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Abstract
Breast cancer etiology is associated with both proliferation and DNA damage induced by estrogens. Breast cancer risk fac-
tors (BCRF) such as body mass index (BMI), smoking, and intake of estrogen-active drugs were recently shown to influence 
intratissue estrogen levels. Thus, the aim of the present study was to investigate the influence of BCRF on estrogen-induced 
proliferation and DNA damage in 41 well-characterized breast glandular tissues derived from women without breast cancer. 
Influence of intramammary estrogen levels and BCRF on estrogen receptor (ESR) activation, ESR-related proliferation 
(indicated by levels of marker transcripts), oxidative stress (indicated by levels of GCLC transcript and oxidative derivatives 
of cholesterol), and levels of transcripts encoding enzymes involved in estrogen biotransformation was identified by multiple 
linear regression models. Metabolic fluxes to adducts of estrogens with DNA (E-DNA) were assessed by a metabolic net-
work model (MNM) which was validated by comparison of calculated fluxes with data on methoxylated and glucuronidated 
estrogens determined by GC– and UHPLC–MS/MS. Intratissue estrogen levels significantly influenced ESR activation and 
fluxes to E-DNA within the MNM. Likewise, all BCRF directly and/or indirectly influenced ESR activation, proliferation, 
and key flux constraints influencing E-DNA (i.e., levels of estrogens, CYP1B1, SULT1A1, SULT1A2, and GSTP1). However, 
no unambiguous total effect of BCRF on proliferation became apparent. Furthermore, BMI was the only BCRF to indeed 
influence fluxes to E-DNA (via congruent adverse influence on levels of estrogens, CYP1B1 and SULT1A2).
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Introduction

The development of breast cancer is associated with an 
exposure to increased levels of circulating estrogens e.g., 
17β-estradiol (E2), estrone (E1) and other endogenous ster-
oids over a prolonged period of time (Endogenous Hormones 
Breast Cancer Collaborative Group 2002, 2013; Colditz and 
Bohlke 2014). Recently, it was shown that modifiable risk 
factors (obesity, smoking as well as intake of ethinyl-E2 and 
E2-releasing drugs) associated with both increased breast 
cancer risk (Grosse et al. 2009; Colditz and Bohlke 2014; 
Gaudet et al. 2017; Collaborative Group on Hormonal Fac-
tors in Breast Cancer 2019; Gram et al. 2019) and higher 
levels of circulating E2 and E1 (Endogenous Hormones 
Breast Cancer Collaborative Group 2003, 2011, 2013) also 
influenced estrogen levels in human breast glandular and 
adipose tissues (Pemp et al. 2020).
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The current understanding of the molecular etiology of 
breast cancer hypothesizes biotransformation of E2 and E1 
within the breast tissue to catechols and subsequent oxida-
tion to genotoxic quinones resulting in DNA damage via 
formation of estrogen–DNA adducts or via formation of 
reactive oxygen species resulting in oxidative stress (Yager 
2015).

In addition, estrogen receptor alpha (ESR1)-mediated 
stimulation of proliferation of the epithelial cells contrib-
utes to conversion of DNA damage into mutations (i.e., 
tumor initiation) as well as tumor promotion and progression 
(Yager 2015). ESR1-mediated proliferation involves com-
plex intercellular signaling between epithelial and stromal 
cells (Lanigan et al. 2007). After activation of ESR1 and 
progesterone receptor (PGR), several downstream regula-
tors for intercellular signaling, e.g., amphiregulin (AREG, 
McBryan et al. 2008), estrogen receptor beta (ESR2, Warner 
et al. 2020), GATA binding protein 3 (GATA3, Chou et al. 
2010), transforming growth factor beta 1 (TGFB1, Massague 
2012), trefoil factor 1 (TFF1, Amiry et al. 2009; Buache 
et al. 2011), Wnt family member 4 (WNT4, Alexander et al. 
2012), and intracellular signaling, e.g., cyclin D1 (CCND1, 
Sicinski et al. 1995), cyclin-dependent kinase inhibitor 1A 
(CDKN1A, Kreis et al. 2019) and cyclin-dependent kinase 
inhibitor 1B (CDKN1B, Ding et al. 2019) maintain con-
trolled proliferation of mammary epithelial cells (Lanigan 
et al. 2007). Thus, tumor formation (Yager 2015) seems to 
depend on intramammary levels of both reactive estrogen 
biotransformation products and free estrogens able to acti-
vate ESR1 (Fig. 1). Yet, the association of intramammary 
levels of E2 and E1 with the signaling leading to ESR1-
dependent proliferation in human breast tissues in women 
without breast cancer is hitherto unexplored.

Equally uncertain is the association of intramammary 
levels of E2 and E1 with the formation of DNA adducts 
by reactive estrogens: although the association of circulat-
ing estrogen levels with breast cancer risk suggests that 

intraglandular estrogen levels might be associated with lev-
els of DNA-reactive estrogen quinones, the entirety of the 
multitude of enzymes activating (cytochrome P450s, CYPs) 
and deactivating estrogens (UDP glucuronosyltransferases, 
UGTs, and sulfotransferases, SULTs), and its metabolites 
(catechol-O-methyltransferase COMT, NAD(P)H quinone 
dehydrogenase 1, NQO1, glutathione S-transferases GSTs; 
Online Resource 1) will determine to which extent high 
intraglandular estrogen levels will contribute to formation 
of adducts of estrogens with DNA. Moreover, it has been 
shown recently that levels of transcripts encoding enzymes 
in estrogen (biotrans)formation influence intramammary 
estrogen levels (Pemp et al. 2020), stressing the importance 
of considering intratissue biotransformation.

