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Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory and neurodegenera-
tive disease of the central nervous system (CNS) with increasing incidence and 
prevalence. MS is associated with inflammatory and metabolic disturbances that, 
as preliminary human and animal data suggest, might be mediated by disrup-
tion of circadian rhythmicity. Nutrition habits can influence the risk for MS, 
and dietary interventions may be effective in modulating MS disease course. 
Chronotherapeutic approaches such as time-restricted eating (TRE) may benefit 
people with MS by stabilizing the circadian clock and restoring immunological 
and metabolic rhythms, thus potentially counteracting disease progression. This 
review provides a summary of selected studies on dietary intervention in MS, 
circadian rhythms, and their disruption in MS, including clock gene variations, 
circadian hormones, and retino-hypothalamic tract changes. Furthermore, we 
present studies that reported diurnal variations in MS, which might result from 
circadian disruption. And lastly, we suggest how chrononutritive approaches like 
TRE might counteract MS disease activity.
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1   |   INTRODUCTION

Multiple sclerosis (MS) is an autoimmune inflammatory 
and neurodegenerative disease of the central nervous 
system.1 The disease typically manifests in young adults 
(between 20 and 40 years of age) and affects more women 
than men (female-to-male ratio of 3–4:1).2 MS affects more 
than 2 million people worldwide and is the leading cause 
of permanent neurological disability in young adults.1

The relapsing–remitting subtype of MS (RRMS) is de-
fined by recurrent episodes of neurological dysfunction 
brought on by acute inflammatory demyelination.1 In 
contrast, primary and secondary progressive MS (PPMS 
and SPMS) is characterized by progressive neurodegener-
ation leading to irreversible neurological disability.1 While 
only 10%–15% of people with MS (pwMS) feature a pro-
gressive disease course from onset (PPMS), many people 
with RRMS convert to secondary progressive MS (SPMS) 
within 20 years.1 However, even in the earliest stages of 
MS, including in patients who have just experienced their 
first episode of inflammatory demyelination, neurodegen-
eration occurs.3,4

MS features inflammatory plaques that, depending on 
their location, can lead to a variety of neurological symp-
toms. The most common early syndromes include monoc-
ular visual loss from optic neuritis,5 ataxia brought on by a 
cerebellar lesion, a double vision brought on by brain stem 

dysfunction, or limb weakness or sensory loss from trans-
verse myelitis1 (Figure 1). However, one of the most prev-
alent and debilitating symptoms throughout the disease is 
fatigue, a severe reduction of physical or mental energy.6

There is growing evidence that MS is associated with 
a disruption of circadian rhythms, which represent the 
oscillating physical, mental, and behavioral patterns re-
peating around every 24 h.7 However, our understanding 
of the impact of circadian rhythms on MS remains vague. 
Furthermore, it is unclear whether circadian disruption 
and fatigue associated with sleep disturbances in MS8,9 are 
a consequence of MS-related inflammation and neurode-
generation; or, instead, whether circadian disruption is an 
actual cause for developing MS (chicken or egg). The lat-
ter is supported by studies showing that shift work, as an 
external cause of circadian disruption, is associated with 
a higher risk of developing MS.10,11 However, it should 
be noted that sleep disorders in MS may also arise inde-
pendently of the clock, e.g., due to nocturia (waking up to 
urinate at night) or pyramidal and sensory disability lead-
ing to restless legs syndrome.12,13

While a broad range of immunomodulatory drugs is 
available to prevent MS attacks and decelerate disabil-
ity accumulation,14,15 the disease is currently incurable.1 
Therefore, dietary interventions have been suggested as a 
safe addition to immunotherapy to attenuate the disease 
course.16–18 In this review, we summarize the current 

F I G U R E  1   Main symptoms and 
functional disturbances in multiple 
sclerosis. Besides neurological symptoms, 
including cognitive impairment, fatigue, 
sleep disturbances, vision, speech, and 
sensation disturbances, pwMS can 
show immune, metabolic, muscular, 
and digestive dysregulations. Notably, 
alterations of circadian rhythmicity also 
observed in MS may contribute to or, in 
turn, caused by neurological, immune, 
metabolic, and digestive dysfunctions (as 
shown with blue arrows). The figure was 
partly generated using Servier Medical 
Art, provided by Servier, licensed under 
a Creative Commons Attribution 3.0 
unported license.
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knowledge on diets and circadian disruption in MS. 
Furthermore, we postulate that time-restricted eating 
(TRE) could be an effective treatment in MS by modulat-
ing circadian rhythms.

