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Abstract
Local scale estimates of temperature change in the twenty-first century are necessary for informed decision making in both the 
public and private sector. In order to generate such estimates for Chile, weather station data of the Dirección Meteorológica 
de Chile are used to identify large-scale predictors for local-scale temperature changes and construct individual empirical-
statistical models for each station. The geographical coverage of weather stations ranges from Arica in the North to Punta 
Arenas in the South. Each model is trained in a cross-validated stepwise linear multiple regression procedure based on (24) 
weather station records and predictor time series derived from ERA-Interim reanalysis data. The time period 1979–2000 is 
used for training, while independent data from 2001 to 2015 serves as a basis for assessing model performance. The resulting 
transfer functions for each station are then directly coupled to MPI-ESM simulations for future climate change under emis-
sion scenarios RCP2.6, RCP4.5 and RCP 8.5 to estimate the local temperature response until 2100 A.D. Our investigation 
into predictors for local scale temperature changes support established knowledge of the main drivers of Chilean climate, 
i.e. a strong influence of the El Niño Southern Oscillation in northern Chile and frontal system-governed climate in central 
and southern Chile. Temperature downscaling yields high prediction skill scores (ca. 0.8), with highest scores for the mid-
latitudes. When forced with MPI-ESM simulations, the statistical models predict local temperature deviations from the 
1979–2015 mean that range between − 0.5–2 K, 0.5–3 K and 2–7 K for RCP2.6, RCP4.5 and RCP8.5 respectively.
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1  Introduction

The wide-reaching observed and predicted ecological and 
socioeconomic consequences of contemporary climate 
change (IPCC AR5 2014) create a demand for regional-
scale estimates of twenty-first century climate evolution to 
allow careful planning in both public and private sectors to 
mitigate impacts (IPCC AR5 2014). One tool to achieve this 
is General Circulation Models (GCMs), which are based on 

our understanding of atmospheric physics and allow us to 
model climates in dynamic equilibrium with prescribed forc-
ings. The Representative Concentration Pathways (RCPs) 
describe different forcing scenarios that correspond to pos-
sible trajectories of demographic and technological develop-
ments (IPCC AR5 2014), and drive GCMs to simulate possi-
ble near future (twenty-first century) climates. While GCMs 
generally offer accurate estimates of many elements of the 
climate system, meso-scale processes are often poorly repre-
sented, leading to inaccurate estimates of aspects of climate 
change on a more regional scale (e.g. Meehl et al. 2007). 
However, these estimates are needed to assess regional-scale 
impacts, such as changes in the hydrological cycle (Diaz-
Nieto and Wilby 2005), glacial retreat (Mutz et al. 2015), 
air quality (Hogrefe et al. 2004), local industry and human 
health (Patz et al. 2005), and allow for effective planning 
and mitigation strategies. The GCMs’ shortcomings on such 
scales are typically circumvented by dynamical downscaling 
with Regional Climate Models (RCMs) (e.g. Maussion et al. 
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2011; Mannig et al. 2013), or statistical downscaling (e.g. 
Eden et al. 2012).

Empirical statistical downscaling (ESD) is an umbrella 
term for methods that statistically relate local expressions 
of the climate system, such as temperature or precipitation 
recorded at weather stations, to relevant synoptic- to meso-
scale atmospheric variability (e.g. Hewitson et al. 2014). 
For example, coarse climate model output with location-
dependent systematic errors in rainfall may be fitted to 
local-scale observational data of rainfall (e.g. Eden et al. 
2012). The resulting statistical model may then be coupled 
to climate or weather model output and use these large-scale 
conditions as predictors for local-scale rainfall, i.e. the tar-
get variable or predictand. Such statistical modelling is well 
established in the climatological and meteorological com-
munity (e.g. Glahn and Lowry 1972; Hansen and Emanuel 
2003; Shongwe et al. 2006; Paeth 2011; Mutz et al. 2015). It 
is computationally less expensive than dynamical downscal-
ing and implicitly takes in-situ geographical realities, such 
as local topography and micro-climate controls, into con-
sideration without the need to explicitly parameterise these 
as is the case for RCMs. Furthermore, statistical downscal-
ing avoids propagation of systematic errors by GCMs and 
errors pertaining to parameterisation schemes (e.g. Errico 
et al. 2001; Hewitson et al. 2014). While dynamical down-
scaling over South America has significantly advanced in 
the past two decades (Solman 2013; Giorgi and Gutowski 
2013), the ESD community in South America is incipient. 
The potential for ESD in the region has not been explored as 
thoroughly as in other parts of the world (CORDEX 2020). 
The high potential for ESD is demonstrated by the dense net-
work of automated weather station (AWS) maintained by the 
Meteorological Directorate of Chile (Fig. 1), and researched 
links between regional climate and synoptic-scale atmos-
pheric variability, such the Antarctic Oscillation (Garreaud 
et al. 2013).