Besides the well-known effect of substrates and/or prod-
ucts on the enzyme kinetics and expression of the genes 
encoding enzymes catalyzing the biotransformation of estro-
gens, the expression is often regulated by ligand-dependent 
transcription factors which enables tissues to respond to 
endogenous and exogenous signals. For example, the expres-
sion of enzymes involved in biotransformation of estrogens 
is regulated by oxidative stress (Nebert et al. 2000; Zordoky 
and El-Kadi 2009; Dinkova-Kostova and Talalay 2010; Lu 
2013; Fig. 1). Of note, in addition to elevated estrogen lev-
els, oxidative stress generated by inflammation (Lonkar and 
Dedon 2011) is discussed to contribute to the positive asso-
ciation between obesity-related body mass index (BMI) and 
breast cancer risk (Himbert et al. 2017).

Since multiple (iso)enzymes compete for estrogens and 
vice versa (Online Resource 1), the impact of intramammary 
levels of E2 and E1 on formation of adducts of estrogens 
with DNA can only be predicted by appropriate statistical or 
bioinformatical methods. Statistical methods such as linear 
regression are suitable to identify central elements in the 
metabolism, but they are not able to predict the impact of 
different estrogen and transcript level scenarios. In contrast, 
the response of the biological system can be predicted by 

Fig. 1   Possible ways of interac-
tion of breast cancer risk factors 
(BCRF) with cell proliferation 
and estrogen biotransforma-
tion resulting in formation of 
adducts of estrogens with DNA 
(E-DNA) in human breast glan-
dular tissue. Variables in boxes 
were investigated as dependent 
variables in “Multiple linear 
regression models”. EBioT 
enzymes involved in biotrans-
formation of estrogens
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investigating the dynamic behavior of metabolic processes 
by means of simulation (Rezola et al. 2015); e.g., using a 
constraint-based modeling based on a stoichiometric matrix 
(Cecil et al. 2011). The resulting fluxes describe the activity 
of the respective reaction in the whole network.

Thus, the aim of the present study was to investigate the 
influence of intramammary estrogen levels and breast cancer 
risk factors on ESR1-dependent intercellular signaling and 
bioactivation of E2 and E1 to genotoxins and formation of 
adducts of estrogens with DNA (Fig. 1).

To achieve his aim,

–	 the influence of breast cancer risk factors and estrogen 
levels on ESR activation and oxidative stress as well as 
the relevance thereof for cell proliferation was deter-
mined by multiple linear regression models.

–	 possible targets of breast cancer risk factors in estrogen 
biotransformation, sensitive to modulation by estrogen 
levels and oxidative stress were identified by multiple 
linear regression models.

To assess the relevance of these influences for the forma-
tion of adducts of estrogens with DNA,

–	 a network model comprehensively describing activation 
and deactivation reactions in estrogen biotransformation 
was developed and validated.

–	 the metabolic fluxes to adducts of estrogens with DNA 
were modeled using levels of E2 and E1 as well as levels 
of transcripts encoding enzymes involved in biotrans-
formation of E2 and E1 determined previously in well-
characterized human breast glandular tissues (Pemp et al. 
2019, 2020) as flux constraints.

–	 the influence of breast cancer risk factors and of levels 
of biomarkers for oxidative stress on metabolic fluxes 
to adducts of estrogens with DNA were determined by 
multiple linear regression (Fig. 1).

Materials and methods

Origin of biospecimens

Breast tissue specimens were obtained from 47 adult 
women without breast cancer undergoing reduction mam-
moplasty between 2010 and 2015. All women participating 
in the study gave their written informed consent prior to 
their inclusion in the study. Women with a personal and/
or family history of breast cancer were not eligible for par-
ticipation. All participants were asked to complete a ques-
tionnaire about information on age, height, weight, parity 
(parous/nulliparous), smoking habits (never smoker, current 
smoker, current nonsmoker the latter two with daily cigarette 

consumption), intake of estrogen-active drugs as well as 
intake of dietary supplements containing phytoestrogens. 
Individual BMI was calculated in kg/m2. The study popu-
lation consisted of 26 premenopausal, 12 perimenopausal 
and 9 postmenopausal women. However, the perimenopau-
sal group may also contain pre- as well as postmenopausal 
women, since allocation to each group was based on the age 
of the participants (Pemp et al. 2019).

Tissue characterization and preparation

Of the 47 biospecimens only 44 were eligible for the met-
abolic network model (for two biospecimens no levels of 
transcripts could be obtained and one biospecimen had to be 
excluded to achieve the validation of the metabolic network). 
In addition, two women did not volunteer information on the 
use of estrogen-active drugs and in one case no analysis of 
the oxidation products of cholesterol could be performed. 
Thus, only 41 biospecimen were eligible for multiple linear 
regression models.

All glandular and adipose tissues were prepared and 
characterized previously (Pemp et al. 2019, 2020). If tis-
sue appearance did not allow to quickly generate aliquots 
of apparently plain adipose and glandular tissue with less 
than 15% adhering adipose tissue, the biospecimens were 
flash-frozen in liquid nitrogen and glandular tissue was 
isolated from cryosections (40 µm) at maximum − 20 °C 
using a scalpel. Tissues were stored at − 80 °C until fur-
ther use. Characterization of biospecimen included their 
mass percentages of oil (oil%), percentage of area covered 
by intra- and interstromal adipocytes and lobule type and 
were reported already. Oil% in tissues was determined gravi-
metrically after extraction with chloroform. Percentage of 
area covered by intra- and interstromal adipocytes and lob-
ule type of glandular tissues was estimated microscopically 
(Leica LMD6500) in cryosections (10 µm) of glandular tis-
sues stained with hematoxylin and eosin Y by two different 
persons and coded slides according to Pemp et al. (2019, 
2020).