2   |   IMMUNE, NEUROLOGICAL, 
AND METABOLIC DYSFUNCTIONS 
IN MS

2.1  |  Immunopathogenesis, 
neuropathology, and diagnosis of MS

MS is an autoimmune demyelinating and neurode-
generative disease associated with derailments of the 
innate and adaptive immune system. While its entire 
immunopathogenesis is not fully clear, current no-
tions posit that T and B cells, macrophages, monocytes, 
and microglia (endogenous phagocytes of the CNS) are 
involved,19–27 (Figure 1).

It is unclear where and how the initial trigger of an 
autoimmune response to the CNS occurs; the primary 
contact could be in cervical lymph nodes, and the adap-
tive immune system might be stimulated by molecular 
mimicry or novel autoantigens. The innate immune 
system could be activated through environmental fac-
tors such as dietary or smoke constituents, bacteria, 
or viruses at mucosal surfaces.19,20 The transmigration 
of peripherally activated immune cells into the CNS is 
facilitated by a permeable blood–brain barrier that pre-
cedes inflammation and subsequent demyelination re-
flected by focal inflammatory white matter lesions that 
are visible on brain magnetic resonance imaging (MRI) 
and represent key diagnostic and predictive measures in 
clinical practice.28–30

Most of these focal and disseminated demyelinating 
white matter lesions (“plaques”) of the brain, brainstem, 
cerebellum, spinal cord, and optic nerve show a perive-
nous location which points to an association of the cere-
bral vasculature with lesion formation.31–33 The so-called 
central vein sign is now considered an emerging imag-
ing biomarker of MS, as it rarely occurs in relevant MS 
mimics.34,35 In acute focal white matter lesions, axonal 
transection is a characteristic feature. The extent of axo-
nal damage and, thus, the destructiveness of a lesion may 
vary across anatomical regions and between patients.36 In 
recent years, the neurodegenerative component of the dis-
ease has been re-emphasized; manifold neuropathological 
and advanced neuroimaging studies have shown cortical 
lesions and cortical and deep gray matter damage from 
the earliest disease stages that contribute significantly to 
long-term disability, including cognitive impairment37–39 

(Figure  1). Also, the optic nerve and retina, which are 
part of the CNS, are frequently affected from early on, 
as mirrored by numerous optical coherence tomography 
(OCT) studies showing retinal atrophy with loss of axons 
and retinal ganglion cells in eyes with and without prior 
optic neuritis.40–43 Lesions and more subtle tissue damage 
in the spinal cord that predominantly manifest in the cer-
vical cord significantly contribute to disability, especially 
impaired ambulation with reduced walking distance and 
bowel–bladder problems44 (Figure 1). A diagnosis of MS 
is currently made according to the current version of the 
so-called McDonald criteria,45 which are heavily based on 
radiographic findings and enable a diagnosis of MS after 
the first typical clinical event in many patients. Current 
research aims to improve prognostication of the disease 
course with advanced MRI methods, sophisticated retinal 
imaging, and serum-borne biomarkers such as the neuro-
filament light chain.46,47 However, the value of these mea-
sures for the management of individual patients remains 
to be shown.

2.2  |  Metabolic disturbances in MS

Overweight and obesity are associated with an increased 
risk of MS.48,49 Further, pwMS often show other metabolic 
disturbances such as insulin resistance and changes in glu-
cose and lipid homeostasis and the gut microbiome20,48–50 
(Figure  1). In particular, dysregulations in glycolysis, 
Krebs cycle, electron transport chain, pentose phosphate 
pathway, and glycogen metabolism were observed in 
pwMS.50 Interestingly, while changes in glucose homeo-
stasis typical of type 2 diabetes, such as hyperinsulinemia 
and decreased insulin sensitivity, were observed in pwMS, 
they seem unrelated to chronic inflammation or physical 
inactivity.51 Furthermore, the levels of multiple plasma li-
pids and ketone bodies, the fatty acid oxidation pathway 
and involved enzymes, and the metabolism of eicosanoids, 
lipoproteins, and cholesterol were altered in MS, and, in 
part, correlated with its clinical aspects.50 Altered meta-
bolic pathways of carbohydrates and lipids in pwMS may 
lead to further cellular damage, such as oxidative stress, 
which might be responsible for systemic complications. 
These metabolic abnormalities may be detected through 
altered levels of related metabolites in the blood and cer-
ebrospinal fluid of MS patients. Notably, a hypothetical 
relationship between such metabolic changes and the im-
mune system in patients with MS has been proposed.50