Chile’s large latitudinal extent and prominent orogra-
phy lead to a variety of synoptic- and meso-scale climate 
controls. The El Niño Southern Oscillation (ENSO), South 
Pacific Anticyclone (SPA) and mid-latitude westerlies are 
important controls on climate and weather in Chile (Fig. 2). 
This results in large temperature and precipitation gradi-
ents in Chile (Fig. 3). ENSO affects northern Chile directly, 
leading to anomalously high temperature and precipitation 
during El Niño phases relative to non-El Niño phases (e.g. 
Rutllant and Fuenzalida 1991; Garreaud et al. 2009), and 
impacts southern Chile indirectly via atmospheric telecon-
nections (e.g. Garreaud et al. 2009). The Andes mountains 
cool sea surface temperatures (SSTs) off the west coast of 
South America by evaporative cooling, thereby creating an 
enhanced North-to-South cooling gradient in the east Pacific 
that deflects the intertropical convergence zone (ITCZ) 
and related convective precipitation north (Takahashi and 

Battisti 2007). The extreme aridity in northern Chile can be 
explained by a cold marine boundary layer (MBL) and sub-
sidence associated with the quasi-permanent SPA (Fig. 2), 
which is stabilised by the cold SSTs associated with the 
Humboldt current. When combined, these processes create 
a thermal inversion that drastically inhibits convection and 
rainfall. A stratocumulus layer forms in the upper MBL, 
thereby reducing solar insolation below and ensuring cold 
(near-)surface temperatures (Rutllant et al. 2003). Further-
more, the Andes create a topographic barrier that prevents 
advection of moist air from the East, thus contributing to 
northern Chile aridity. Variations in aridity can, at least 
in parts, be explained by the Pacific Decadal Oscillation 
(e.g. Schulz et al. 2011), a multidecadal mode of climate 
variability in the Pacific (Mantua and Hare 2002). While 
the Pacific Decadal Oscillation (PDO) shows links to low-
frequency fluctuations in precipitation in northern Chile, 
connections between low-frequency precipitation fluctua-
tions and the Atlantic Multi-Decadal Oscillation (AMO) are 
significant in north and south Chile (Valdés-Pineda et al. 
2018). The Antarctic Oscillation (AAO) (Rogers and Loon 

Fig. 1   Topography and location of the 24 numbered weather stations 
in Chile. The stations are numbered by their latitudinal position with 
1 being the northernmost station and 24 being the southernmost sta-
tion. See supplemental Table 1 for station information
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1982; Thompson and Wallace 2000) is related to a low pres-
sure field above Antarctica and the belt of westerly winds 
around it. The AAO is partially coupled to ENSO (Fogt and 
Bromwich 2006). A positive AAO phase is associated with 
anomalously low pressure over Antarctica and relatively 
high pressure in Southern Hemisphere mid-latitudes, and 
results in the contraction of the belt of westerlies; this directs 
westerlies southward and thus impacts temperature and rain-
fall variation in south Chile (e.g. Gillett et al. 2006). More 
specifically, a positive mode of AAO is associated with 
increased surface pressure, warmer temperature, and lower 
precipitation south of 40° S (e.g. Garreaud et al. 2009). 
ENSO and AAO are related to higher frequency changes in 
precipitation, esp. in northern and southern Chile respec-
tively, whereas the PDO and AMO affect low-frequency 
variability (Valdés-Pineda et al. 2018). Finally, the uplift of 
low-level westerly winds over the western side of the Andes 
produces strong orographic precipitation in southern Chile 
(esp. the Patagonia region). 

This study complements previous regional studies of 
Chilean climate and estimates of future climate change in 
South America by investigating large-scale climatic controls 
on regional climate, and downscaling GCM-based tempera-
ture estimates for the twenty-first century. The specific aims 
of the study are:

1.	 To find large-scale predictors for local temperatures 
based on existing knowledge of Chilean climatology, 
and to quantify their predictive skill.

2.	 To train empirical-statistical downscaling models for a 
set of 24 suitable meteorological stations, and to test 
their performance.

3.	 To apply the trained models to GCM simulations of 
twenty-first century climates to estimate local tempera-
ture responses to different forcing scenarios.

We address these aims by (a) training the statistical mod-
els for a set of suitable meteorological stations across Chile 
with appropriate synoptic and meso-scale predictors, thus 
building on previous studies of Chilean climate, and (b) 
applying ESD directly to GCM output, thus circumventing 
the (computationally) expensive intermediate step of RCM 
nesting.

2 � Data and methods

2.1 � Weather Stations

Weather station data of the Dirección Meteorológica de 
Chile (DMC) was digitised to serve as predictand time series 
for the ESD models developed for this study. These models 
are empirical in nature and therefore require sufficiently long 

Fig. 2   The major large-scale controls on Chilean climate on the 24 
weather stations (grey circles) include a more direct influence of the 
El Niño Southern Oscillation (ENSO) and the South Pacific Anticy-
clone (SPA) and subsidence in the north, and mid-latitude westerlies 
in more southern parts of Chile

Fig. 3   ERA-Interim mean annual near surface (2  m) temperatures 
(left) and mean annual precipitation (right) highlight the pronounced 
climate gradients in Chile due to orographic and latitude-specific 
forcings



2884	 S. G. Mutz et al.

1 3

records of observation for training and validation. Weather 
stations with short records were thus excluded from the 
study. There is no universally valid threshold for the number 
of years of observational data required for training, since the 
goodness of the model is partially determined by whether or 
not the predominant predictor-predictand relationships are 
observed in the recorded time window (e.g. Hewitson et al. 
2014). To ensure the inclusion of potentially useful short 
weather station records, the minimum record length is set to 
10a. The models are calibrated using monthly means of 2 m 
air temperature with previously filtered annual cycle. There-
fore, only data with temporal resolution of at least 1 month 
was included. The 24 weather stations that fulfill these cri-
teria cover the latitudinal span of Chile, as well as different 
altitudinal ranges and proximity to the Pacific Ocean and the 
Andes. A summary of station ID’s, names, coordinates and 
altitude of their location is provided in Table 1.

