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Abstract
Species of the mustelid subfamily Guloninae inhabit diverse habitats on multiple con-
tinents, and occupy a variety of ecological niches. They differ in feeding ecologies, 
reproductive strategies and morphological adaptations. To identify candidate loci as-
sociated with adaptations to their respective environments, we generated a de novo 
assembly of the tayra (Eira barbara), the earliest diverging species in the subfamily, and 
compared this with the genomes available for the wolverine (Gulo gulo) and the sable 
(Martes zibellina). Our comparative genomic analyses included searching for signs of 
positive selection, examining changes in gene family sizes and searching for species-
specific structural variants. Among candidate loci associated with phenotypic traits, 
we observed many related to diet, body condition and reproduction. For example, for 
the tayra, which has an atypical gulonine reproductive strategy of aseasonal breeding, 
we observed species-specific changes in many pregnancy-related genes. For the wol-
verine, a circumpolar hypercarnivore that must cope with seasonal food scarcity, we 
observed many changes in genes associated with diet and body condition. All types 
of genomic variation examined (single nucleotide polymorphisms, gene family expan-
sions, structural variants) contributed substantially to the identification of candidate 
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1  |  INTRODUCTION

The Mustelidae are the most ecologically and taxonomically di-
verse family within the mammalian order Carnivora, representing a 
remarkable example of adaptive radiation among mammals that is 
rich with recent speciation events (Koepfli et al., 2008; Liu et al., 
2020). Closely related mustelid species often inhabit vastly differ-
ent ecosystems, where they experience diverse environmental chal-
lenges and are thus exposed to different evolutionary pressures. 
This is particularly pronounced in the mustelid subfamily Guloninae, 
within which species occupy a variety of ecological niches, ranging 
from scansorial (adapted to climbing) omnivores in the neotropics 
to terrestrial hypercarnivores in circumpolar regions. Members 
of the Guloninae display a range of behavioural and physiological 

adaptations associated with environment-specific resource avail-
ability, and consequently differ markedly in feeding ecology, repro-
ductive strategy and morphology (Heldstab et al., 2018; Zhou et al., 
2011). Here, we focus on tayra, wolverine and sable (Figure 1), for 
which genomic resources are now available.

The tayra (Eira barbara) is a predominantly diurnal, solitary 
species that inhabits tropical and subtropical forests of Central 
and South America, ranging from Mexico to northern Argentina 
(Wilson & Mittermeier, 2009). It is a scansorial, opportunistic om-
nivore, feeding on fruits, small mammals, birds, reptiles, inverte-
brates and carrion. Caching of unripe fruit for later consumption 
has been observed (Soley & Alvarado-Díaz, 2011). Unlike other 
gulonine species, which are characterized by seasonal breeding 
and embryonic diapause, the tayra is an aseasonal polyoestrous 

loci. This argues strongly for consideration of variation other than single nucleotide 
polymorphisms in comparative genomics studies aiming to identify loci of adaptive 
significance.

K E Y W O R D S
adaptation, gene family evolution, genomics, mustelids, positive selection, structural variation

F IGURE  1 Distribution and species-specific traits of the tayra (Eira barbara), wolverine (Gulo gulo) and sable (Martes zibellina). Vector 
graphics of species are created based on royalty-free images (Source: Shutterstock)
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breeder and does not exhibit delayed implantation (Proulx & 
Aubry, 2017), which may be due to the less prominent season-
ality and fluctuation in food availability in neotropical habitats 
(Heldstab et al., 2018).

The largest terrestrial mustelid, the wolverine (Gulo gulo), is 
a circumpolar species, inhabiting alpine and boreal zones across 
North America and Eurasia (Ekblom et al., 2018). The wolverine 
is an opportunistic predator and facultative scavenger, either 
feeding on carrion or actively hunting medium- to large-sized 
mammals, such as roe deer, wild sheep and occasionally moose 
(Pasitschniak-Arts & Larivière, 1995). Morphological and be-
havioural adaptations such as dense fur, plantigrade locomotion 
facilitating movement through deep snow, and food caching en-
able wolverines to survive in cold habitats with limited food re-
sources (Copeland & Kucera, 1997). In addition, wolverines occupy 
large home ranges, and display territoriality, seasonal breeding 
and delayed implantation, traits indicating an adaptive response 
necessary for survival in scarce resource environments (Inman 
et al., 2012).

