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Kinship and similarity drive coordination
of breeding-group choice in male spotted
hyenas
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When and where animals reproduce influences the social, demographic and
genetic properties of the groups and populations they live in. We examined
the extent to which male spotted hyenas (Crocuta crocuta) coordinate their
breeding-group choice. We tested whether their propensity to settle in the
same group is shaped by passive processes driven by similarities in their
socio-ecological background and genotype or by an adaptive process
driven by kin selection. We compared the choices of 148 pairs of same-
cohort males that varied in similarity and kinship. We found strong support
for both processes. Coordination was highest (70% of pairs) for littermates,
who share most cumulative similarity, lower (36%) among peers born in the
same group to different mothers, and lowest (7%) among strangers originat-
ing from different groups and mothers. Consistent with the kin selection
hypothesis, the propensity to choose the same group was density dependent
for full siblings and close kin, but not distant kin. Coordination increased as
the number of breeding females and male competitors in social groups
increased, i.e. when costs of kin competition over mates decreased and
benefits of kin cooperation increased. Our results contrast with the tra-
ditional view that breeding-group choice and dispersal are predominantly
solitary processes.
1. Introduction
When and where individuals breed strongly influences their fitness and has far-
reaching implications for social evolution [1,2] and the connectivity and resili-
ence of populations [3,4]. Individuals often differ in their breeding decisions
because these decisions are shaped by multi-level feedbacks and interactions
between individual characteristics (i.e. genotype and phenotype), group- and
population-level parameters (i.e. social organization, kin and demographic
composition [5]), and the species’ mating system [4,6–8]. Many theoretical
and empirical studies have emphasized the causes of inter-individual hetero-
geneity in the propensity to disperse [6,9,10], the timing and quality of
settlement decisions [11–13], and the trajectory or distance travelled [14–16].
By contrast, few studies examined what drives conspecifics to coordinate
their breeding-group choices in space and time [17].

Coordinated dispersal and breeding-group choice, whereby subgroups of indi-
viduals jointly emigrate from their birth site and/or settle in the same or
neighbouring breeding sites, have been reported in eusocial invertebrates,
marine organisms and cooperatively breeding birds and mammals [17–26]. In
these systems, dispersing groups usually consist of closely related individuals
and coordination has been suggested to be shaped by kin selection. Yet, studies
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often lack the necessary control individuals and variance in
demographic parameters and kinship to disentangle whether
such coordination is driven by (i) adaptive processes of kin
selection or (ii) passive, self-organized processes [27] shaped
by similarities in preference or cognitive and physical capacities
(similarity hypothesis) that may arise from a common
socio-ecological background and genotype [17,18,24,28,29].

Here, we present the first account of coordination of
breeding-group choice among male spotted hyenas Crocuta
crocuta, a non-cooperatively breeding social carnivore that
lives in multi-male–multi-female groups (clans) of up to 130
individuals [30,31]. We used 24 years of behavioural, demo-
graphic and genetic pedigree data from eight clans of a
free-ranging population in Tanzania that is characterized by
high local recruitment [10]. We tested the two hypotheses
by comparing the settlement choices of pairs of males that
belonged to the same cohort but varied in their degree of
similarity in maternal upbringing, ecological environment
and genotype, and in their kinship ties. ‘Littermates’—i.e.
mostly full siblings, raised by the same mother in the same
clan—shared highest cumulative similarity and strongest kin-
ship ties; ‘peers’—i.e. close or distant kin of the same clan but
different mothers—were less closely related and experienced
a different maternal environment but a similar ecological
environment; ‘strangers’—i.e. mostly distant kin, from differ-
ent clans and mothers—were least related and similar.