2.2 � ERA‑interim reanalysis

ERA-Interim reanalyses provided by the ECMWF (Euro-
pean Centre for Medium Range Weather Forecasting) are 
based on records from various observation systems that are 
dynamically interpolated with numerical forecasting in a 
data assimilation scheme to produce a spatially homogenous 

global dataset covering the time period from 1979 to pre-
sent-day (Dee et al. 2011). Its spatial resolution corresponds 
approximately to a horizontal 80 × 80 km grid with 60 verti-
cal levels from the surface to 0.1 hPa, and has a temporal 
resolution of 6 h. For the purposes of this study, monthly 
values of 2 m air temperature (t2m), mean sea level pres-
sure (msl), zonal wind at 850 hPa (u850), meridional wind 
at 850 hPa (v850) and geopotential height at 700 hPa (h700) 
are derived from the dataset.

2.3 � GCM simulations

General Circulation Models (GCMs) simulate global climate 
on the basis of our understanding of atmospheric physics. 
They are a well established tool in atmospheric sciences 
and used to investigate atmospheric processes, contempo-
rary climate change (IPCC 2014 and references therein) and 
reconstruction of past climates (e.g. Haywood et al. 2010, 
Bracannot et al. 2012, Mutz et al. 2018). GCMs simulate 
climates in dynamic equilibrium with the prescribed bound-
ary conditions. When those boundary conditions correspond 
to various RCP (Representative Concentration Pathways) 
scenarios, reflecting climate forcings due to possible demo-
graphic and technological developments in the near future 
(Moss et al. 2010), GCMs are able to provide estimates of 

Table 1   Weather station IDs, 
names, locations (latitude, 
longitude and altitude above sea 
level)

ID Name Lat Lon Altitude (m)

1 Arica Chacalluta − 18.3333 − 70.3333 58
2 Iquique Diego Aracena − 20.5333 − 70.1833 52
3 Calama El Loa − 22.4833 − 68.9 2270
4 Antofagasta Cerro Moreno − 23.4333 − 70.4333 135
5 Copiapo Chamonate − 27.3 − 70.4167 291
6 La Serena La Florida − 29.9 − 71.2 142
7 Quintero − 32.7833 − 71.5167 8
8 Santiago Pudahuel − 33.3833 − 70.7833 475
9 Santiago Quinta Normal − 33.4333 − 70.6833 520
10 Santiago Los Cerillos − 33.4833 − 70.6833 519
11 Curico General Friere − 34.966667 − 71.2333 228
12 Chillan B O Higgins − 36.5667 − 72.0333 124
13 Concepcion Carriel Sur − 36.7667 − 73.05 12
14 Bellavista U Concepcion − 36.7833 − 73.1167 15
15 Temuco Maquehue − 38.7667 − 72.6333 114
16 Valdivia Pichoy − 39.6167 − 73.0833 19
17 Osorno Canal Bajo − 40.6 − 73.05 65
18 J.Kalt Bode − 40.583333 − 73.15 50
19 Puerto Montt el Tepual − 41.4167 − 73.083333 85
20 Coyhaique Teniente Vidal − 45.5833 − 72.1167 310
21 Balmaceda − 45.9167 − 71.6833 520
22 Chile Chico Aerodromo − 46.55 − 71.7 328
23 Lord Cochrane Aerodromo − 47.2333 − 72.55 169
24 Punta Arenas Carlos Ibanez − 53 − 70.85 37
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possible future climates (IPCC 2014 and references therein). 
Simulations of the Max Planck Institute (MPI) Earth System 
Model (ESM) MPI-ESM, as provided by the World Climate 
Research Programme’s (WCRP) Coupled Model Inter-
comparison Project phase 5 (CMIP5) (Taylor et al. 2012), 
provide the basis for the downscaling efforts of this study. 
More specifically, the trained ESD models (Sect. 2.5) are 
driven with MPI-ESM simulations based on RCP scenarios 
of RCP2.6, RCP4.5 and RCP8.5 (Moss et al. 2010), so that 
the downscaling results represent local-scale responses to a 
wide range of possible future scenarios. In addition to these 
simulations, Atmospheric Model Intercomparison Project 
(AMIP) style simulations for present-day climate are cou-
pled to the ESD models and used for calibration.

2.4 � Predictors

2.4.1 � Selection criteria

Prior to automatic selection and elimination of predictors in 
the model training procedure (Sect. 2.5), a set of reasonable 
predictors must be identified. Two major criteria have to 
be met by predictors in this pre-selection step: (1) Physical 
relevance to the predictand and (2) adequate representation 
of predictors in GCMs. The reasons for these restrictions 
are as follows:

1.	 In ESD models, predictors represent the large-scale 
atmospheric variability that is physically related and 
empirically relevant to the prediction of the local-scale 
atmospheric variability of predictands at each of the 
weather stations. Since the training of these models is 
based solely on empirical relationships, a careful selec-
tion of physically meaningful predictors ensures that 
physically irrelevant variables showing spurious corre-
lations with predictands in the observation time period 
are not included in the models. Therefore, the predictors 
in Table 2 were chosen. Details about their construction 
are given below.