Instrumental analysis of E2, E1, 2‑methoxy‑E1, E1 
sulfate, and E1 glucuronide

E2, E1 and 2-methoxy(MeO)-E1 were determined by 
GC–MS/MS (Varian 450-GC, 300-MS; Bruker Daltonics, 
Bremen, Germany) whereas E1 sulfate (E1-S) and E1 glu-
curonide (E1-G) were determined by LC–MS/MS (QTrap® 
5500; AB Sciex, Darmstadt, Germany). Tissue levels of E2, 
E1, 2-MeO-E1, E1-S were quantified using their respective 
deuterated derivatives and E1-G was monitored qualita-
tively. All data have already been published by Pemp et al. 
(2019, 2020). Data used in statistical analyses are presented 
in Online Resource 2.
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Determination of transcript levels

Analysis of transcript levels of genes encoding enzymes 
involved in E2 (biotrans)formation and regulation thereof 
was performed using customized Taqman® Low Density 
Arrays and Taqman® Gene Expression Assays as described 
by Pemp et al. (2019). Data used in statistical analyses are 
presented in Online Resource 3.

Quantitation of intratissue levels of oxidation 
products of cholesterol

Analysis of the oxidation products of cholesterol (ChOL) 
formed by reactive oxygen species, i.e., 7β-hydroxy-ChOL, 
5,6α-epoxy-ChOL and 5,6β-epoxy-ChOL (oxyChOLs), was 
performed using GC–MS/MS (Varian 450-GC, 300-MS; 
Agilent Technologies® Deutschland GmbH, Böblingen, Ger-
many) after extraction, separation from ChOL and derivati-
zation with BSTFA using a deuterated internal standard for 
each analyte as described in Online Resource 4. Data used 
in statistical analyses are presented in Online Resource 5.

Metabolic network model

Usually, all required pathways for the construction of the 
network are found in public data bases such as KEGG. 
However, only 14 of the 159 reactions needed to construct 
the network model were found in KEGG database. The 
remaining reactions were identified individually (Pemp 
et al. 2019). Reactions in estrogen biotransformation and 
isoenzymes considered are presented in Online Resource 
1. Additionally, to model co-factor production, pathways of 
tricarbocylic acid cycle (or Krebs cycle), oxidative phos-
phorylation, pentose phosphate pathway and glycolysis were 
added to the estrogen biotransformation network. Methods, 
resources, and the pathways of the energy metabolism used 
were described in Cecil et al. (2011).

The network was set up using YANAsquare software 
(Schwarz et al. 2007). YANAsquare provides two oppor-
tunities to constrain the amount of metabolites and cofac-
tors in the network: internal and external. When setting 
a metabolite as”internal” the production of it within the 
network is considered when calculating connected reac-
tions. Thus, these metabolites/cofactors can be limited and 
influence the whole network (S-adenosylmethionine, glu-
tathione, 3′-phosphoadenosine-5′-phosphosulfate, catechols, 
quinones). In contrast, an”external” metabolite/co-factor 
is available unlimitedly for the calculation of the fluxes 
(NADPH, UDPGA, sulfates, glucuronides, E1, E2).

For calculation of network fluxes (Online Resource 1), 
YANAsquare and a custom-made routine written in R were 
used (Cecil et al. 2011). As flux constraints (input data), 
levels of mRNA encoding enzymes (a) involved in estrogen 

biotransformation determined by TaqMan PCR (Online 
Resource 3) and (b) involved in energy metabolism deter-
mined by RNA sequencing (Rowley et al. 2011) were used. 
If levels of mRNA encoding enzymes involved in estrogen 
biotransformation were below LOD/LOQ, LOD/LOQ was 
used as flux constraint.

The calculation method was convex basis based: the 
first constraint represented the steady-state condition, i.e., 
no accumulation or depletion of the metabolites inside the 
network. The more reactions a metabolite is involved in, 
the more active is the synthesis reaction. The second con-
straint was the thermodynamic feasibility, which restricts 
some fluxes to being non-negative, because of their associ-
ated Gibbs free energy. Together with the input data, the 
model calculates the resulting fluxes within the network 
based on a third constraint, the non-decomposability condi-
tion, which ensures that the calculated solution comprises 
a minimal number of active reactions at steady state. This 
implies that these solutions cannot be decomposed into any 
smaller flux distributions without violating the steady-state 
constraint (summarized in Rezola et al. 2015). The result-
ing fluxes describe the activity of the respective reaction in 
the whole network even for reactions where input data has 
been available.

The fluxes calculated with data of the 44 women (Online 
Resource 6) were compared using statistical methods with 
levels of 2-MeO-E1 and E1-G determined qualitatively 
and quantitatively in breast tissues (Online Resource 2): 
Median metabolic fluxes to E1-G and 2-MeO-E1 were com-
pared with the detection of E1-G and 2-MeO-E1, respec-
tively < or > LOD by unpaired Wilcoxon test. Correlation 
of metabolic fluxes with levels of 2-MeO-E1 and 2-MeO-
E1 > LOD were analyzed by Spearman’s rank correlation. 
The levels of 4-MeO-E1 and 2/4-MeO-E2 were < LOD in all 
samples, whereas levels of 2-MeO-E1 (with a comparable 
LOD; Pemp et al. 2020) were quantifiable in some samples 
(Pemp et al. 2020). Thus, the differences of the metabolic 
fluxes to 2-MeO-E1 and to the other methoxylated estro-
gens were compared with “0” by Friedmann test followed 
by Dunn´s post hoc test.

Statistical methods

All statistical analyses were performed with the statistical 
programming language R, version 3.5.2 (R Core Team 2020) 
and all tests of statistical significance were two sided. When-
ever multiple comparisons were performed, P values were 
adjusted using Holm's method.

Metabolic network validation

Differences between two and more than two data sets were 
investigated using unpaired Wilcoxon und Friedmann test 
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(Dunn’s post hoc test), respectively. Spearman’s rank cor-
relation was used to analyze correlations between data.

Principal component analysis

Number of principle components (PC), which were cal-
culated in R for specific groups of explanatory variables 
(exVARs), was chosen using the scree plots according to 
the elbow criteria and all PC considered explained at least 
two third of the variation of the original variables.