Interestingly, cellular and whole-body inflammatory 
and metabolic processes are also under strong circadian 
control.52,53 Therefore, their dysregulations might be, at 
least in part, induced by circadian disruption in MS.
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2.3  |  Dietary approaches in MS

Available pharmacological therapies in MS have lim-
ited effect on disability progression and may confer a 
risk for serious adverse events.1,14 Therefore, the devel-
opment of novel and non-pharmacological approaches 
to support the combat of MS progression is a crucial 
unmet medical need. In particular, dietary approaches 
may improve the patients' disease course and quality 
of life. Indeed, the high consumption of saturated and 
trans-fatty acids, red meat, sugar-sweetened beverages, 
and refined cereals induces the production of Th17 
cells and proinflammatory cytokines.54 In contrast, the 
Mediterranean diet (rich in fruits, vegetables, whole 
grains, and polyphenols),55–58 the Paleolithic diet (char-
acterized by the high consumption of leafy green veg-
etables, plant proteins, soy, nuts, and the reduction of 
processed food),59,60 the Swank diet (based on limited 
saturated fat intake),60,61 and McDougall diet (based on 
carbohydrates of plant origins)62 are associated with a 
low MS risk or attenuate some MS symptoms such as 
fatigue. Furthermore, caloric restriction reduces the risk 
of postprandial inflammation, protects against oxidative 
damage, improves the quality of life, and attenuates the 
progression of MS in experimental models and several 
human trials.63,64 Finally, the ketogenic diet, which is low 
in carbohydrates and high in fat and induces ketone in-
crease in circulation, might result in anti-inflammatory 
and neuroprotective effects and improve the quality of 
life, fatigue, and depression in MS patients.17,18,57,65,66 
Nevertheless, most previous dietary trials in MS were 
underpowered, and therefore, provided no convincing 
data yet that dietary approaches may delay MS onset 
or improve the disease course. Furthermore, whether 
dietary interventions can counteract circadian distur-
bances associated with MS described in the next chapter 
remains unclear and needs to be investigated in future 
clinical trials.

3   |   CIRCADIAN DISTURBANCES 
IN MS

3.1  |  Circadian rhythms and MS risk

The endogenous circadian clock plays a significant role 
in how humans adapt their physiology and behavior to 
changes between day and night. Like in all mammals, the 
human circadian clock consists of a master clock, located in 
the suprachiasmatic nucleus of the hypothalamus, and a pe-
ripheral clock.52 Almost every tissue in the body contains pe-
ripheral oscillators controlled by the master clock. Circadian 
rhythms are demonstrated in the tissue transcriptome, 

circulating metabolome, metabolic hormones, adipokines 
and cytokines regulating cholesterol, carbohydrate, lipid, 
and energy metabolism.67–71 For a detailed review of the cur-
rent knowledge on the mammalian circadian system, please 
refer to a recently published review.72

Circadian rhythms play a critical role in innate and 
adaptive immunity,73–75 metabolic regulation, and con-
tribute to the pathophysiology of neurodegenerative 
and metabolic diseases.52 As such, circadian disruption 
is increasingly considered a contributor to autoimmune 
diseases.74 pwMS show metabolic and immunological 
disturbances such as derailment of physiological T- and 
B-lymphocyte functions, alteration of innate immune re-
sponses, and in many cases, also changes in glucose and 
lipid homeostasis and gut microbiome.20,48–50 The circa-
dian release of immune cells is controlled by hormones 
like melatonin and cortisol, which again are regulated 
by the suprachiasmatic nucleus. Indeed, an animal study 
showed that TH17 cell differentiation follows the circa-
dian clock.76 Nevertheless, data on circadian rhythms 
of immune cells in MS are still very limited, in contrast 
to other autoimmune diseases such as type 1 diabetes, 
where phase shifts of 3–5 h in the circadian peak of blood 
levels have been demonstrated for B and T cells and their 
naive and effector memory subsets.77 Circadian disrup-
tion might thus contribute to metabolic and immune cell 
dysregulation and malfunction in MS (Figure 2).