2.	 The ESD models in this study are based on training with 
ERA-interim reanalyses are part of the family of models 
based on the Perfect Prognosis (PP) rather than Model 
Output Statistics (MOS) approach (Lowry and Glahn 
1969). While MOS fits the ESD models with simulated 
predictor data, such as output produced by GCMs, the 
PP approach has the advantage of training based on 
observational records (weather station and reanalysis 
data). This approach is chosen to allow better physical 
interpretation of model transfer functions. As a result 
of choosing the PP approach, further restrictions have 
to be placed upon the selection of predictors. Since the 
PP approach does not take model biases into account 
implicitly, as is the case for MOS-style model training, 

and the ESD models are coupled to GCM simulations, 
the chosen predictors have to be adequately represented 
in GCMs to ensure more robust estimates.

2.5 � Predictor construction

For downscaling of temperature at least one atmospheric 
circulation describing predictor (e.g. sea level pressure) and 
one temperature predictor (e.g. 2 m air temperature) should 
be included in the training procedure (Huth 2002). For 
each station, regional (500 km scale) means of 2 m air tem-
perature (t2m), mean sea level pressure (msl), geopotential 
height at 700 hPa (h700), and meridional and zonal winds 
at 850 hPa (v850 and u850 respectively) were used. Due to 
the known influence of ENSO (e.g. Rutllant and Fuenzalida 
1991) and the AAO (e.g. Garreaud et al. 2009) on climate in 
northern and southern Chile respectively, indices for these 
atmospheric phenomena serve as additional predictors. For 
the former, the Multivariate ENSO Index (MEI) (Wolter 
and Timlin 1993) was computed by means of a principal 
component analysis (PCA) without the clustering step, fol-
lowing the approach of Wolter and Timlin (2011). The load-
ing patterns associated with this particular index are shown 
in supplemental figure S01. Furthermore, the inclusion of 
cloudiness was omitted following the ECMWF’s recom-
mendations due to inconsistencies in its calculations (Hen-
nermann 2016). An index for the atmospheric variability 
associated with the AAO (AAOI) was computed in another 
PCA by projecting the 700 hPa anomaly field south of 20° S 
onto the loading patterns from the Climate Prediction Center 
(CPC) at the National Centers for Environmental Prediction 
(NCEP) (NOAA-CPC 2020). Finally, following (Garreaud 
et al. 2009), the first principal component of Pacific SST 
anomalies north of 20°N was used as an index for the PDO 
(PDOI). For consistency, the same ENSO, AAO and PDO 
loading patterns were used for calculating the MEI AAOI 
and PDOI from GCM output for the investigated RCPs. 

Table 2   Acronym and full name of predictors used in the training of 
empirical-statistical downscaling models

Acronym Full name

MEI Multivariate El Niño/Southern Oscillation (ENSO) Index
AAOI Antarctic Oscillation Index
PDOI Pacific Decadal Oscillation Index
t2m 2 m air temperature
Msl Mean sea level pressure
u850 Zonal wind speed component at 850 hPa
u850 Meridional wind speed component at 850 hPa
h700 Geopotential height at 700 hPa
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The full set of predictors described above is summarised 
in Table 1.

2.6 � Model training and validation

The climatic and geographic setting for the 24 weather sta-
tions (Sect. 2.1) are highly varied. One of the strengths of 
ESD is the implicit consideration of highly localised con-
ditions. We exploit this strength in this study by training 
models for the 24 stations separately using linear parametric 
models. Such models are commonly used in downscaling 
(e.g. Huth 2002; Zorita and von Storch 1999) due to the 
ease of interpretation of results, a possible increase predic-
tive ability due to restriction of function complexity (Hastie 
et al. 2001) and better predictive ability outside the train-
ing data value range when compared to equivalents such as 
Random Forests regressions (e.g. Pollinger et al. 2017). At 
its core, model training consists of a cross-validated step-
wise multiple linear regression procedure with random boot-
strapping and forward selection (e.g. von Storch and Zwiers 
1999). The models themselves comprise a set of constants 
and transfer functions that linearly relate a set of predictors, 
denoted as the matrix X, to the predictand y. More specifi-
cally, an additive model was assumed, such that:

where ε is the variance of y that cannot be explained by 
the set of predictors X, vector β comprises the regression 
coefficients for each of the large-scale predictors and rep-
resents their influence on a local-scale predictand, and vec-
tor β0 is the y intercept of the linear function that includes 
constant local effects and will no longer be mentioned from 
here on for the sake of brevity. For m number of predictors 
and n observations, y, β and X are:

The model is fitted with observation-based (ERA-interim) 
data and thus belongs to the Perfect Prognosis rather than the 
Model Output Statistics model families (Lowry and Glahn 
1969). The total record length n for each station is subdi-
vided into training (1979–2000) and validation (2001–2015) 
periods. The focus lies on models trained from 1979 to 
2000 and validated in 2001–2015, following established 
conventions (e.g. CORDEX 2020). Additional models are 
trained from 2001 to 2015 and the full observational period 
1979–2015 to evaluate the sensitivity of results to ESD 
model training periods. For data within the training period, 

y = �0 + � ⋅ X + �,

⎛⎜⎜⎜⎝

y1
y2
⋮

yn

⎞⎟⎟⎟⎠
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the model is trained through a successive set of iterations. 
For each iteration, a random set of observations is retained 
for in-training cross-validation (Michaelsen 1987). For this, 
contiguous blocks of data are excluded following recommen-
dations for potentially auto-correlated data (Roberts et al. 
2017) to avoid overfitting. This results in the exclusion of a 
third of the data. For the remaining data, the above problem 
is solved using a multivariate ordinary least-squares (OSL) 
regression on a subset of predictors, yielding parameter 
estimates �̂  that allow prediction ŷ for the retained data of 
the validation set. In the forward selection approach (e.g. 
von Storch and Zwiers 1999; Mutz et al. 2015), the initial 
models start with an empty set of predictors and predictors 
are added to the set successively if they contribute to the 
significant improvement of the model. The measure for sig-
nificant improvement is an increase in the variance of y that 
can be explained by the inclusion of the predictor into the 
model. This was assessed by computation of the coefficients 
of multiple determination (R2):

following a full multiple regressions for the cur-
rent active set of predictors and every predictor not yet 
included (von Storch and Zwiers 1999). The distance of 
predicted from observed predictand values, i.e. the general 
model accuracy, is given by the root mean square error:

Once the RMSE decreases following the inclusion of a 
predictor, the predictor in question is excluded and the pre-
dictor set for the iteration is established. After completion 
of all iterations, the model for each station is finalised by 
averaging �̂  over all iterations and imposing a robustness 
filter that permits inclusion of a predictor into the final 
model only if it significantly increased the explained vari-
ance of y in at least 50% of all iterations (Mutz et al. 2015). 
Once the models are constructed, they are applied to pre-
dict ŷ for the independent validation period (2000–2015). 
While the synoptic RSME and R2 from cross-validation 
are useful model performance measures for accuracy and 
explanatory power respectively, the RSME and prediction 
score were calculated additionally based on validation 
with completely independent data. The latter is a meas-
ure for how much better the prediction is than predicting 
only the annual cycle. Finally, the entire procedure was 
repeated with a predictor set that excludes regional 2 m 
air temperatures, since this allows better interpretation of 
results in the context of underlying mechanisms.
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2.7 � GCM coupling and prediction of local‑scale 
twenty‑first century response

Each of the MPI-ESM simulations were forced with 
boundary conditions for different twenty-first century 
climate forcing scenarios RCPs 2.6, 4.5 and 8.5. For 
these simulations, the same predictors described above 
(Sect. 2.5) were extracted from the model output. The 
index-based predictors (MEI, AAOI and PDOI) were 
reconstructed by projection of anomaly fields, created by 
subtracting the means, onto the loading patterns of the 
predictors used for model training to ensure a consistency 
in the meaning of index values (e.g. Mutz et al. 2015). The 
24 ESD models were then directly applied to the predic-
tor sets for the RCP2.6, RCP4.5 and RCP8.5 scenarios to 
generate a 21st time series of local temperature responses 
for the weather stations’ coordinates. Finally, seasonal 
(DJF, MAM, JJA, and SON) means, annual means and 
20a climatologies (2040–2060 and 2080–2100) were 
calculated to provide summaries of 2 m air temperature 
response predictions for each station. Figure 4 outlines 
the general method applied in this study, including predic-
tor construction, model training, predictor-reconstruction 
from twenty-first century GCM simulations and prediction 
of local temperature responses based on the coupling of 
ESD models to GCM-based estimates.

3 � Results

3.1 � Model summaries

The training and validation procedure (Sect. 2.5) for the 
ESD models was carried out for all 24 stations, 3 training 
time periods (1979–2000, 2001–2015 and 1979–2015) and 
2 subsets of predictors (the full set and the set omitting 
t2m). This combination of parameters results in a total 
of 144 models. The focus of the results section lies on 
the models trained in 1979–2000, because they (a) can 
be validated in a completely separate period, (b) consider 
more data for training than models based on 2001–2015 
observations, and (c) adhere to established conventions 
for the training period (e.g. CORDEX 2020). Following 
validation, these models were coupled to GCM outputs 
(Sect. 3.2). The exact model parameters for the 24 models 
trained with the full predictor set in 1979–2000 are listed 
in supplemental Table 1.

Three different metrics are used to assess the strength 
of the models. The RMSE can be interpreted as a measure 
of the overall model accuracy, while the score describes 
now much better the prediction is in comparison to pre-
dicting the annual cycle (supplemental table 2). The total 
explained variance of each model (Figs. 5, 6) represents 
the amount of variability of the predictand time series, 
namely temperature anomalies at each weather station, 
that can be explained by the trained models. Since addi-
tive models are used, the total explained variance can be 
split into the fractions of the predictands’ variance that 
can be explained by individual predictors. Since this the 
most intuitive and versatile measure allowing more in-
depth interpretation and discussion, the model descriptions 
focus primarily on this, while the other performance met-
rics (RMSE and scores) are included in the supplemental 
material (supplemental table 2).

The ESD models trained on 1979–2000 data with the 
full set of predictors (Table 2; MEI, AAOI, PDOI, t2m, 
msl, u850, v850, h700) are associated with explained 
variances of ca. 40–90% (Fig. 5). The models’ ability 
to explain predictand variance generally increases with 
(higher) latitude. The dominant predictors are 2 m air tem-
perature and MEI, followed by regional pressure fields and 
meridional wind speed components. While the contribu-
tion of the MEI to the total explained variance is the great-
est for most of the northern weather stations, it decreases 
with higher latitudes and creases to contribute significantly 
for stations south of Quintero (32.8° S). The RMSE and 
scores range from 0.3 to 1.0 and 0.3 to 0.9 respectively 
(supplemental table 2). The scores increase with higher 
latitudes as is the case with explained variances. The 
exclusion of t2m from the predictor set results in lower 

Fig. 4   Predictors for local temperature variability in Chile are created 
from reanalysis data. The constructed predictors and weather station 
temperature data are used in the model training and validation proce-
dure to generate ESD (Empirical Statistical Downscaling) models and 
accompanying performance metrics for each of the weather stations. 
Predictors are reconstructed from GCM (General Circulation Model) 
output and drive the same ESD models to generate estimates of the 
local temperature response in Chile to twenty-first century climate 
change under different RCP forcing scenarios
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(30–70%) explained variances especially in higher lati-
tudes. Regional pressure fields are able to explain ca. 50% 
of extratropical temperatures, and meridional and zonal 
wind speed components contribute additional 2–20% and 

2–8% respectively in Chile’s temperate zone (supplemen-
tal figure S02).