Analyses of independence of variables

Spearman’s rank correlation analysis was performed to iden-
tify collinearity between numerical exVARs which might 
hinder each other’s selection and/or influence each other’s 
P values within the models. In the case of variables with > 1 
level below LOD or LOQ, correlation was calculated with 
randomly distributed ranks for ties 10,000 times and high-
est Spearman correlation coefficients and lowest P values 
were used to rather overestimate collinearity. Relationship 
between categorical and numerical exVARs was evaluated 
by comparison of medians using unpaired Wilcoxon tests. 
Indications for relationships between variables and possible 
consequences for the selection of exVARs are given for each 
model in Online Resource 7.

Multiple linear regression models

To test the association of every possible exVAR with the 
dependent variable, the variable explaining the dependent 
variable best is chosen by an automatic procedure. Subse-
quently, all possible exVARs are added one after another 
to the first one, ultimately choosing the one improving the 
model most, applying the Akaike information criterion. This 
is repeated until the model cannot be further improved by 
adding exVARs. Thus, each exVAR selected into the model 
contributes to modeling the dependent variable. Significance 
of the association is expressed by P values and magnitude of 
impact is expressed by coefficients of regression. The choice 
of exVARs is discussed in the results section and more 
detailed information is given in Online Resource 7. If in 
the computed model observations with Cook’s distance > 1 
appeared, they were removed, and the model was computed 
anew. This process was repeated until no conspicuous obser-
vations occurred. To achieve normal distribution, depend-
ent variables were logarithmized. Data distributions were 
evaluated in Quantile–Quantile plots with simulated confi-
dence bands. Constant standard deviations of the errors were 
evaluated using scale-location plots. To check the model 
assumption of independent identically distributed errors, the 
residual vs. fitted values plot was used.

The adjusted coefficients of determination, the numbers 
of conspicuous observations removed, the numbers of obser-
vations contributing to the final models (maximum of 41 
because of two specimens without information on the intake 
of estrogen-active drugs and one specimen without informa-
tion on the intake of oxyChOLs).

The ratio of observations per exVAR of each final model 
was also given and to achieve accurate estimation of regres-
sion coefficients, at least two observations per exVAR (Aus-
tin and Steyerberg 2015) were aimed for.

In addition, the regression coefficients (which represent 
the mean changes in the dependent variables for one unit of 
change in the respective exVAR while holding other predic-
tors in the models constant), their confidence interval, as 
well as the P values of each exVAR selected are given in 
Online Resource 7.

Results

Breast cancer risk factors such as BMI, smoking and intake 
of estrogen-active drugs but also oil% influenced estrogen 
levels in glandular tissues (Pemp et al. 2020). To investigate 
the relevance of this observation, the influence of intrag-
landular estrogen levels and breast cancer risk factors on 
ESR1-mediated cell proliferation and formation of adducts 
of estrogens with DNA was investigated by multiple linear 
regression models and metabolic network modeling (Fig. 1).

Influence of intratissue estrogen levels 
and of variables associated with lifestyle 
on activation of ESR1

Proliferation of breast epithelial cells is a result of complex 
intercellular signaling between epithelial and stromal cells 
which requires activation of ESR1 (Lanigan et al. 2007). 
Activated ESR1 is able to bind to the estrogen response 
element in the promoter region of genes encoding GATA3, 
AREG and TFF1, which are involved in intercellular signal-
ing regulating epithelial cell proliferation (Eeckhoute et al. 
2007; McBryan et al. 2008; Amiry et al. 2009). Also, the 
induction of the expression of the gene encoding PGR rep-
resents a well-characterized marker for activation of ESR1, 
although the PGR gene does not exhibit an estrogen response 
element in its regulatory sequences (Thomas and Gustafs-
son 2015). Furthermore, E2-stimulated proliferation of the 
epithelial cells is mediated by ligands for membrane bound 
receptors, e.g., WNT4 (stimulation) as well as e.g., TGFB1 
(inhibition) even though regulation of expression of WNT4 
and TGFB1 via estrogen response elements is not known.

Thus, to investigate the activation of ESR1 in glandu-
lar tissues, the following dependent variables and potential 
exVARs were identified:
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1.	 Dependent variables: because their expression is known 
to be controlled by activated ESR1, levels of AREG, 
GATA3 and TFF1 (estrogen response element depend-
ent) as well as PGR, TGFB1, WNT4 (estrogen response 
element independent) were chosen as dependent vari-
ables.

2.	 Possible exVARs:
•	 Since intracellular levels of E2, E1 and E1-S in glandu-

lar tissues correlated with each other (Online Resource 
7), they were combined by principal component analysis 
to avoid collinearity. PCE1 of estrogen levels in glan-
dular tissues was characterized by comparable strong 
positive contributions of E2 and E1, as well as (smaller) 
contribution of E1-S and explained 73% of the variance 
(Online Resource 2). PCE2 essentially differentiated E2 
and E1 exhibiting similar negative values, from E1-S 
(positive) explaining 21% of the variance, whereas 
PCE3 differentiated E2 (positive) from E1 (negative) 
explaining 6% of the variance. Thus, PCE1 was chosen 
as exVAR to represent intracellular levels of estrogens 
able to activate ESR1.

•	 If breast cancer risk factors exert an effect on ESR1 
activation by influencing intracellular estrogen levels, 
the exVAR PCE1 will account for this effect. However, 
to account for possible other relations between breast 
cancer risk factors and activation of ESR1 (e.g., indi-
rectly via activation of other signaling pathways) as 
well, breast cancer risk factors (BMI, smoking, intake 
of estrogen-active drugs) were additionally considered.

•	 Transcript levels of ESR1 and ESR2 were considered as 
well.

•	 Tissue characteristics oil% and lobule type were con-
sidered as well. Oil% in glandular tissues is not related 
to the BMI (Pemp et al. 2020) but to the presence of 
adipocytes in glandular tissues (Pemp et al. 2019), which 
might be a result of estrogen signaling (Gao and Dahl-
man-Wright 2013).

•	 To account for nutritional xenoestrogens which might 
interact with the action of endogenous estrogens intake 
of dietary supplements containing phytoestrogens was 
included.