The sable (Martes zibellina) is distributed in the taiga and decid-
uous forests of north central and northeastern Eurasia. The sable 
is solitary and omnivorous, relying on hearing and olfaction to lo-
cate prey, even under snow cover during winter months (Liu et al., 
2020; Monakhov, 2011). Unlike wolverines, seasonal changes do 
not cause dramatic fluctuations in resource availability for sables 
as they are able to exploit a wider variety of food sources, and 
are adapted to tolerate short-term food scarcity (Mustonen et al., 
2006). Their diet consists of small mammals, birds, nuts and ber-
ries, and in some instances food caching during the winter period 
has been reported (Monakhov, 2011). Similar to wolverines and 
many other species of mustelids, sables have a well-defined re-
productive season and exhibit delayed blastocyst implantation 
(Proulx & Aubry, 2017).

To date, only a few studies have investigated adaptive variation 
in mustelids using comparative genomics (Abduriyim et al., 2019; 
Beichman et al., 2019; Liu et al., 2020; Miranda et al., 2021). Here, 
we generated a highly contiguous genome assembly of the tayra, an 
early diverging gulonine (Koepfli et al., 2008; Law et al., 2018), and 
compared it to previously published genomes of the wolverine and 
sable to identify the genetic basis underlying the adaptations to the 
diverse environments inhabited by these species.

In addition to identifying genes under positive selection, we 
investigated gene family evolution and structural variants (SVs), as 
these types of variants represent a significant source of intra- and 
interspecific genomic differentiation, affecting more nucleotides 
than single-nucleotide polymorphisms (SNPs) (Catanach et al., 2019). 
Gene copy number variation and large SVs can be associated with 
an adaptive response to new ecological circumstances (Rinker et al., 
2019), and are thus an important source of genomic novelty to con-
sider when studying adaptive divergence among species (Hecker 
et al., 2019). We focused on candidate loci linked to species-specific 
traits associated with response to environmental challenges, such as 
resource availability in the respective habitats of our study species.

2  | MATERIALS AND METHODS

2.1  |  Sequencing, genome assembly and alignment

Whole blood from a captive (second-generation) male tayra was 
collected by the veterinary staff of the “Wildkatzenzentrum 
Felidae,” Barnim (Germany), during a routine medical checkup. 
High-molecular-weight (HMW) genomic DNA extraction was per-
formed using the Qiagen MagAttract HMW DNA Kit, following the 
manufacturer's protocol. We used 1 ng of DNA and the Chromium 
Genome Reagents Kits Version 2 and the 10× Genomics Chromium 
Controller instrument with a microfluidic chip for library prepara-
tion. Sequencing was carried out on an Illumina NovaSeq 6000 with 
300 cycles on an S1 lane.

We generated a de novo genome assembly using the 10x 
Genomics Supernova assembler version 2.1.1 (Weisenfeld et al., 
2017) with default parameters (assembly metrics given in Table 1; 
Table S1). The assemblies of tayra (this study, JAHRIG000000000), 
wolverine (Ekblom et al., 2018; GCA_900006375.2), sable (Liu et al., 
2020; GCA_012583365.1) and domestic ferret (MusPutFur1.0_HiC; 
Dudchenko et al., 2017, 2018; Peng et al., 2014) were assessed for 
gene completeness with busco version 4.1.2 using the mammalian 
lineage data set mammalia_odb10 (Simão et al., 2015). To accurately 
identify repeat families, we used repeatmodeler version 2 (Flynn et al., 
2020) with the “-LTRstruct” option, followed by repeatmasker version 
4.1.2 (Smit, 2004) to identify and mask the modelled repeats in the 
tayra genome assembly.

2.2  | Demographic reconstruction

Trimmed reads of all three gulonine were mapped to their respec-
tive genomes in local mode with bowtie2 version 2.3.5.1 (Langmead 
& Salzberg, 2012), and analysis of demographic history was per-
formed with psmc version 0.6.5 (Li & Durbin, 2011) using the fol-
lowing parameters (repeated 100 times for bootstrapping): psmc 
-N25 -t15 -r5 -b -p ‘4+25*2+4+6’ -o round-${ARRAY_TASK_ID}.psmc 
${name}.split.psmcfa. Results for each genome were plotted with 
psmc_plot.pl, and the mutation rate was set to 1e-08 substitutions 
per site per generation (Cahill et al., 2016; Dobrynin et al., 2015). 
Generation times were set to 7.4 years for tayra, 5.7 years for sable 
(Pacifici et al., 2013) and 6 years for wolverine (Ekblom et al., 2018).