Notably, the circadian–immune connection is bidirec-
tional, so immune challenges and mediators (e.g., cyto-
kines) can affect the circadian rhythms at multiple levels.78 
Indeed, lipopolysaccharide injections in rodents alter the 
rhythmicity of the circadian clock in several organs.79,80 
Furthermore, the intravenous administration of a bolus 
dose of endotoxin to healthy human subjects synchro-
nizes and suppresses clock gene expression in peripheral 
blood leukocytes.81 In agreement with this, in septic shock 
patients, molecular rhythms in immune cells are substan-
tially altered and decreased compared to healthy young 
men.82 Therefore, immune dysfunction per se might in-
duce circadian dysrhythmicity observed in MS, support-
ing the abovementioned chicken-or-egg discussion.

3.2  |  Circadian variations in 
biomarkers and MS symptom

Multiple processes and biomarkers demonstrated circa-
dian rhythms in pwMS. An RNA analysis showed that 
gene expressions are subject to the time of day in MS.83 
Furthermore, diurnal variations were found in serum 
markers of oxidative stress (nitric oxide, carbon diox-
ide, and uric acid),84 hematologic biomarkers,85 and cy-
tokines86,87 in MS.
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A range of studies showed diurnal variations in MS 
symptoms. MS symptoms, particularly fatigue and pain, in-
crease over the day,88,89 while muscle strength decreases.90 
Both objective and subjective cognitive performance of 
pwMS decreases over the day.91 In contrast, another study 
showed that walking patterns remained stable, while it 
confirmed that fatigue increased over the day.92 A wrist 
actigraph study identified circadian patterns in motor 
activity, possibly due to a hyperactive hypothalamus–
pituitary–adrenal axis and higher cortisol awakening re-
sponse.93 Furthermore, circadian temperature variations 
are associated with motor function fluctuations.94 Even the 
effect of corticosteroid treatment, which is given to treat an 
acute MS attack, differs in the day and night.95,96

3.3  |  Clock genes in MS

Clock genes are responsible for intracellular timekeep-
ing, generating roughly 24-h rhythms in physiology and 
behavior.7 Interlocked transcriptional–translational 

feedback loops, including the transcription factors, 
aryl hydrocarbon receptor nuclear translocator-like 
(ARNTL, also called BMAL1), clock circadian regulator 
(CLOCK), period (PER1, PER2, PER3), cryptochrome 
(CRY1, CRY2), retinoic acid-related orphan recep-
tors (RORs), and nuclear receptor subfamily 1 group 
D (NR1D1/2 or Rev-Erb/ß) make up the master clock 
mechanism found in almost every cell.53 The expression 
of so-called clock-controlled genes, which comprise im-
portant metabolic transcription factors and enzymes 
causing circadian oscillations of metabolic processes, 
is regulated by one cycle of this molecular machinery, 
which lasts roughly 24 h.52,53,97

A study in experimental autoimmune encephalomyeli-
tis, an animal model of MS, showed that the clock gene 
BMAL1, a main constituent of the molecular clock, and 
the time of day in myeloid cells are associated with im-
mune cell accumulation and activation.98 Genetic variabil-
ity in the ARNTL and CLOCK genes might be associated 
with MS risk.99 A specific genotype of PER3, a clock gene 
controlling circadian rhythm and sleep, is associated with 