Levels of the marker transcripts AREG, GATA3, TFF1 
and PGR were positively influenced by PCE1 (P < 0.05, 
Fig. 2) indicating the direct quantitative role of intratissue 
estrogen levels on ESR1 activation in the glandular tissue 
and stressing the relevance of the increase in intratissue 
estrogens levels associated with breast cancer risk factors. 
Despite selection of the exVAR PCE1, perimenopausal status 
also influenced levels of TFF1 positively (P < 0.05).

Furthermore, levels of both AREG and TFF1 were posi-
tively influenced by intake of dietary supplements contain-
ing phytoestrogens (P < 0.05) suggesting an additional role 

of nutritional phytoestrogens in ESR1 activation in the glan-
dular tissue. Furthermore, levels of ESR2 influenced levels 
of AREG (0.10 > P ≥ 0.05) and TFF1 (P < 0.05) negatively.

In contrast, levels of PGR (estrogen response element 
independent, Thomas and Gustafsson 2015) were positively 
influenced by levels of ESR1 and by BMI (P < 0.05) suggest-
ing further mechanisms influenced by BMI besides increas-
ing estrogen levels (e.g., increased intramammary inflamma-
tion; Hardy et al. 2008; Iyengar et al. 2016).

Levels of the transcripts encoding the stromal signaling 
molecules TGFB1 and WNT4 were not influenced by PCE1; 
yet positively (P < 0.05) by intake of dietary supplements 
containing phytoestrogens, levels of ESR2, lobule type and 
BMI (TGFB1 only) and negatively (P < 0.05) by smok-
ing and peri- and postmenopause (WNT4 only). Based on 
the role of TGFB1 (inhibition of proliferation) and WNT4 
(induction of proliferation) in non-cancer tissues (Alexander 
et al. 2012; Massague 2012), these influences could result 
in less proliferation of breast epithelium in women without 
breast cancer.

Influence of variables associated with breast cancer risk 
factors, estrogen receptor activation and intercellular 
signaling on proliferation

1.	 Dependent variables: key regulators of the cell cycle 
are cyclin-dependent kinases which are activated by 
binding cyclins and inhibited by inhibitor proteins. 
Growth inhibitory signals, including DNA damage; 
induce expression of inhibitor proteins, e.g., p21 and 
p27 encoded by CDKN1A and CDKN1B, respectively, 
which inhibit all cyclin-dependent kinases, especially 
those regulating entry and progression through the S 
phase. However, this inhibition is overcome by the 
increased activity of cyclin D1-dependent kinases (Otto 
and Sicinski 2017). Mitogenic signals increase expres-
sion of cyclin D1 (encoded by CCND1) which ultimately 
causes senescent cells to enter the G1 phase. Thus, lev-
els of CCND1 (stimulation of proliferation) as well as 
CDKN1A and CDKN1B (inhibition of proliferation) 
were chosen as marker transcripts.

2.	 Putative exVARs: Levels of the transcripts known to 
be regulated directly or indirectly by ESR1 (serving 
as dependent variables in the previous section) reflect 
ESR activation in glandular tissues. To avoid collin-
earity, levels of AREG, TFF1, PGR and WNT4 were 
combined by principal component analysis, resulting 
in PCEA1 (characterized by AREG, TFF1 and PGR) 
and PCEA2 (characterized by WNT4, Online Resource 
3). Levels of GATA3 and TGFB1 were directly included 
as potential exVAR.
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	   Since only levels of a few exemplary transcripts 
encoding proteins involved in intercellular communica-
tion were available to account for breast cancer risk fac-
tors influencing transcripts or proteins not determined in 
the present study, breast cancer risk factors were consid-
ered as exVARs as well (Fig. 1).

Unexpectedly, no exVAR tested influenced levels of 
CCND1 positively at P < 0.05 (Fig.  2). Negative influ-
ence on levels of CCND1 (P < 0.05) was observed for the 
exVARs age and PCEA2 (the latter is characterized by levels 
of WNT4).

In contrast, levels of CDKN1A known to be induced by 
DNA damage (Kreis et al. 2019) were positively (P < 0.05) 
influenced by levels of GATA3 and GCLC, the latter being a 
marker transcript for oxidative stress. Furthermore, age and 
levels of TGFB1 known to inhibit growth factor induced pro-
liferation of epithelial cells contributed borderline positively 
(0.10 > P ≥ 0.05) to CDKN1A levels.

Furthermore, BMI contributed negatively (P < 0.05) to 
levels of CDKN1B, suggesting stimulation of proliferation. 

In addition, levels of CDKN1B were positively influenced 
by PCEA1 and levels of TGFB1 (all P < 0.05).

Taken together, BMI was the only breast cancer risk fac-
tor influencing cell proliferation at different levels: BMI did 
not only influence estrogen levels (Pemp et al. 2020) which 
in turn influenced activation of ESR1 but also intracellular 
signaling by influencing levels of TGFB1 which—in line 
with the molecular role of TGFB1 in intracellular signaling 
of non-cancer cells—in turn influenced markers for senes-
cent cells positively. However, BMI also directly influenced 
one marker of senescent cells negatively (P < 0.05, Fig. 2). 
Yet, these influences were not reflected by the chosen marker 
for cell proliferation.

Influence of breast cancer risk factors on (de)
activation of E2 and E1

It has already been shown that intramammary levels of estro-
gens are influenced by breast cancer risk factors (Pemp et al. 
2020). To assess whether the expression of genes encoding 
enzymes involved in estrogen biotransformation is influ-
enced by breast cancer risk factors as well, the influence of 

Fig. 2   Influence of various exVARs on levels of transcripts of marker 
for ESR1 activation and proliferation identified by multiple linear 
regression models using stepwise forward selection as detailed in 
Online Resource 7. For each model, the number (n) of observations 
(O) contributing to the final model, the adjusted coefficient of deter-
mination (R2), and the observations (i.e., biospecimens) to exVAR 

ratio (O/exVAR) after forward selection of variables is given. EAD 
estrogen-active drug, EE ethinyl-E2, ERD E2-releasing drugs, IPE 
intake of dietary supplements containing phytoestrogens, Lob 1np 
lobule type 1 of nulliparous women, Lob 1p lobule type 1 of parous 
women, periMP perimenopausal, postMP postmenopausal
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breast cancer risk factors on levels of transcripts involved in 
estrogen biotransformation directly and indirectly via induc-
tion of oxidative stress was investigated using multiple linear 
regression models.