2.3  |  Reference-based scaffolding

Using the domestic ferret genome as a reference, we generated 
pseudochromosome assemblies for tayra, wolverine and sable, to 
visualize heterozygosity along chromosomes. Scaffolding was per-
formed using ragoo version 1.1 (Alonge et al., 2019). The X chro-
mosome in the domestic ferret assembly was identified via whole 
genome alignment to the domestic cat (Felis catus) Felis_catus_9.0 
assembly (Buckley et al., 2020) and ZooFISH data available from 
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the Atlas of Mammalian Chromosomes (Cavagna et al., 2000; O’Brien 
et al., 2020). Whole genome alignment was performed using last 
version 971 (Frith & Kawaguchi, 2015).

Variant calling followed by quality filtration was performed using 
the bcftools pipeline version 1.10 (Poplin et al., 2018). Low-quality 
variants were removed (bcftools filter, “QUAL < 20.0 || (FORMAT/SP 
> 60.0 || FORMAT/DP < 5.0 || FORMAT/GQ < 20.0)”). In each sam-
ple, positions with coverage lower or higher than 50%–250% of the 
whole genome median value were removed. Of the remaining posi-
tions only those common to all samples were retained. Finally, SNPs 
with uncalled genotypes in any sample and variants with the same 
genotypes for all samples were removed. For visualization, hetero-
zygous SNPs were counted in nonoverlapping sliding windows of 
1  Mbp (counts scaled to SNPs per kbp). Indels were not included 
due to the low quality of calls from short reads. SNP density plots 
were created using the mace package (https://github.com/mahaj​rod/
MACE).

2.4  |  Phylogenomic data preparation, 
analysis and dating

We performed sequence alignments and filtering of excessively 
divergent segments in each of 6020 coding genomic regions of 
single-copy orthologues shared across eight species of carni-
vores, using the software macse version 2 (Ranwez et al., 2011). 
Our taxon set included domestic cat (Felis catus), domestic dog 
(Canis familiaris), northern elephant seal (Mirounga angustirostris) 
and walrus (Odobenus rosmarus), in addition to four mustelid spe-
cies. To extract the most reliable signal from these coding data, we 
excluded whole alignments that were excessively divergent, con-
tained excessive missing data or violated basic substitution model 
assumptions (further details in the Supporting Information). This 
led to a phylogenomic data set with 2457 gene regions comprising 
over 3.2 million nucleotide sites. Gene trees were estimated from 

gene regions by first selecting the best substitution model from 
the GTR+F+Γ+I+R family (Kalyaanamoorthy et al., 2017), and cal-
culating approximate likelihood-ratio test (aLRT) branch supports 
(Anisimova & Gascuel, 2006), as implemented in iq-tree version 2 
(Minh et al., 2020a,b).

Species tree estimates were performed using (i) concatenated 
sequence alignments for maximum-likelihood inference using iq-tree 
version 2, and (ii) gene trees for inference under the multispecies 
coalescent using the summary coalescent method in astral-iii (Zhang 
et al., 2018). The maximum-likelihood estimate of the species tree 
was accompanied by aLRT branch supports, while summary coales-
cent inference was accompanied by local posterior probabilities 
(Sayyari & Mirarab, 2016). The decisiveness of the data regard-
ing the phylogenetic signals was examined using gene- and site-
concordance factors, calculated in iq-tree version 2 (Minh, Schmidt, 
et al., 2020).

Bayesian molecular dating analysis was performed using 
MCMCtree in paml version 4.8 (Yang, 2007). To minimize the violation 
of the time-tree prior (Angelis & Dos Reis, 2015) and the negative 
impact of gene tree discordance on rate estimates (Mendes & Hahn, 
2016), we only included genomic regions with gene trees concordant 
with the species tree, and assumed the reconstructed species tree 
from astral-iii (see Supporting Information for further details). This 
led to a data set for molecular dating that included 992 single-copy 
orthologous gene regions, comprising 0.53  million sites. The data 
were partitioned by codon positions, each modelled under individ-
ual GTR+Γ substitution models. We used an uncorrelated gamma 
prior on rates across lineages and a birth–death prior for divergence 
times. Fossil calibrations are listed in the Supporting Information. 
The posterior distribution was sampled every 1 × 103 Markov chain 
Monte Carlo (MCMC) steps over 1 × 107 steps, after a burn-in phase 
of 1 × 106 steps. We verified convergence to the stationary distribu-
tion by comparing the results from two independent runs, and con-
firming that the effective sample sizes for all parameters were above 
1,000 using the R package coda (Plummer et al., 2006).