F I G U R E  2   Circadian disturbances in MS. Evidence suggests that both central and peripheral rhythmicity are disturbed in MS. Processes 
and rhythms affected in MS are designated with a lightning symbol and red oscillating lines, respectively. Ganglion cell atrophy, including 
intrinsically photosensitive ganglion cells, and impaired retino-hypothalamic tract integrity lead to impaired central clock synchronization 
by the light/dark signals. Several studies showed altered rhythms of melatonin secretion, which might contribute to sleep disturbances 
and fatigue in MS and might be explained by altered central clock rhythmicity. Peripheral rhythm changes in MS were shown for some 
metabolic hormones, such as leptin and corticosterone, which, together with altered gut microbiome composition, might contribute to the 
change of metabolic functions in MS. In turn, altered immune rhythms might contribute to immune disturbances in MS. However, whether 
other metabolic rhythms, the rhythmicity of immune cells and immune mediators, as well as gut microbiome, are affected by MS, still needs 
to be investigated. Notably, MS is associated with genetic polymorphisms within several clock genes, confirming a role of genetic factors 
in MS predisposition. The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons 
Attribution 3.0 unported license.
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accelerated MS disease course100 (Figure 2). Furthermore, 
differential expression and frequency of low-frequency 
variants were observed in MS families for six genes in-
volved in circadian entrainment/rhythm.101 The expres-
sion of Per2 in the liver showed altered circadian rhythms 
in an animal model of MS.102

3.4  |  Circadian hormones in MS

Melatonin, a natural hormone, is produced in a circadian 
rhythm by the pineal gland. Its main role is the control 
of the sleep–wake cycle. However, also antinociceptive, 
antidepressant, anxiolytic, and immunomodulatory prop-
erties have been described.103 Several studies have investi-
gated the role of serum melatonin levels in MS.

Melatonin levels are lower in pwMS compared to con-
trols.103 Lower melatonin levels are associated with longer 
MS disease duration, increased neurological disability, and 
a higher frequency of sleep disruptions.104 A disruption 
of the circadian melatonin rhythm in the form of an ab-
normal proportion of overnight melatonin was associated 
with higher disability and fatigue severity.105 Melatonin 
also inhibits demyelination and boosts remyelination in 
pwMS.106 Interferon beta, a common MS immunomod-
ulatory drug, led to an increase in melatonin levels in 
pwMS.107 Caution might be required regarding cortico-
steroids, which represent the standard treatment for an 
acute MS attack: a study in both pwMS and an animal 
model of MS showed that corticosteroid therapy leads to 
a downregulation of melatonin serum levels.108 However, 
as high-dose corticosteroid therapy is usually only given 
during an acute MS attack, this is probably not the reason 
for the results reported above.

Only a few studies have investigated the effect of mela-
tonin supplementation in MS. A randomized, double-blind, 
placebo-controlled, crossover trial investigated melatonin 
for the treatment of nocturia in pwMS.109 However, there 
was no significant treatment effect among the 26 pwMS 
who completed the study.110 A case–control study that in-
vestigated the effect of melatonin supplementation found 
that melatonin acts as antioxidant and improves sleep in 
pwMS.111 Interestingly, the seasonality of MS disease ac-
tivity was linked to melatonin release.105,112,113

Another hormone that was linked to the course and 
severity of MS is the glucocorticoid hormone cortisol. 
Lower cortisol levels were linked to despair, weariness, 
and urinary dysfunction, while higher cortisol levels were 
linked to anxiety and depression.114 Like melatonin, cor-
tisol is produced in a circadian rhythm and controlled by 
the central clock in the suprachiasmatic nucleus. Altered 
circadian cortisol release in the form of an increase in 
the cortisol awakening response, an increase in cortisol 

within 20–30 min after awakening, which was associated 
with neurological disability worsening115 and fatigue, was 
found in pwMS.115–117 There seems to be no influence of 
MS disease-modifying treatment on the cortisol awaken-
ing response.115 One of the two aforementioned studies 
found an association of depression with the cortisol awak-
ening response,116 while the other did not.115

Notably, glucocorticoids are also involved in regulating 
energy metabolism and immune reactions and demon-
strated altered rhythmicity in the animal model of MS.102 
In the same model, leptin, a metabolic hormone secreted 
by adipose tissue and regulating energy homeostasis, sati-
ety, neuroendocrine function, and immune function, also 
demonstrated altered rhythms,102 which might provide a 
link to the metabolic disturbances in MS. Notably, leptin 
is regulated by glucocorticoids so that leptin and cortisol 
show an inverse circadian rhythm.118 However, in pwMS, 
leptin rhythms have not been studied yet.