3.2 � Downscaling of GCM simulations

The coupling of the 24 models (Sect. 3.1) to twenty-first 
century global climate simulations forced with RCP2.6, 
RCP4.5 and RCP8.5 result in twenty-first century monthly 
time series for each station and RCP emission scenario. 
Results are presented as deviations from the respec-
tive annual temperature means at each station. For clar-
ity, the annual means computed from these time series 
were low pass filtered using a 3 year moving arithmetic 
mean with central-year assignment (Fig. 6). The mod-
elled regional responses to different RCPs only show a 
significant deviation from each other from mid-century 
onward. On the other hand, differences in 20a end-of-
century climatologies (Fig. 7) are very pronounced with 
predicted responses ranging from ca. − 0.5–2 K, 0.5–3 K 
and 2–7 K for RCP2.6, RCP4.5 and RCP8.5 respectively. 
The stations experiencing the highest positive end-of-
century temperature deviations also experience higher 
mid-century temperature deviations than other stations 
(supplemental figure S04). There is no apparent associa-
tion between the magnitude of deviations and proximity to 
the ocean, latitude, altitude or annual means in the obser-
vation period. The construction of seasonal (DJF, MAM, 
JJA and SON) end-of-century 20a climatologies (Fig. 8) 

Fig. 5   Predictor-specific partial explained variances of weather sta-
tion temperatures. Colours correspond to specific predictors and the 
stations are ordered from left to right by their latitudinal position 
(north to south). The complete predictor set consists of the Multivari-
ate ENSO Index (MEI, green), Antarctic Oscillation Index (AAOI, 
purple), Pacific Decadal Oscillation Index (PDOI, brown), regional 

means of 2 m air temperature (t2m, red), regional means of mean sea 
level pressure (msl, blue), regional means of zonal wind speeds at 
850  hPa (u850, orange), regional means of meridional wind speeds 
at 850 hPa (v850, beige) and regional means of geopotential height at 
700 hPa (h700, pink)

Fig. 6   3a moving average of twenty-first century mean annual tem-
perature anomalies for each station as observed (grey) and estimated 
based on empirical-statistical downscaling models and GCM simu-
lations forced with scenarios RCP2.6 (blue), RCP4.5 (purple) and 
RCP8.5 (red). The reference for anomalies are observation based long 
term means for 1979–2000
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reveal uneven warming among seasons in response to RCP 
forcings. More specifically, several stations (e.g. 7, 8, 11, 
13, 19–24) experience accentuated warming in austral 
summer (DJF) and autumn (MAM), while others show 
accentuated warming only in autumn (Fig. 8). For exam-
ple, end-of-century temperature climatologies for RCP8.5 
(Fig. 6, bottom panel) have higher values in austral autumn 
(MAM) than most other seasons, indicating a prolonged 
summer (or longer warm season). Accentuated warming 
in winter (JJA) and spring (SON) under scenario RCP8.5 
are experienced by stations 2, 5 and 12, which are among 
the stations modelled to experience the most warming 
overall (Fig. 8). While the relative seasonal temperature 
change pattern across stations is similar for all scenarios, 
the warming modelled for RCP4.5 is less pronounced. Sta-
tions and seasons for which relatively little warming is 
modelled in RCP8.5 and RCP4.5 experience slight cooling 
in RCP2.6. Stations and seasons for which the strongest 
warming is predicted in RCP8.5 and RCP4.5 still experi-
ence warming in RCP2.6. Mid-century 20a climatologies 

of seasonal means (supplemental figure S05) show pref-
erential warming in the same seasons.

4 � Discussion

4.1 � Model evaluation and controls on regional 
temperatures

Overall, the explained variances, RMSEs and scores of 
ESD models for regional temperatures were high (40–90%, 
0.3–0.9 and up to 0.9 respectively), indicating a strong 
dependence between regional temperatures and large-scale 
atmospheric controls, as well as the ability of ERA-interim 
and the GCM (MPI-ESM) to adequately represent those. 
The previous model performance metrics indicate that the 
ESD-based predictions work best in Chile’s higher lati-
tudes, such as for the stations near Concepción and Punta 
Arenas. This finding is consistent with reports of downs-
caling producing better results in wet regions, particularly 

Fig. 7   Climatologies of observed mean annual temperatures (grey) 
and climatological anomalies of mean annual temperatures based 
on empirical-statistical downscaling models and GCM simulations 
forced with scenarios RCP2.6 (blue), RCP4.5 (purple) and RCP8.5 