TA B L E  1  Comparison of genome assembly metrics among four mustelid species

Tayra (Eira barbara)
Domestic ferret (Mustela 
putorius furo) Sable (Martes zibellina) Wolverine (Gulo gulo)

Assembly accession/
reference

JAHRIG000000000 
(this study)

MusPutFur1.0_HiC 
(Dudchenko et al., 2017, 
2018; Peng et al., 2014) 
GCF_000215625.1 
(Dudchenko et al., 2017, 
2018; Peng et al., 2014)

GCA_012583365.1 (Liu 
et al., 2020)

GCA_900006375.2 
(Ekblom et al., 2018)

Sequencing/assembly 
approach

Illumina + 10× 
Genomics/
Supernova

Illumina/ALLPATHS-LG + 
Hi-C scaffolding

Illumina/soapdenovo2 Illumina/soapdenovo

Raw coverage (×) 75.6 162 114.5 76

Contig N50 (kb) 289.9 44.7 41.7 3.6

Scaffold N50 (Mb) 42.0 145.3 5.2 0.2

Number of scaffolds 14,579 7428 15,814 47,417

Total genome length (Gb) 2.44 2.40 2.42 2.42
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2.5  |  Positive selection on single-copy orthologues

To investigate genes under positive selection, the coding sequences 
(CDS) corresponding to 1:1 orthologues were aligned for the eight 
aforementioned carnivoran species. Multiple sequence alignments 
(MSAs) were constructed with prank version 120716 (Löytynoja, 
2014), and 17 MSAs were removed due to short alignment length. 
The CODEML module in the paml version 4.5 package was used 
to estimate the ratio of nonsynonymous to synonymous substitu-
tions, also called dN/dS or ω (Yang, 2007). We applied the one-ratio 
model to estimate the general selective pressure acting among all 
species, allowing only a single dN/dS ratio for all branches. A free-
ratio model was also used to estimate the dN/dS ratio of each branch. 
Furthermore, the CODEML branch-site test for positive selection 
was performed on 6003 orthologue alignments for three separate 
foreground branches: Eira barbara, Gulo gulo and Martes zibellina 
(Zhang et al., 2005). Statistical significance was assessed using likeli-
hood ratio tests (LRTs) with a conservative 10% false discovery rate 
(FDR) criterion (Nielsen et al., 2005). Orthologues with a free-ratio 
>2 in the branch model were considered for further analysis of sig-
natures of positive selection.

To account for differences in genome assembly quality, we eval-
uated the alignments of selected orthologues based on the transi-
tive consistency score (TCS), an extension to the T-Coffee scoring 
scheme used to determine the most accurate positions in MSAs 
(Chang et al., 2014). Additionally, alignments were visually inspected 
for potential low-scoring MSA portions.

2.6  | Gene family evolution

To investigate changes in gene family sizes, we constructed a matrix 
containing 7838 orthologues present as either complete “single-
copy,” complete “duplicated” or “missing,” identified using the busco 
genome assembly completeness assessment of all eight carnivoran 
genomes. Orthologues were retained if they were detected in at least 
four species (including Felis catus as an outgroup) to obtain meaning-
ful likelihood scores for the global birth and death (λ) parameter.

We applied a probabilistic global birth and death rate model of 
cafe version 4.2.1. (Han et al., 2013) to analyse gene gains (“birth”) 
and losses (“death”) accounting for phylogenetic history. First, we 
estimated the error distribution in our data set, as genome assem-
bly and annotation errors can result in biased estimates of the aver-
age rate of change (λ), potentially leading to an overestimation of λ. 
Following the error distribution modelling, we ran the cafe analysis 
guided by the ultrametric tree estimated earlier, calculating a single 
λ parameter for the whole species tree. The cafe results were sum-
marized (Table S4A) with the python script cafetutorial_report_analy-
sis.py (https://github.com/hahnl​ab/CAFE).