3.5  |  Retino-hypothalamic tract integrity

Information about the length of day and night is delivered 
via photosensitive retinal ganglion cells over the retino-
hypothalamic tract to the nucleus suprachiasmaticus of 
the hypothalamus, the corresponding control centers of 
the CNS. Those intrinsically photosensitive, melanopsin-
expressing ganglion cells (ipRGCs), which constitute 
a small subset (~1%) of the retinal ganglion cells, con-
trol pupil response. The function of the ipRGCs can be 
measured with post-illumination pupil response (PIPR) 
to a blue light stimulus, which achieves the maximum 
stimulation of ipRGCs, compared to a red-light stimu-
lus. Multiple studies investigated PIPR in neurologic and 
neuro-ophthalmic diseases.119 Indeed, several studies 
found reduced melanopsin-mediated PIPR in conditions 
associated with ganglion cell atrophy, e.g., glaucoma.119 
While some of the studies did not find any abnormalities 
in PIPR despite severe ganglion cell damage, it is of note 
that most of the studies featured low sample sizes.119 Only 
one study investigated the melanopsin-mediated pupil-
lary restriction response in MS.120 They found a reduced 
PIPR to blue light in MS eyes compared to controls, which 
was associated with retinal ganglion cell atrophy.

Retinal ganglion cells are the cell bodies of the axons 
forming the optic nerve. Ganglion cell atrophy was 
found in 79% of pwMS in a post mortem histological 
evaluation.121 In vivo, the ganglion cell integrity can be 
measured as the thickness of the combined ganglion 
cell inner plexiform layer (GCIPL) from OCT scans.41 
A systematic review and meta-analysis found that in 
pwMS, there is pronounced thinning of the GCIPL in 
eyes with previous optic neuritis.122 However, to a lesser 
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effect, also in eyes with no optic neuritis, the GCIPL is 
reduced,122 presumably due to subclinical or chronic 
neurodegeneration of trans-synaptic retrograde degen-
eration originating from posterior visual pathway le-
sions.123 As such, it seems plausible that also ipRGCs 
are affected by MS-related atrophy. As a consequence, 
one would expect retino-hypothalamic disruption and 
impaired circadian rhythms. While this has not been 
investigated in MS, studies have shown an association 
of reduced melanopsin-mediated PIPR with sleep dis-
turbances in ophthalmic diseases featuring ganglion cell 
damage.124,125

Because of the presumably impaired retino-
hypothalamic tract integrity in MS patients, the respon-
siveness of the master clock to light in these subjects might 
be disturbed. Two studies investigated the effect of bright 
white light therapy for treating fatigue in pwMS.126,127 
Both studies revealed an improvement in fatigue scores 
after light therapy. However, neither of the studies re-
vealed a significant treatment effect of bright white light 
when compared to sham therapy with dim red light.126,127 
Although both studies feature low sample sizes and did 
not investigate the effects of light therapy on circadian 
rhythmicity in MS, their results indicate that the effective-
ness of light therapy might be limited in MS, potentially as 
a consequence of retino-hypothalamic tract impairment. 
External stimuli mainly affecting the peripheral clock 
instead of the master clock, e.g., chrononutritional tools, 
might be more effective than light in treating pwMS.

4   |   FUTURE DIRECTIONS: 
DIETARY APPROACHES AS A 
CHRON​OBI​OLO​GICAL TOOL IN MS

Whereas circadian research initially focused on the inves-
tigation of the clock machinery organization and circa-
dian disruptions upon various diseases, in the last years, 
the idea of strengthening and maintaining circadian 
rhythms for treating diseases, i.e., circadian medicine or 
chronomedicine, was developed.128 In this paradigm, fac-
tors known to influence the circadian system (zeitgebers), 
such as light, food, melatonin, and exercise, are used as 
therapeutic approaches to bolster and reset circadian 
rhythms.128 In agreement with this paradigm, in MS, cir-
cadian rhythm disruption is apparently not only a symp-
tom but also a risk factor for MS and its progression over 
time. Therefore, therapeutic approaches to strengthening 
and maintaining circadian rhythms might be a tool to im-
prove MS symptoms and decelerate disease progression.