(red). RCP anomalies are based on end-of-century (2080–2100) 
means and reference climatologies created from 1979 to 2000 obser-
vations
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in the mid-latitudes, than in dry regions (Cavazos and 
Hewitson 2005; Fowler et al. 2007). The high explained 
variances in these mid-latitudes by 2 m air temperature 
alone indicate that implicitly considered conditions and 
feedbacks in the vicinity of weather stations determine a 
large part of mid-latitude model parameters and appear to 
stay constant over the observational period. The scores and 
RMSEs that were computed for stations south of Santiago 
Pudahuel (33.4°S) for in training period 1979–2000 are 
similar to those computed for training period 2001–2015, 
which indicates very little change in the local geographi-
cal conditions and predictor-predictand relationships over 
the entire observational period. This temporal stationar-
ity lends more confidence in the predicted twenty-first 
century regional temperature response based on higher-
latitude (33.4° S–5° S3) models. The reasons for the highly 
variable scores and mostly lower explained variances and 

RMSEs for low-latitude stations in northern Chile (18.3° 
S–33.4° S) are varied. Generally, it can likely be attrib-
uted to non-stationarity of transfer functions due to dif-
ferent conditions in the training and validation periods, 
and to observational records not being sufficiently long 
to capture all prediction-relevant dynamics. For exam-
ple, the selection of the MEI in the model training proce-
dure suggests a more direct impact of ENSO on regional 
temperatures. The period 1979–2000 experienced 2 very 
strong (MEI = 2.5–3) and 2 strong (MEI ≈ 2) El Niño 
years, whereas the period 2001–2015 only experienced 
one strong El Niño year. Therefore, models for northern 
stations like Arica Chacalluta (18.3° S), Iquique Diego 
Aracena (20.5° S) and Antofagasta Cerro Moreno (23.4° 
S) do not have the same high skill (score = 0.5–0.8) as the 
higher-latitude models despite the relatively long observa-
tion records at these stations.

Fig. 8   End-of-century (2080–2100) climatological anomalies of 
mean seasonal temperatures based on empirical-statistical downs-
caling models and GCM simulations forced with scenarios RCP2.6 
(top), RCP4.5 (middle) and RCP8.5 (bottom) for each station and sea-

sons DJF (December–January–Febuary), MAM (March–April–May), 
JJA (June–July–August) and SON (September–October-November). 
The reference for anomalies are observation based long term means 
for 1979–2000
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When coupled to Atmospheric Model Intercompari-
son Project (AMIP) style GCM experiments (Taylor et al. 
2012) for the same observational period, the ESD models 
reproduce low frequency temperature oscillations well (cf. 
Examples in supplemental figure S03). Given that the GCM 
experiments are forced with updated observed sea surface 
temperatures, it is reasonable to expect temperatures that are 
controlled by large scale atmospheric oscillations like ENSO 
and PDO to be well predicted. This is on par with similar 
findings by Lau and Nath (1994) for ENSO, Hoerling et al. 
(2001) for NAO and Sutton and Hodson (2005) for AMO.

While 2 m air temperature has been demonstrated to be 
the most powerful predictor overall, it does not explain the 
underlying controlling mechanisms. ENSO has a strong 
direct influence in northern Chile, as apparent by the 
explained variances (Fig. 5 and supplemental figure S03), 
low frequency features and timing of minima and maxima 
(supplemental figure S04) in our models. On the other hand, 
temperatures in central and southern Chile are governed by 
frontal systems, as suggested by high explained variance 
by mean sea level pressure and 700 hPa geopotential height 
fields (supplemental figure S03). Exclusion of the latter 
predictor resulted in its replacement by zonal winds at the 
850 hPa level (not shown here) for stations between 30°S 
and 40°S, which further supports the influence of westerlies 
on Chilean climate (Garreaud et al. 2009). The AAOI has 
not proven a robust predictor despite the known influence 
of the AAO (e.g. Garreaud et al. 2009). This may be due to 
its variability already being captured by the regional means 
predictors. While the PDO has demonstrated to be of rele-
vance to Chilean climate (e.g. Valdés-Pineda et al. 2018), its 
influence was not captured in the ESD models. This is likely 
due to the relatively short observational records that do not 
adequately cover the PDO’s low-frequency fluctuation on 
scales of 15, 25, 50 and 70 years (Mantua and Hare 2002).

4.2 � Twenty‑first century regional temperature 
response in Chile

The RCP-specific ensembles of predicted temperature anom-
alies for each station begin to diverge significantly around 
the mid-century (2040–2050), resulting in end-of-century 
regional climates with annual mean temperatures that 
increase by ca. − 0.5–2 K, 0.5–3 K and 2–7 K for RCP2.6, 
RCP4.5 and RCP8.5 respectively. This warming is unevenly 
distributed among seasons, so that many of the stations 
experience accentuated warming during the austral summer 
(DJF) and autumn (MAM). Some stations show accentu-
ated warming only in autumn, indicating a prolonged warm 
season. These changes in annual temperature means and sea-
sonality likely impact vegetation, ecosystems, local industry, 
adaptation and conservation strategies. For example, these 
predicted changes modify the climatic factors considered 

in the classification of Chile’s terrestrial ecosystems that 
are conducted to facilitate conservation efforts (Martínez-
Tilleria et al. 2017).