According to the similarity hypothesis, littermates should
show the highest propensity to choose the same breeding
clan and to synchronize their choice [4,17], followed by
peers and strangers. Also, the propensity of males to coordi-
nate their choice should not be influenced by changes in the
size of clans because similarities among pairs remain
unchanged. By contrast, under kin selection, the coordination
among full siblings and close kin should increase with
increasing clan sizes because the trade-offs between kin com-
petition and kin cooperation are density dependent [32,33].
Specifically, when the number of breeding females and
male competitors is low, males benefit from avoiding kin
competition by immigrating to different clans. As the
number of breeding females and male competitors in clans
increase, kin-mates benefit from coordinating their breed-
ing-clan choice with a potential ally [32,33]. Coordination
among distant kin should remain stable because changes in
kin competition and kin cooperation and the resulting fitness
benefits to coordinate breeding-clan choice are minimal.
2. Material and methods
(a) Study population
Data were collected between April 1996 and December 2020 as
part of the near-daily monitoring of the behaviour and life his-
tory of all individually known spotted hyenas of the eight
clans inhabiting the Ngorongoro Crater in Tanzania [34,35].
Male and female clan members reproduce promiscuously
[10,36]. Females give birth to litters of one or two (rarely three)
cubs [37]; most litters—overall 84% [38]—are sired by one
father. The same-cohort cubs born in the same clan are raised
in a communal den and therefore are familiar with each other.
Mother–offspring affiliation was assessed via observations of
suckling interactions and confirmed by genetic analyses [39,40];
birthdates of cubs were estimated with an accuracy of ± 7 days
[41]. Relatedness and kinship were derived from genetic pedigree
information across nine generations. Over 80% of males born in
the population choose one of the eight study clans to breed
[10,39] and do so when 3.4 years old on average [10,13]; 85%
of these males disperse from their birth clan and join another
Crater clan as immigrant males while 15% establish themselves
as reproducing ‘philopatric’ males in their birth clan [10].
Female philopatry is the norm [31,34]. Males were considered
to have chosen a breeding clan when they displayed a sexual
interest in the females and engaged in social interactions (see
electronic supplementary material, S1) with the members of
that clan for at least three months [35,42]. The date of clan
choice was the date of first observation of such behaviour [10].

(b) Pairing of males
We paired 296 males that chose a breeding clan during the study
period. To control for the potential influence of age and the
characteristics of dispersal destinations on clan choice [10,39]
pairs consisted of males of the same cohort that were born
within 60 days of one another. We assigned these pairs to one
of three types: ‘littermates’ (n = 30 pairs) were brothers of the
same litter; ‘peers’ (n = 63 pairs) were born within 17.7 ± 15.6
days in the same clan to different mothers; ‘strangers’ (n = 55
pairs) were born within 18.7 ± 15.0 days in different clans to
different mothers. Males were paired once; pairs were treated
as independent data (see electronic supplementary material S1).

To disentangle the effects of similarity in socio-ecological
background and genotype, pairs were further categorized
according to male origin (same or different birth clan) and
degree of kinship, as assessed from their coefficient of relatedness
(r) calculated along their maternal and paternal lineages [43]. We
considered three categories of kin: (i) full siblings (r = 0.5, n = 27
pairs), (ii) close kin (0.5 > r≥ 0.125, n = 29) or (iii) distant kin
(r < 0.125, n = 92).

(c) Maternal upbringing
The maternal rank in the clan dominance hierarchy defines the
quality of the postnatal environment [37] and shapes the life
history and fitness of sons, including the quality of their breed-
ing-clan choice, as defined by the number of breeding females
in the clan upon clan choice [10,13,39]. To account for this
effect, we calculated within-pair differences in maternal ranks;
these ranks range from −1 (lowest rank) to +1 (highest rank)
(for details see [35]). Littermates were assigned a rank difference
of 0; the absolute difference in maternal rank was 0.55 ± 0.37
(range = 0–1.35) among peers and 0.45 ± 0.36 (range = 0–1.60)
among strangers.

(d) Mean clan size
We used mean clan size as an integrative proxy for male–male
competition over social integration into a clan and access to
mates. For each male pair, we calculated the mean clan size as
the total number of adult females (i.e. breeding partners) plus
philopatric and immigrant males (i.e. competitors) in the popu-
lation, averaged over the eight study clans, on the date of clan
choice by the member of the pair who expressed his choice
last. This proxy is adequate because sex ratio in clans is balanced
and clan sizes are positively correlated (R2 = 0.62; see electronic
supplementary material, figure S1).

(e) Statistical analyses
Data extraction [44] and statistical analyses were conducted
using R statistical software v. 4.2.0 [45]. Tests were two-tailed
(where applicable) and the threshold for significance was alpha =
0.05. Synchronization of breeding-clan choice of littermates,
peers and strangers was compared using non-parametric tests.
Factors influencing the probability of paired males to choose
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the same breeding clan were modelled using logistic regression
with a binomial logit link using function glm() [46]. Origin, differ-
ence in maternal rank, kinship, mean clan size and their
interaction were included as predictors. Mean clan size was
scaled prior to modelling to satisfy model assumptions. Model
assumptions were verified using function simulateResiduals()
[47]; absence of multi-collinearity was confirmed by squared gen-
eralized variance inflation factors (GVIF^[1/(2*df)])^2 [48,49].
Model estimates were back-transformed as odds ratios and
plotted using function plot_model() [50].
3. Results
Overall, littermates showed the highest spatial coordination,
with 70% (21 out of 30 pairs) choosing the same breeding
clan, followed by 36.5% of peers (24 out of 63 pairs) and
7.3% of strangers (4 out of 55 pairs). Male origin strongly
affected the propensity of male pairs to choose the same clan
(figure 1a; see electronic supplementary material, table S1 for
detailed model results); males born in the same clan were
more likely to coordinate their choice than males born in
different clans, when controlling for covariates (figure 1b).
The propensity of males to choose the same clan also
decreased with increasing difference in their maternal rank,
although the effect was not statistically significant (figure 1a,c).

