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Cardiomyocyte renewal in the adult mammalian heart occurs 
via proliferation of pre-existing cardiomyocytes, as opposed 
to differentiation from endogenous cardiomyogenic stem 
cells [7]. Unfortunately, the intrinsic renewal capacity of 
adult mammalian cardiomyocytes is limited, with similarly 
low rates reported for rodents and humans [3, 17]. Conse-
quently, injuries associated with massive cardiomyocyte 
death, like an acute myocardial infarction (MI), promote 
scarring as opposed to noticeable tissue regeneration [14]. 
Stimulating cardiomyocyte proliferation may, however, pro-
vide a means to achieve myocardial regeneration after injury 
[2, 5, 6, 8, 13].

In this issue of Basic Research in Cardiology, Jung and 
colleagues propose a new microRNA-based strategy for 
ischemic heart repair [10]. They initially observed that 
human-induced pluripotent stem cell-derived cardiomyo-
cytes (iCMs) release large amounts of extracellular vesicles 
(EVs) when cultured under hypoxic conditions. EVs are 
membrane-enclosed nanoscale particles that can transfer 
protein, lipid, RNA, and DNA cargo between cells through 
the extracellular space [12]. Three microRNAs (miR-20b, 
miR-92a, and miR-363), originating from a common pre-
microRNA transcript, were highly enriched in hypoxic 

iCM-derived EVs. Treatment with iCM-derived EVs or 
directly overexpressing the three miRs protected iCMs from 
hypoxia-induced cell death. Conversely, downregulating the 
three miRs reduced iCM survival under hypoxic conditions, 
thus revealing a cell-autonomous protective mechanism [10].

Exploring therapeutic potential, the authors turned to a 
mouse model of acute MI induced by permanent coronary 
artery ligation. Injecting EVs or miR-20b-, miR-92a-, and 
miR-363-mimics encapsulated in a biodegradable polymer 
into the infarct border zone immediately after MI attenu-
ated left ventricular dilatation and systolic dysfunction as 
assessed by magnetic resonance imaging (MRI) at 2 and 
4 weeks. At 4 weeks, miR-treated mice had developed only 
very small scars (encompassing ~ 13% of the LV myocar-
dium) compared with control animals (~ 38%). Mechanisti-
cally, the authors propose that the EVs, specifically the three 
miRs, stimulated cardiomyocyte proliferation in the infarct 
border zone leading to endogenous self-repair of the heart 
[10]. But is this a plausible explanation?

Supporting their case, the authors found that overexpress-
ing the three miRs in hypoxic iCMs induced mRNA sig-
natures related to cell cycle G1/S transition, DNA replica-
tion, and G2/M phase. As evidenced by EdU incorporation 
and Ki67 and Aurora B expression, these gene expression 
changes were associated with a modest increase in the num-
ber of iCMs progressing through the cell cycle. Using bioin-
formatic tools and miR-target validation, the authors identi-
fied Notch3 as a direct downstream target of the three miRs. 
Indeed, selectively targeting Notch3 using a small interfering 
RNA mimicked the effects of miR-overexpression in iCMs. 
Considering that iCMs provide a suitable platform to study 
cardiomyocyte proliferation in vitro [4], the authors regret-
tably do not report the effects of miR-transfection or Notch3 
targeting on iCM cell numbers [10].

Quantitation of cell cycle and myofiber marker colocali-
zation via confocal imaging of tissue sections suggested a 
high rate of cardiomyocyte cell cycle activity in miR-treated 
infarcted mice [10]. However, this approach is prone to 
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misidentification of cardiomyocyte nuclei when employed in 
the absence of a cardiomyocyte-restricted nuclear marker or 
a cell membrane marker [1], as was the case here. Because 
miR-treatment also appeared to increase cell cycle activ-
ity in non-cardiomyocytes, nuclear misidentification would 
erroneously suggest increased cell cycle activity in the car-
diomyocyte compartment of treated animals [18]. It was sur-
prising that miR-mimics would elicit a similar induction of 
cell cycle activity in in vivo adult cardiomyocytes (which are 
exceedingly reluctant to proliferate) [3, 17] as compared to 
iCMs (a cell population which is highly responsive to mito-
genic stimuli) [4]. It was also rather surprising that a mitotic 
marker would exhibit a larger labeling index than an S-phase 
marker [10], given that S-phase duration is much longer than 
M-phase duration [16]. Finally, no direct proof of cardio-
myocyte cytokinesis is provided in the in vivo studies.

Permanent coronary artery ligation results in transmu-
ral necrosis, affecting cardiomyocytes and non-parenchy-
mal cells alike. MRI suggested that the infarcted area was 
replaced by full-thickness, viable myocardium already 
2 weeks after EV delivery. To curtail scar formation within 
this time frame would require exceptionally high rates of 
cardiomyocyte proliferation. Notably, miR-mimics were 
taken up not only by cardiomyocytes, but also vascular 
cells and fibroblasts in the infarct border zone. Microvessel 
density in the border zone was ~ 30% greater in miR-treated 
mice at 4 weeks [10]. Although, with small animal num-
bers, this potential treatment effect did not reach statistical 
significance, therapies promoting comparable improvements 
in border zone capillarization may very well reduce scarring 
after MI in mice [11, 15, 19]. MiR-mimics may have also 
reduced cell death after MI as suggested by their effects 
on hypoxic iCMs in vitro and their impact on the number 
of caspase  3+ cells in the infarct border zone in vivo [10]. 
Serial histopathological examinations early after EV or miR-
delivery would have been critical to understand the sequence 
of events and relative contributions of myocardial salvage, 
improved wound healing, and cardiomyocyte proliferation 
[5].

While the authors should be congratulated on defining a 
novel therapeutic approach to infarct repair, more evidence 
is needed to convince us, beyond a reasonable doubt, that 
miR-20b-, miR-92a-, and miR-363-mimics mediate their 
salubrious effects by stimulating myocardial regeneration, 
as opposed to promoting cardioprotection and wound heal-
ing [9, 14, 19].
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