As mentioned above, because of the presumably im-
paired retino-hypothalamic tract integrity in MS patients, 
external stimuli mainly affecting the peripheral clock 

instead of the master clock, such as dietary approaches, 
might be more effective as chrononutritional tools in MS 
patients than light. Indeed, the interaction between circa-
dian clocks and metabolic functions is reciprocal, i.e., (1) 
central and peripheral circadian clocks control metabolic 
processes in relevant tissues (liver, adipose tissue, muscle, 
pancreas, etc.), and (2) nutrients and metabolites, in turn, 
can act as powerful zeitgebers for peripheral clocks.52,53 
As an example, in mice fed with a high-fat diet (HFD), 
altered rhythms of the core clock and a reorganization of 
the whole circadian transcriptome were observed.129 In 
humans, a switch to the isocaloric HFD altered the oscil-
lation of the core clock genes in blood monocytes and af-
fected the centrally driven cortisol rhythm.130 Along with 
food composition, calorie intake and timing are important 
nutritive factors to alter the circadian rhythms of the core 
clock and other enes and proteins.53,131

In recent years, TRE attracted great attention as a 
promising non-pharmacological approach in circadian 
medicine for the prevention and treatment of chronic 
diseases such as diabetes, obesity, and cardiovascular dis-
eases. TRE (or time-restricted feeding, TRF, if applied in 
animals) is an eating pattern whereby the daily caloric 
intake is limited to a time interval of less than 12 h.132 
While feeding to the “wrong” circadian phase (e.g., upon 
the shift work or night eating) induces circadian disrup-
tions and has negative health effects,133 restricting feeding 
to the “right” circadian phase (i.e., active phase) appears 
to restore normal rhythms, especially in peripheral tissues 
and improve health outcomes. In rodents, TRF during the 
dark phase increased the amplitude of circadian rhythms 
of the gene expression compared to the ad libitum feed-
ing134 and, combined with a caloric restriction, effectively 
extended the life span.135 Furthermore, it was protective 
against high-fat diet-induced obesity, glucose intolerance, 
hepatic steatosis, and inflammation and improved nutri-
ent utilization and energy expenditure.134,136 The benefi-
cial effect of TRF in mice was shown also for high-sucrose 
and high-fructose diets and even in pre-existing obesity 
and metabolic disturbances.136

Similarly, in humans, TRE in form of the religious day-
time dry fasting (whereas food is consumed in the night) 
showed impacts on the circadian system, advancing the 
circadian phase in blood monocytes by 1.1 h.137 Another 
trial on 10-h daytime eating restriction revealed that TRE 
restores the 24-h profile of adipose tissue transcriptome 
including rhythms of core clock genes in obese men.138 
Furthermore, TRE trials demonstrated improvements in 
glucose regulation, insulin sensitivity, blood lipid levels, 
blood pressure, oxidative stress markers, and quality of 
life measures, although the effects may differ between 
early and midday/late eating windows.139–142 Some stud-
ies showed that TRE affects the gut microbiome, which 
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might contribute to the described metabolic effects of 
TRE.143 However, these findings are not yet advanced 
enough to lead to actionable evidence. Notably, TRE also 
reduced levels of C-reactive protein and proinflammatory 
cytokines,140,144,145 improved sleep quality, and resulted 
in subjects feeling more energetic.146,147 Furthermore 
TRE induces autophagy142 and mild elevation of the ke-
tone bodies148 in the fasting phase, which might contrib-
ute to the TRE-induced changes in circadian rhythms.149 
Notably, although most TRE trials demonstrated weight 
reduction, some studies demonstrated improvements in 
metabolic and inflammatory parameters without signifi-
cant body weight loss,140 suggesting that shortening the 
eating window induces beneficial effects independent of 
weight loss.

Taken together, although TRE acts via multiple meta-
bolic mechanisms induced by the change of the eating/
fasting duration,132 there is strong evidence of its modu-
lating impact on the circadian clock. Therefore, it could be 
hypothesized that TRE would stabilize circadian clocks, 
restore immunological, metabolic, and possibly neuro-
logical functions, and combat the disease progression in 
pwMS (Figure 3). However, a TRE approach accompanied 
by investigations of the circadian rhythmicity of metabolic 
and immunological function has not yet been studied in 
MS.