4.3 � Comparison to other studies

This study’s selection of predictors is based on previous 
studies examining large-scale control on Chilean weather 
and climate (e.g. Rutllant and Fuenzalida 1991; Rutllant 
et al. 2003; Montecinos and Aceituno 2003; Garreaud et al. 
2013; Valdés-Pineda et al. 2018). Our results consolidate 
their findings with some limitations: (1) The AAOI was not 
chosen as a robust large-scale predictor for regional tem-
peratures. However, given the climatic setting and findings 
of previous studies (e.g. Garreaud et al. 2009), this is likely 
due to multicollinearity among predictors and the relevant 
AAOI variability already captured by other predictors like 
regional-scale temperature means. (2) The exclusion of the 
PDO as a robust predictor is likely caused by the weather 
station records that do not adequately cover the PDO’s low-
frequency fluctuations and its influence on regional climate 
(e.g. Valdés-Pineda et al. 2018). Souvignet et al. (2010) 
performed ESD of temperature (and precipitation), but the 
study was regionally restricted to a watershed in north-cen-
tral Chile. Prior to this study, no ESD-based modelling of 
twenty-first century temperature changes has been conducted 
with the spatial coverage and the 24 stations presented here.

4.4 � Assumptions and limitations

ESD is based on the premise that large-scale atmospheric 
variability leads to local-scale changes in atmospheric 
conditions (von Storch 1995), and assumes that empiri-
cal relationships between predictors and predictands have 
an underlying physical relationships, so that the statistical 
transfer functions of the ESD models continue to be valid 
through time (Zorita and von Storch 1999). The latter is 
known as the assumption of temporal stationarity of transfer 
functions. This study has largely demonstrated the validity 
of this assumption for the completely independent valida-
tion period. While other studies demonstrated decent per-
formance of related techniques for other regions in the pre-
industrial (Reichert et al. 1999) and Last Glacial Maximum 
(Vrac et al. 2007), temporal stationarity may not be given for 
more dramatically different climates and through geological 
time. Since highly localised effects of vegetation- and topog-
raphy are only implicitly taken into consideration, changes in 
such geographical conditions would likely result in different 
optimal transfer functions.

Another major caveat concerns models, in which ENSO is 
an important predictor. The accuracy of predictions made by 
such models depends on the adequacy of ENSO representa-
tion and accuracy of ENSO prediction by the GCMs they are 
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coupled to. CMIP5 coupled ocean–atmosphere GCMs only 
showed modest improvements in ENSO representation com-
pared to CMIP3 models. These include slightly better repre-
sentations of latent heat flux feedbacks, amplitude and sea-
sonal phase locking (Bellenger et al 2014). However, many 
challenges in ENSO modelling remain. Persistent problems 
include inaccuracies in amplitude and phase lock, the simu-
lation of the switch between positive and negative short-
wave feedbacks in the eastern equatorial Pacific, which only 
30% of CMIP5 models are able to achieve, and a significant, 
ableit reduced, cold bias in the western Pacific (Bellenger 
et al 2014). The GCM used in this study shows relatively 
good ENSO representation, as assessed by scores in primary 
characteristics of amplitude, structure, spectrum and sea-
sonality (Bellenger et al 2014). Nevertheless, the modelled 
ENSO response to climate change strongly depends on the 
GCM and predictions vary even across models with better 
ENSO representation. The results of this study are therefore 
biased towards the MPI-ESM representation and prediction 
of ENSO and will likely improve only with more significant 
leaps in the accuracy of modelled ENSO characteristics and 
behaviour.

5 � Conclusions

We presented a first step in empirical-statistical downscaling 
of temperatures across Chile based on digitised records from 
24 weather stations provided by the DMC. We employed 
a cross-validated stepwise multiple linear regression with 
a literature-informed predictor set and perfect prognosis 
approach to train the ESD models. We then coupled these 
to GCM simulations forced with RCP2.6, RCP4.5 and RCP 
8.5 scenario conditions to generate estimates for the regional 
twenty-first century temperature response to said scenarios. 
The key conclusions of this study are:

•	 Regional 2 m temperature means are the most robust 
predictors for temperatures of mid-latitude Chile, while 
the Multivariate ENSO Index explains most of the lower-
latitude temperature variance in northern Chile.

•	 The described approach and predictor set works well 
for the investigated stations. This is demonstrated by 
explained variances of up to 70% in northern Chile and 
up to ca. 90% in southern Chile and other performance 
metrics. The performance of mid-latitude models is 
higher than that of low-latitude models, suggesting the 
approach is more suitable for the westerlies dominated 
climate in Chile.

•	 Circulation based predictors based on pressure fields and 
winds explain up to ca. 50% and 70% weather station 
temperature variance in northern Chile and southern 

Chile respectively when regional temperatures means 
are removed from the analysis.

•	 Downscaling based end-of-century local temperature 
responses range from − 0.5–2 K, 0.5–3 K and 2–7 K for 
the RCP2.6, RCP4.5 and RCP8.5 scenarios respectively. 
The warming for RCP4.5 and RCP8.5 is accentuated in 
summer and autumn (DJF, MAM) at several stations 
across Chile, suggesting a prolonged warm season.

There are numerous possible improvements for empirical-
statistical downscaling in Chile, and ways to build upon the 
approach of this study. These improvements could include 
(1) a refinement of predictors, such as an AAOI based on 
coastal Chile pressure fields to improve the prediction per-
formance of circulation based predictors, (2) preparation and 
inclusion of additional weather station records to improve 
coverage and comparison to RCM based estimates, (3) the 
inclusion of other GCM simulations and investigation of 
ensembles to better assess the robustness of predictions and 
discrepancies in predictions arising from different modelled 
ENSO responses to climate change, and (4) the application 
of hybrid models to exploit the superior skills of random for-
ests regressions within the observational range of values and 
the superior ability of parametric regression based models to 
predict values outside the observational range (e.g. Pollinger 
et al. 2017) to improve overall performance.
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