We examined differences between duplicates arising through 
gene family expansion, to determine how these paralogues differed 
and if a signal of selection could be detected. Pairwise codon-aware 
sequence alignment of paralogues was performed with dialign-tx 

version 1.0.2 (Subramanian et al., 2008). Ratios of nonsynonymous 
to synonymous substitution rates were estimated using kaks_calcula-
tor version 2.0 (Zhang et al., 2006; details are given in the Supporting 
Information). Paralogues with identical nucleotide sequences were 
considered to be recent duplications (“NAs” in Table S5B).

2.7  |  Structural variation

To avoid reference genome bias, preprocessed reads from the three 
Guloninae were aligned to the domestic ferret (Mustela putorius furo) 
genome with bowtie2 version 2.3.5.1 (Langmead & Salzberg, 2012) 
(details given in Supporting Information). Duplicated reads were 
removed with picard toolkit version 2.23 (MarkDuplicates, Broad 
Institute, 2019). Trimmed tayra reads were downsampled to ~38× 
with seqtk version 1.3 (https://github.com/lh3/seqtk) prior to map-
ping to maintain uniformity among libraries and to avoid bias in vari-
ant calling.

We applied an ensemble approach for SV calling, encompass-
ing three SV callers: manta version 1.6.0 (Chen et al., 2016), whamg 
version 1.7.0 (Kronenberg et al., 2015) and lumpy version 0.2.13 
(Layer et al., 2014). SV calls originating from reads mapping in low-
complexity regions and with poor mapping quality were removed 
from all three call sets. We retained manta calls with paired-read 
(PR) and split-read (SR) support of PR ≥ 3 and SR ≥ 3, respectively. 
To reduce the number of false positive calls, the whamg call set was 
filtered for potential translocation events, as whamg flags but does 
not specifically call translocations. We further removed calls with a 
low number of reads supporting the variant (PR, SR) from the whamg 
(A < 10) and the lumpy call set (SU <10). All SV call sets were filtered 
based on genotype quality (GQ ≥ 30). whamg and lumpy SV call sets 
were genotyped with svtyper version 0.7.1 (Chiang et al., 2015) prior 
to filtering. Only scaffolds assigned to chromosomes were included 
in further analyses. survivor version 1.0.7 (Jeffares et al., 2017) was 
used to merge and compare SV call sets within and among samples. 
The union set of SV calls among the three gulonine species contain-
ing species-specific and shared variants was annotated, using liftoff 
version 1.5.1 (Shumate & Salzberg, 2020), for preparation of refer-
ence genome annotation, and Ensembl Variant Effect Predictor ver-
sion 101.0 (McLaren et al., 2016) for identifying variants affecting 
protein-coding genes. Gene ontology analysis was performed with 
shiny go (Ge et al., 2020) with an FDR < 0.05 for each SV type (ex-
cluding inversions) overlapping multiple protein-coding genes (more 
than five genes).

2.8  |  Candidate loci

The functional and biological roles of positively selected genes, loci 
affected by changes in gene family size, and structural variants, were 
explored using literature sources and online databases, including 
OrthoDB version 10 (Kriventseva et al., 2019), Uniprot (The UniProt 
Consortium, 2017) and NCBI Entrez Gene (Maglott et al., 2011). 
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Gene descriptions, GO biological processes, functions and relevant 
citations are provided in the supporting tables (see below). Gene 
Ontology enrichment analysis was performed with shiny go version 
0.65 (Ge et al., 2020), for gene sets obtained from previously men-
tioned analyses (positive selection on single genes, PSG; gene fam-
ily evolution, GF; and SV) for the three gulonine species. Gene sets 
were inspected for significant enrichment of biological processes 
with the following parameters: best matching species, top 10 path-
ways, and FDR p-value cutoff.05. shiny go version 0.65 is based on a 
database derived from Ensembl Release 103.

3  |  RESULTS

3.1  | Genome assembly

We generated a highly contiguous reference genome assembly for 
the tayra (Eira barbara). Extracted genomic DNA had an average 
molecular size of 50.75  kb and was sequenced to ~76-fold cover-
age (Table S1). The final assembly showed a total length of ~2.44 Gb 
(excluding scaffolds shorter than 5 kb), with a contig N50 of 290 kb, 
scaffold N50 of 42.1 Mb, and identity in 95% of all positions in an 
alignment with the domestic ferret genome (Figure S1). The tayra 
assembly has higher contiguity than the Illumina-only-based assem-
blies of both wolverine and sable, but it is more fragmented than 
the chromosome-length domestic ferret (Mustela putorius furo) as-
sembly (Table 1; Figure S2A) that we used as a reference genome for 
some analyses. The haploid tayra genome of ~2.4 Gb is contained 
in 162 scaffolds (>100 kb) with 40 scaffolds having a length above 
50 Mb (Figure S2A).

