatment are urgently needed in AIH patients.

Anecdotal clinical observations with off-label use of 
ustekinumab, a pharmacological antagonist of the IL-23/
IL-17 axis [32], do not indicate a significant effect on AIH 
activity.

The association between regulatory T cell deficiency 
and inadequate immune tolerance in AIH sparked rationale 

to treat autoimmune diseases by the administering autolo-
gous Foxp3+ TREG cells. Foxp3+ TREG cell directed therapy, 
though ex vivo expansion or IL-2 administration, is increas-
ingly tested in the context of posttransplant tolerance [15, 
107, 119, 120] and type 1 diabetes mellitus [9, 84]. Here, the 
safety and feasibility of Foxp3+ TREG cell therapy in humans 
was shown, and the evidence suggested potential improve-
ments in clinical, biochemical, and immunological status 
with Foxp3+ TREG cell therapy. In AIH patients, it has been 
shown that autologous Foxp3+ TREG cell therapy is feasible 
and safe, and interestingly a strong preferential homing of 
Foxp3+ TREG cells to the liver and spleen was observed for 
up to 72 h. However, this study was neither designed nor had 
the statistical power to demonstrate an effect on AIH activ-
ity [93]. Also, administration of IL-2 to AIH patients was 
shown to increase the pool of circulating Foxp3+ TREG cells, 
and it was proven to be safe in the two treated patients [72]. 
In short, despite these preliminary encouraging data, larger 
clinical trials targeting Foxp3+ TREG cells in AIH patients 
are urgently needed.

Finally, CXCL9 and CXCL10 were shown to regulate the 
differentiation of naïve T cells to TH1 cells and lead to the 
migration of immune cells to inflammatory sites [61, 85]. 
Plasma levels of CXCL9 and CXCL10 increase with advanc-
ing disease stage in AIH [89], although this can be reduced 
with administration of ursodeoxycholic acid (UDCA) in 
some patients [83]. A multicenter phase-II clinical trial of a 
humanized anti-CXCL10 antibody in the treatment of pri-
mary biliary cholangitis is currently underway. If this shows 
promise, AIH would also be a potential indication for future 
therapeutic study using this agent.

In conclusion, there are only few therapeutic approaches 
targeting T cells in NASH. However, due to the strong T cell 
activation within this disease, T cells could be a promising 
target for future therapies. Furthermore, in AIH patients, 
cell-based therapies, such as regulatory T cell therapy, could 
finally replace long-term immunosuppression treatments 
which are still characterized by serious side effects.
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