Till now, only two clinical trials investigating the ef-
fects of 8 h TRE in subjects with MS are registered on Clini​
calTr​ials.gov. The aims of the first study, an 8-week trial, 
are to determine preliminary efficacy of TRE for reduc-
ing symptom burden, improving inflammatory markers, 
and reducing cardiometabolic risk among adults with 
RRMS as well as the TRE safety and acceptability of TRE 
(NCT04389970). The second study, a 6-month trial, com-
pares the TRE impact with continuous caloric restriction 
vs. no intervention (NCT02846558). However, the ques-
tion if TRE can restore circadian rhythmicity in MS is not 
addressed in these trials and has to be a subject of future 
research.

Other dietary approaches used in MS and mentioned 
in Chapter 3 might act at least in part via the circadian 
clock. Firstly, the ketogenic diet, which is low in carbo-
hydrates and high in fat, might affect circadian rhythms 
due to the increase in the ketone bodies. Secondly, other 
forms of intermittent fasting, which means the abstinence 
from food for different periods150 (such as alternate day 
fasting involving a combination of no-eating days with 
eating days or modified fasting with consumption of 20%–
25% of energy requirements on fasting days) might affect 
circadian rhythms and improve metabolic and inflam-
matory parameters in MS. Intermittent fasting effects on 
circadian rhythms were mostly shown in animals and de-
pend on the day time of the food intake. Food intake at the 

inactive phase results in arrhythmic clock gene expres-
sion, whereas feeding at the active phase induces rhythms 
similar to ad libitum feeding.151 In humans, most studies 
show a decrease in glucose and insulin in circulation, im-
provement of blood lipids, and reductions in inflamma-
tory markers, although different fasting regimens make 
the data very heterogeneous.152 The beneficial effects of 
intermittent fasting could be explained by weight loss and 
a higher fasting duration; however, exact mechanisms af-
fecting circadian rhythms still need to be elucidated.

Finally, calorie restriction (CR) without any limitation 
of the eating time can restore circadian rhythms, improve 
metabolic and inflammatory factors, and even extend the 
life span in rodents.153 Notably, in Drosophila, the lifespan 
effects of CR are mediated by an increased amplitude of 
clock genes regulating lipid metabolism.154 Several mouse 
studies confirmed that CR synchronizes the peripheral 

F I G U R E  3   Time-restricted eating as a chrononutritive tool 
for the entrainment of circadian rhythms in MS. In later life, a 
reduced sensitivity of the master clock to light, imbalances of 
neurotransmitters, and desynchronization of SCN neurons lead 
to a decrease in the overall amplitude of its firing rhythm. In turn, 
a weaker SCN output signal reduces the strength of downstream 
oscillators in central and peripheral tissues. In metabolic diseases 
such as obesity and T2D, circadian rhythms are also reduced or 
dysregulated. Providing other zeitgebers, such as scheduled meals, 
which act on the circadian system via extra-SCN pathways, may 
entrain the circadian system and restore circadian rhythms. The 
figure was partly generated using Servier Medical Art, provided 
by Servier, licensed under a Creative Commons Attribution 3.0 
unported license.
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clock and can also affect the SCN clock, which synchro-
nizes biochemical processes and metabolic functions. As 
in rodents, a hypocaloric diet was shown to affect the clock 
gene expression in human adipose tissue.155 Currently, five 
human trials studying the effects of CR or comparing CR 
effects with other diets (ketogenic diet and intermittent 
fasting) are registered on Clini​calTr​ial.gov. Notably, there 
is evidence suggesting that intermittent fasting might be 
more feasible and more effective at reducing neuroinflam-
mation and metabolic dysfunctions and preventing neuro-
degeneration compared to continuous CR.156

5   |   CONCLUSIONS

Multiple sclerosis is an autoimmune inflammatory and 
neurodegenerative disease accompanied by disruptions of 
circadian rhythmicity. Chrononutritive approaches such 
as TRE may represent a promising strategy to stabilize cir-
cadian rhythms and clock-controlled metabolic and im-
mune functions in MS and to counteract MS progression. 
However, given the disease's complexity, future carefully 
controlled studies are needed to elucidate TRE effects 
on circadian rhythms in MS and underlying molecular 
mechanisms.
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