The tayra assembly has high gene completeness as assessed with 
busco version 4.1.2 using 9226 conserved mammalian orthologues in 
total, 8540 (92.5%) complete benchmarking Universal Single-Copy 
Orthologs (BUSCOs) were identified, encompassing 8492 (92.0%) of 
complete and single-copy, and 48 (0.5%) complete and duplicated 
orthologues. Additionally, 104 (1.1%) orthologues were fragmented 
and 582 (6.4%) were missing. As measured by this metric, the tayra 
genome has higher gene completeness than the published genomes 
of wolverine, sable or domestic ferret (Figure S2B).

3.2  |  Repetitive elements

The repeat landscape of the tayra assembly contains ~0.85 Gb of 
repetitive elements (Table S2). L1 type LINE elements are the most 
abundant, constituting 23% of the tayra genome. L1 elements also 
show signs of recent proliferation in comparison to DNA trans-
posons and LTR retroelements (Figure S3). Endogenous retrovi-
ruses constitute 3.8% of the tayra genome and can be classified as 
Gammaretroviruses and Betaretroviruses.

The overall repeat landscape of the tayra genome assembly is 
comparable to other carnivore genomes (Liu et al., 2020; Peng et al., 
2018). It is similar to that of the sable genome, differing mostly in 

the number of L1 LINE elements, which have been recently pro-
liferating and accumulating within the tayra genome more than in 
other Guloninae genomes. The diversity of endogenous retroviruses 
is similar to that of other mustelids. Although endogenous delta-
retroviruses have been described from a broad range of mammal 
genomes, including several smaller carnivores such as mongoose 
(family Herpestidae) and the fossa (Cryptoprocta ferox) (Hron et al., 
2019), no delta-retroviruses were found in the genome of tayra.

3.3  | Demographic reconstruction

Reconstruction of historical demography for tayra, wolverine and 
sable, using the Pairwise Sequentially Markovian Coalescent model 
(PSMC; Li & Durbin, 2011) revealed different trends in effective 
population sizes (Ne) (Figure S4). While the trajectories for all three 
species involve multiple declines and rebounds in Ne, the timing, du-
ration and magnitude of these differ. In tayras, there are three ex-
tensive declines beginning around 4.5 million years ago (Ma) (>35% 
reduction in Ne), 500 thousand years ago (ka) (>30%) and 80  ka 
(>80%), resulting in a recent Ne of ~14,000 individuals. In wolver-
ines, a sharp decline 1 Ma (>45%) is followed by a plateau in Ne and 
subsequent decline beginning ~400 ka (>30%), followed by a moder-
ate rebound and final decline beginning 40 ka (>80%), resulting in a 
recent Ne of ~2,500 individuals. In sable, Ne gradually declines until 
~500 ka (>40%), followed by a moderate rebound and sharp decline 
around 200  ka (>40%). This is followed by an extensive rebound 
beginning 100 ka and subsequent sharp declines 50 ka (>30%) and 
15 ka (>50%), resulting in a recent Ne of ~23,000 individuals. Thus, 
all three species exhibit complex historical trends in Ne, with little 
overlap in timing or magnitude.

Consistent with Ekblom et al. (2018), we observe low recent Ne 
in wolverines. However, our reconstructed trajectory of historical 
Ne for the wolverine differs from that of Ekblom et al. (2018), proba-
bly owing to different PSMC parameters. That notwithstanding, the 
timing and relative magnitude of the final decline is in broad agree-
ment in the two studies.