To investigate the relevance of these influences on the 
(de)activation of E2 and E1, fluxes to adducts of estrogens 
with DNA were modeled (“Identification of reactions within 
the metabolic network model influencing fluxes to adducts 
of estrogens with DNA”) and influences thereon were iden-
tified by multiple linear regression models (“Influence of 
breast cancer risk factors on metabolic fluxes to adducts of 
estrogens with DNA”).

Influence of breast cancer risk factors 
and (oxidative) cellular stress on levels of transcripts 
encoding enzymes involved in biotransformation 
of E2 and E1

In general, expression of genes involved in biotransforma-
tion can be regulated by signaling pathways activated e.g., 
by oxidative stress (Zordoky and El-Kadi 2009), ESR1 
(Hewitt et al. 2010; Ochsner et al. 2019) or substrates or 
products of the encoded enzymes.

Thus, exVARs considered were markers for short-term 
and long-term oxidative stress and levels of estrogens and 

activation of ESR1 in addition to breast cancer risk fac-
tors which were included to accounts for the action of 
breast cancer risk factors via mechanisms not reflected by 
the other exVARs. Since PCE1 and PCEA1 correlated sig-
nificantly, to avoid collinearity, only PCE1 which encom-
passed more possible mechanisms than mere activation of 
ESR1 was chosen as putative exVAR (Fig. 3 and Online 
Resource 7).

PCE1 was not selected in any multiple linear regression 
model describing levels of transcripts encoding enzymes 
involved in estrogen biotransformation. Yet interestingly, 
intake of dietary supplements containing phytoestro-
gens influenced negatively (P < 0.05) levels of UGT1A9, 
UGT1A10 and GSTP1. UGT1A9 was also borderline 
negatively influenced by intake of estrogen-active drugs 
(0.10 > P ≥ 0.05).

BMI influenced borderline positively (0.10 > P ≥ 0.05) 
levels of CYP1B1 as well as negatively levels of SULT1A1 
and UGT1A9 (P < 0.05, Fig. 3), suggesting an increase in 
activation and decrease in inactivation of E1, E2 and and/
or metabolites.

Smoking positively (P < 0.05) influenced levels of 
transcripts encoding enzymes involved in both activation 
(CYP1A1 and CYP1B1) and deactivation (GSTP1, SULT1A2, 
UGT1A10) of pre-genotoxins in both potentially adverse 

Fig. 3   Influence of various 
exVARs on levels of transcripts 
encoding enzymes in bio-
transformation of E2 and E1, 
markers for (oxidative) cellular 
stress identified by multiple 
linear regression models using 
stepwise forward selection as 
detailed in Online Resource 7. 
For each model, the number (n) 
of observations (O) contributing 
to the final model, the adjusted 
coefficient of determination 
(R2), and the observations 
(i.e., biospecimens) to exVAR 
ratio (O/exVAR) after forward 
selection of variables is given. 
EAD estrogen-active drug, EE 
ethinyl-E2, ERD E2-releasing 
drugs, IPE intake of dietary 
supplements containing phy-
toestrogens, Lob 1np lobule 
type 1 of nulliparous women, 
Lob 1p lobule type 1 of parous 
women, periMP perimenopau-
sal, postMP postmenopausal
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and beneficial ways. Thus, its impact on activation of pre-
genotoxins in the human breast will depend on the specific 
(pre-)genotoxin and profile of (iso)enzymes involved in its 
biotransformation.

Short-time (oxidative) cellular stress indicated by 
levels of GCLC influenced positively levels of NQO1, 
GSTT1, and COMT (all P < 0.05) and borderline positively 
(0.10 > P ≥ 0.05) levels of CYP1A1, STS and SULT1A2. 
PCOXY1 indicating long-term oxidative stress (Iuliano 2011) 
influenced levels of SULT1A1 and SULT1A2 (P < 0.05) as 
well as levels of GSTT1 (0.10 > P ≥ 0.05) in a way indicat-
ing a positive or borderline positive association, respectively 
(negative influence of negative values). In contrast, levels of 
GSTP1 (P < 0.05) and CYP1A1 (P < 0.05) were influenced 
by PCOXY1 in a way indicating a (borderline) negative asso-
ciation (Fig. 3).

Thus, markers for short-term and long-term oxidative 
stress were not selected significantly together yet did not 
contradict each other either.

If breast cancer risk factors influenced levels of tran-
scripts by modulation of the intracellular level of oxidative 
stress, selection of the exVARs PCOXY1 and GCLC might 
prevent selection of breast cancer risk factors into the previ-
ous multiple linear regression models (e.g., describing NQO, 
GSTT1, COMT, SULT1A2, GSTP1). Thus, to investigate 
if breast cancer risk factors influence (oxidative) cellular 
stress, levels of GCLC and PCOXY1 were investigated as 
dependent variable as well (Fig. 3).

Influence of breast cancer risk factors on (oxidative) 
cellular stress

BMI or smoking did not significantly influence levels of 
GCLC or PCOXY1 indicating short-time and long-term 
oxidative stress, respectively (Fig. 3). Levels of PCOXY1 
were negatively (P < 0.05) influenced by oil% and intake 
of E2-releasing drugs whereas levels of 2-MeO-E1 > LOD 
(P < 0.05) and PCE1 (0.10 > P ≥ 0.05) influenced levels of 
PCOXY1 positively.