Mean clan size affected male coordination differently
across the three kinship categories (likelihood ratio: 12.9,
p = 0.024; figure 1a). Full siblings (slope coefficient = 1.42,
CI95% = 0.13 to 2.71; figure 1d ) and to a lesser extent close
kin (slope = 0.83, CI95% =−0.03 to 1.68) were more likely to
choose the same clan as mean clan size increased. By contrast,
breeding-clan choices of distant kin were unaffected by
demographic changes (slope =−0.04, CI95% =−0.65 to 0.57).

The three types of male pairs differed in the temporal
coordination (or ‘synchronization’) of their breeding-clan
choices (Kruskal–Wallis rank sum test; χ2 = 7.2602, d.f. = 2,
p = 0.027), with littermates showing higher synchronization
than strangers (Dunn post hoc test, p = 0.002). Synchronization
of littermates and peers and of peers and strangers was
similar ( p > 0.05). Synchronization also varied with the
spatial coordination of breeding-clan choices (Mann–Whitney
U-test; U = 3510.5, p < 0.0001; figure 2); littermates were more
synchronized when they chose the same clan (within-pair
difference in date of clan choice = 96.34 ± 116.36 days, n = 21
pairs) than when they chose different clans (330.11 ± 189.64
days, n = 9 pairs; U = 159.5, p = 0.003).
4. Discussion
Our results provide the first demonstration of coordination of
breeding-clan choice by male spotted hyenas. Coordination
was particularly striking among littermates but also apparent
among peers, that is, close or distant kin of the same birth
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clan. The coordination of male breeding-clan choice likely
emerged from a combination of passive processes driven by
similarities in needs, capacities and breeding options, and an
adaptive and flexible decision process shaped by kin selection.

Consistent with the similarity hypothesis, male coordi-
nation was influenced by similarities in genotype, origin and
maternal environment. Furthermore, the propensity of two
males to choose the same breeding clan increased with their
cumulative similarity, with littermates showing the highest
coordination, followed by peers and strangers. The strong influ-
ence of shared origin found here corroborates previous findings
that breeding-clan choice in spotted hyenas is birthplace-
dependent and shaped by the socio-ecological environment
experienced while growing up and upon clan choice [10].

Consistent with the kin selection hypothesis, the coordi-
nation among full siblings and among close kin showed
strong density dependence while that among distant kin did
not. Full siblings and close kin were more likely to choose the
same breeding clan as the number of breeding females and
male competitors increased. This suggests that males actively
adjust their settlement decisions to the dynamic trade-offs
between kin competition and kin cooperation. Interestingly,
full and half-siblings (i.e. littermates) who chose the same clan
were highly synchronized, suggesting that they do not actively
minimize tenure overlap and the potential reproductive cost of
competing over the same pool of breeding females.

We cannot fully discard the possibility that the density
dependence of the coordination among full siblings and close
kin does not, at least in part, result from passive processes
shaped by density-dependent genetic effects [51,52]. Yet, kin-
ship is a strong driver of coalitionary support—a potent form
of cooperation—in spotted hyenas [31,53]. The frequent coordi-
nation of breeding-clan choices therefore does create the
potential for the evolution of cooperation among males
[54,55]. Furthermore, cooperation may also operate between
distantly related individuals that are familiar to one another,
as in Assamese macaques, red squirrels, and Seychelles war-
blers [21,56,57]. Given that common clan membership and
familiarity promote social bonds and alliances in spotted
hyena society [31,53,58,59], peers may constitute an abundant
source of potential allies. Settling with—or joining a clan that
already contains—social allies may help overcome social resist-
ance from already established males [60,61] and allow hyena
males to settle in high-quality clans [13]. Allies may further
function as a social buffer and help catalyse social integration
andmaintain social rank [31,35,59], which in hyena society ren-
ders high fitness benefits [10]. The extent and consequences of
cooperation among male littermates and peers upon clan
choice and afterwards remain to be investigated.

By showing that dispersal and breeding-group choice
may often be coordinated, our findings contribute to the
growing evidence [2,17,62] that coordinated breeding-group
choice and dispersal is an overlooked driver in social evol-
ution. Our study underscores the importance to account for
kinship and similarity, in particular in origin, between disper-
sers in theoretical and empirical studies of animal movement
and population genetics (see also [63]).
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