3.4  | Nucleotide diversity

The tayra, sable and wolverine assemblies were generated using 
different approaches and differ significantly in contiguity (Table 1). 
To compare nucleotide diversity among the Guloninae, we gener-
ated pseudochromosome assemblies for each species using the 
chromosome-length assembly of the domestic ferret as a reference. 
The domestic ferret has more chromosomes than the other species 
(2n = 40 vs. 2n = 38), and the same number (20) of pseudochromo-
somes (Lewin et al., 2019) were obtained after scaffolding in each 
case. For each assembly, we identified the X chromosome (labelled 
as ps_chrX) and arranged pseudoautosomes (labelled as ps_aut1 
– ps_aut19) according to the length of the original scaffolds in the 
domestic ferret reference. This allowed us to verify the sex of the 
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animals using a coverage-based approach (Figure S5), which con-
firmed morphological sexing for the tayra (male) and wolverine (fe-
male) individuals. While the sable individual is referred to as a male 
(Liu et al., 2020), our analysis suggests it is a female (further details 
given in Supporting Information).

We counted heterozygous SNPs in 1-Mbp stacking windows for 
all three species and scaled it to SNPs per kbp (Figure 2). Median val-
ues for tayra, sable and wolverine were 1.89, 1.44 and 0.28 SNPs per 
kbp, respectively, the last being in agreement with previous findings 
(Ekblom et al., 2018). All scaffolds of ≥1 Mbp in pseudochromosome 
assemblies were taken into account. Exclusion of ps_chrX resulted 
in slight increases of medians to 1.93, 1.47 and 0.29, respectively 
(Table S3, Figure S6). Regardless of whether ps_chrX was included 
or excluded, the genome-wide diversities among the three species 
were significantly different (p « 0.001, Mann–Whitney test).

3.5  |  Phylogenomics and molecular dating

We reconstructed the phylogenetic relationships of the following 
carnivoran species: domestic cat, domestic dog, walrus, northern ele-
phant seal, domestic ferret, wolverine, sable and tayra. Phylogenomic 
analyses using concatenation and summary coalescent methods led 
to an identical resolution of the relationships among mustelid taxa. 
Within Guloninae, the wolverine and sable were placed as sisters, to 
the exclusion of the tayra (Figure 3). Branch supports were maximal 
across all branches using both aLRT and local posterior probabilities. 
Similarly, concordance factors for genes and sites (gCF, sCF) were high 
across branches and consistently more than twice as high as the val-
ues of the discordance factors (gDF, sDF). The lowest concordance 
factors were those in support of the resolution of Gulo and Martes as 
sisters (gCF = 64.52, sCF = 54.38). However, the discordance factors 
were less than half these values (gDF < 14, sCF < 24), suggesting sub-
stantial decisiveness across genes and sites for this resolution.

Divergence time estimates across mustelids were largely in 
agreement with previous findings (Koepfli et al., 2008; Law et al., 
2018; Li et al., 2014; Sato et al., 2012), placing the split between 
Mustela and Guloninae at 11.2 Ma (highest posterior density interval 
(HPDI) between 13.1 and 9.5  Ma), and the split between Eira and 
the Gulo–Martes group at 7.5 Ma (HPDI between 9 and 6.1 Ma). The 
split between Gulo and Martes was dated at 5.9 Ma (HPDI between 
7.4 and 4.7 Ma).

3.6  |  Positive selection on single-copy orthologues

In the three Guloninae species, we found sites under positive selec-
tion (5 > dN/dS > 1; Barnett et al., 2020) in 55 single-copy orthologues 

that were highly significant (free-ratio > 2). Of these 55 positively 
selected genes (PSGs), 15 were observed in tayra, 22 in wolverine 
and 18 in sable (Figure 4a,b). Gene names, descriptions and func-
tions are given in Table S4.

Among the 15 PSGs we detected in tayra, five are associated 
with reproduction (NSMCE1, ETV2, SPATA25, MUC15 and PIH1D2) 
with functions involving spermatogenesis, placenta and embryo de-
velopment, and blood vessel morphogenesis. Among the remaining 
10 PSGs, HSPB6 is involved in vasodilation and muscle contraction, 
DERA is associated with environmental stressors, including exposure 
to toxins, and uricase (UOX) is a liver enzyme involved in purine ca-
tabolism and regulation of fructose metabolism. Three PSGs (IP6K3, 
MAGIX and FAM149B1) are found to be associated with the nervous 
system, synapse formation and structural plasticity, as well as motor 
skills and coordination. Three further PSGs (DUSP19, TNLG2B and 
LRRC46) are related to the immune system and HEMK1 regulates 
methylation processes. Gene enrichment analysis revealed an over-
representation of genes in gene ontology (GO) categories associated 
with reproduction (Table S4A; GO:0046483, “Heterocycle meta-
bolic process,” p =  .022) and metabolism/energy conversion (Table 
S4A, multiple pathways, p < .03).