Levels of GCLC were influenced positively (P < 0.05) 
by intake of ethinyl-E2 and lobule-type characteristic 
for parous women after age-related regression as well as 
intake of dietary supplements containing phytoestrogens 
(0.10 > P ≥ 0.05).

Metabolic network model and validation

To check the plausibility of the model (Online Resource 
1), flux constraints of all reactions were set to “1”. The cal-
culation of the model, however, failed due to unachievable 
constraints. Thus, to have more possibilities for a constraint 
conform solution of the calculation, minimum one reaction 
needed to be set to “0”. Since UGT1A3/4 was not expressed 

in any specimen analyzed, its value was set to “0”. Since the 
biotransformation reactions of E2 and E1 are similar, similar 
flux values of the same enzyme were expected for E1 and E2 
and indeed only fluxes of three out of 159 reactions differed 
(1.0 vs. 1.3, 0.1 vs. 0.2, and 1.0 vs. 1.3, Online Resource 8).

Subsequently, the metabolic network was modeled using 
levels of E2 and E1 as well as transcript levels derived from 
44 breast glandular tissues as flux constraints. To validate 
the metabolic network model, levels and frequencies of 
detection above LOD of estrogen biotransformation products 
determined previously by GC– and UHPLC–MS/MS (Pemp 
et al. 2019) were compared statistically with fluxes towards 
the respective metabolites: fluxes to E1-G and 2-MeO-
E1 were significantly lower in tissues exhibiting levels of 
E1-G and 2-MeO-E1 < LOD (Fig. 4). Furthermore, levels 
of 2 MeO-E1 > LOD correlated significantly with meta-
bolic fluxes to 2-MeO-E1. Moreover, individual metabolic 
fluxes to 2-MeO-E1 (detectable > LOD in some samples) 
were higher than the fluxes to 4-MeO-E1, 2-MeO-E2, and 
4-MeO-E2 (not detectable above the respective LODs), 
resulting in (a) positive values of the individual differences 
between fluxes to 2-MeO-E1 and the other methoxylated 
estrogens which were (b) significantly different from “0” 
(Fig. 4). Thus, the metabolic network was considered suit-
able to model fluxes to adducts of estrogens with DNA.

Identification of reactions within the metabolic network 
model influencing fluxes to adducts of estrogens with DNA

To identify key reactions influencing metabolic fluxes to 
adducts of estrogens with DNA, multiple linear regres-
sion models using fluxes to adducts of estrogens with DNA 
as dependent variables and levels of E2, E1, and levels of 
transcripts encoding enzymes involved in estrogen bio-
transformation serving as flux constraints as exVARs were 
computed. Metabolic fluxes to adducts of E2 and E1 with 
DNA were positively influenced by levels of E1 and levels of 
CYP1B1 as well as negatively influenced by levels of GSTP1 
and NQO1 (all P < 0.05, Fig. 5).

Fluxes to adducts of E2 with DNA were further influ-
enced positively by levels of E2 and SULT1E1 and nega-
tively by SULT1A2 (all P < 0.05). E1-DNA were further 
influenced negatively (P < 0.05) by SULT1A1 and COMT 
(Fig. 5).

Influence of breast cancer risk factors on metabolic fluxes 
to adducts of estrogens with DNA

Levels of E2 and E1 as well as of transcripts encoding 
enzymes involved in estrogen biotransformation were used 
as flux constraints. Thus, these variables are mathemati-
cally related to the modeled fluxes. Therefore, these vari-
ables may not be tested with other variables as exVARs in 
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MRLMs identifying exVARs influencing metabolic fluxes 
to adducts of estrogens with DNA. The remaining exVARs 
included breast cancer risk factors, intake of dietary supple-
ments containing phytoestrogens, one short-term (levels of 
transcripts of GCLC) and one long-term marker for oxidative 
stress each, i.e., principal component of levels of oxyCh-
OLs (PCOXY1) known to be formed exclusively by oxida-
tive stress (Iuliano 2011), and general data regarding age, 
menopausal status, parity, and breast physiology (Fig. 6).

In addition to its indirect influence via influence on key 
flux constraints (i.e., levels of estrogens, levels of CYP1B1 
and SULT1A1), BMI influenced positively (P < 0.05) meta-
bolic fluxes to adducts of E2 and E1with DNA (Fig. 6). Fur-
thermore, fluxes to adducts of E2 and E1 with DNA were 
influenced negatively (P < 0.05) by the lobule-type char-
acteristic for parous women after age-related regression of 
the breast glandular tissue. In addition, fluxes to adducts 
of E2 with DNA were influenced borderline positively 
(0.10 > P ≥ 0.05) by marker of long-term oxidative stress 
(PCOXY1, positive, since negative influence of negative val-
ues) and the intake of E2-releasing drugs, respectively.

One limitation of this study is that lifestyle factors, for 
which an impact on breast cancer risk and on circulating 
levels of E2 has been reported (alcohol consumption, phys-
ical activity, body fatness, (World Cancer Research Fund 
2018; Hirko et al. 2014; Ennour-Idrissi et al. 2015; Tin Tin 
et al. 2020) could not be considered, because they were not 
part of the questionnaire (physical activity, body fatness) or 
were not provided consistently by the participants (alcohol 
consumption). Furthermore, the World Cancer Research 
Fund (2018) observed dietary habits which may alter breast 
cancer risk. Complementary studies on the impact of the 
representative food constituents (fiber, saturated as well as 
unsaturated fatty acids, calcium, and others) on levels of 
estrogens and/or inter- and intracellular signaling in glan-
dular breast tissues are desirable but hitherto not available.

Relevance

Whereas metabolic fluxes to estrogen metabolites within 
the network model were validated, metabolic fluxes to 
DNA adducts could not be validated because of the lack 
of data. Furthermore, variables affecting the lifetime of 
DNA adducts (such as enzymes involved in repair of DNA 

Fig. 4   Validation of the metabolic network model. A Median mod-
eled metabolic fluxes (MFs) to 2-MeO-E1 and E1-G were compared 
between samples with E1-G and 2-MeO-E1 levels below and above 
LOD by unpaired Wilcoxon test. B For samples exhibiting levels 
of 2-MeO-E1 above LOD, correlation between MFs to 2-MeO-E1 
and levels of 2-MeO-E1 was analyzed by Spearman’s rank correla-
tion analysis. Furthermore, individual differences in the MFs to the 
methoxylated metabolite detected at levels above LOD (2-MeO-E1) 
and of the methoxylated estrogens detected below LOD (MeO-E, 
i.e., 4-MeO-E1, 2-MeO-E2 and 4-MeO-E2) were analyzed by Fried-
man test (P = 0.001). Differences from “0” were identified by Dunn’s 
post hoc test (C). One difference between the MFs to 2-MeO-E1 and 
2-MeO-E2 and one difference between the MFs to 2-MeO-E1 and 
4-MeO-E2, respectively (both 11 × 0.001), are not shown

▸
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adducts) were not considered in the metabolic network. 
Thus, the modeled metabolic fluxes to adducts of estrogens 
with DNA represent the putative formation and not neces-
sarily the prevalence of these adducts.

The metabolic network was based on transcript levels 
which do not in all cases represent the activities of enzymes 
or the amounts of active proteins. With experimental data 
an optimized solution can be found by the modeling of the 
whole network with YANAsquare calculating the actual 

flux strengths of the involved pathways in such a way that 
the error to the estimated enzyme activities is minimized. 
Metabolite measurements for nucleotide metabolites and 
carbohydrates indicate that the residual error in flux strength 
estimates is only 10% (Cecil et al. 2015). In general, marker 
transcripts indicating ESR1 activation, proliferation and cel-
lular/oxidative stress were chosen due to their known regu-
lation at mRNA level, yet other effects on protein and/or 
activity levels cannot be excluded.

Fig. 5   Influence of various exVARs on levels of calculated fluxes to 
adducts of E2 and E1 with DNA adducts in the network model con-
sidering transcripts encoding enzymes in biotransformation of E2/E1 
identified by multiple linear regression models using stepwise for-
ward selection as detailed in Online Resource 7. For each model, the 

number (n) of observations (O) contributing to the final model, the 
adjusted coefficient of determination (R2), and the observations (i.e., 
biospecimens) to exVAR ratio (O/exVAR) after forward selection of 
variables is given

Fig. 6   Influence of various exVARs on levels of calculated fluxes to 
adducts of E2 and E1 with DNA adducts in the network model con-
sidering breast cancer risk factors and markers for (oxidative) cellular 
stress identified by multiple linear regression models using stepwise 
forward selection as detailed in Online Resource 7. For each model, 
the number (n) of observations (O) contributing to the final model, 
the adjusted coefficient of determination (R2), and the observations 

(i.e., biospecimens) to exVAR ratio (O/exVAR) after forward selec-
tion of variables is given. EAD estrogen-active drug, EE ethinyl-E2, 
ERD E2-releasing drugs, IPE intake of dietary supplements contain-
ing phytoestrogens, Lob 1np lobule type 1 of nulliparous women, Lob 
1p lobule type 1 of parous women, periMP perimenopausal, postMP 
postmenopausal
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Intratissue estrogen levels significantly influenced estro-
gen receptor activation, yet the overall influence on cell pro-
liferation remains elusive (Fig. 7). Within the metabolic net-
work model, estrogen levels did influence fluxes to adducts 
of estrogens with DNA, yet the sum of additional indirect 
effects via oxidative stress affecting deactivation of estrogen 
metabolites did not influence metabolic fluxes to adducts 
of estrogens with DNA significantly (Fig. 7). BMI, smok-
ing, and intake of ethinyl-E2 or E2-releasing drugs all influ-
enced estrogen levels (Pemp et al. 2020) and estrogen levels 
influenced fluxes to adducts of estrogens with DNA (Fig. 7). 
However, BMI was the only breast cancer risk factor influ-
encing fluxes to adducts of estrogens with DNA, probably 
by increasing levels of CYP1B1 and/or decreasing those of 
SULT1A2 in addition to increasing estrogen levels (Fig. 7). 
The total influence of the BMI on proliferation cannot be 
resolved without further bioinformatic modeling.

Smoking did not influence fluxes to adducts of estrogens 
with DNA, possibly due to inducing transcript levels of both 
key enzymes involved in activation (CYP1B1) and deactiva-
tion (GSTP1, SULT1A2) of reactive estrogen metabolites 

(Fig. 7). Likewise, possible indirect influence of intake of 
estrogen-active drugs on estrogen biotransformation via 
oxidative stress did not affect modeled fluxes to adducts of 
estrogens with DNA (Fig. 7). Of note, enzymes involved 
in estrogen biotransformation influenced by smoking and/
or estrogen-active drugs (CYP1A1, CYP1B1, UGT1A10, 
SULT1A2, GSTP1, SULT1A2) are involved in the (de)acti-
vation of other carcinogens as well. Therefore, lack of effect 
on fluxes to adducts of estrogens with DNA does not exclude 
an influence of these breast cancer risk factors on the (de-)
activation of other carcinogens within the human breast.
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Fig. 7   Influence of breast 
cancer risk factors (bold font) 
on cell proliferation and (de)
activation of (pre)genotoxic 
estrogens identified by multiple 
linear regression. *Influence 
identified in Pemp et al. (2020). 
Estrogen levels as well as levels 
of AREG, PGR, TFF1, and of 
WNT4 were tested as their prin-
cipal components PCE1 as well 
as PCEA1 and PCEA2, respec-
tively (Online Resource 7). Red: 
flux constraints significantly 
influencing metabolic fluxes to 
adducts of estrogens with DNA 
(E-DNA). For details which 
exVARs influence metabolic 
fluxes to adducts of E2 or E1 
with DNA, see Figs. 5 and 6. 
EE ethinyl-E2, ERD E2-releas-
ing drugs
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