We detected 22 PSGs in wolverine, including six genes associ-
ated with energy production and conversion. Among them, ATP6V0B, 
KMO and SLC16A4 are primarily involved in insulin level regulation, 
and the metabolism of carbohydrates and fatty acids. Three PSGs 
(OIP5, ZADH2 and MTPAP) are specifically associated with adipose 
tissue formation and intramuscular fat deposition. Additionally, we 
found three PSGs (NBR1, TMEM38B, PPP1R18) involved in selective 
autophagy as a response to nutrient deprivation along with bone 
mass and density regulation, and resorption. We also detected PSGs 
(DAB1, OPA1 and CTNS) linked to cognition, brain development and 
vision. Several PSGs (BNIPL, IL18BP, CRNN) were associated with 
the immune system; three others (ANAPC7, RNF212B, IZUMO3) are 
involved in reproduction processes and USB1 and CLCN4  have a 
role in basal cell cycle processes. For the remaining two, CEP95 and 
FAM185A, it was not possible to associate a specific phenotypic trait. 
No overrepresentation of GO categories was detected.

Among the 18 PSGs detected in sable, three (PRRT2, ATL2, 
SELENOI) are associated with locomotion and coordination, and 
USP53 is associated with sensory perception and the nervous sys-
tem. Two PSGs, VEGFC and RASA1, are associated with blood ves-
sel formation, three (TTC4, ZBP1, CD247) with the immune system 
and three (IQUB, UBQLNL, MEIKIN) with reproduction. Several PSGs 
(EEF2KMT, DEUP1, ECD, IQCK) are associated with cell cycle pro-
cesses, while ZC2HC1C and CCDC17 could not be associated with a 
particular biological process. Gene enrichment analysis revealed an 
overrepresentation of GO categories associated with ear morpho-
genesis (Table S4A, multiple pathways, p < .05).

F IGURE  2 Heterozygosity density among pseudochromosomes for (a) tayra, (b) sable and (c) wolverine. Heterozygous SNPs were 
counted in stacking windows of 1 Mbp and scaled to SNPs per kbp. Tayra is a male individual and thus heterozygous SNP density is 
underestimated (due to only one X chromosome), while sable and wolverine are females and therefore likely to be representative of true 
SNP density
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3.7  | Gene family expansions and contractions

Adaptive divergence between species may also be caused by 
changes in gene family sizes that occur during genome evolution 
and are due to gains (expansions) or losses (contractions) of genes 
or groups of genes (Olson, 1999; Tigano et al., 2020). All species 
analysed displayed more gene family contractions than expansions, 
with the wolverine having the highest contraction rate. This is prob-
ably an artefact resulting from the fragmented genome assembly of 
this species (Figure S7). All identified expansions were in the form 
of gene duplications, with one putative triplication detected in tayra 
(Table S5B).

Tayra and sable had similar numbers of gene family expansions 
and contractions (Figure S7): 34 expansions and 169 contractions 
in tayra, and 33 expansions and 162 contractions in sable. The less 
contiguous wolverine genome contained seven expansions and 649 
contractions (Table S5A,B). Due to the stochastic nature of gene 
losses and the potential inflation of estimates resulting from differ-
ent genome assembly contiguities, we focus here on gains of gene 
copies.

Expanded gene families in the tayra genome are associated with 
reproduction, metabolism, the nervous and immune system, and 
cell cycle, among others (Figure 4c,d; gene names, descriptions and 
functions are given in Table S5B). Of the three reproduction-related 
genes, SLC38A2 regulates supply of nutrients for fetal growth 
through the placenta during the peri-implantation period. The sec-
ond, HSD17B10, is associated with regulation of pregnancy-sustaining 
steroid hormones, and RBP2 is involved in retinol binding and vitamin 
A metabolism, necessary for oogenesis and embryogenesis, as well 

as vision. Four genes (PDHB, SH3GLB1, SLC35A1, N6AMT1) are in-
volved in metabolic processes, with N6AMT1 specifically associated 
with modulation of arsenic-induced toxicity. Four genes (ATP6V1D, 
DBX2, SLC38A1, MAPKAPK5) are associated with cerebral cortex de-
velopment, synapse formation, visual perception and learning pro-
cesses. ANKRD13A is also associated with vision, more specifically 
with lens fibre generation and vitamin A metabolism. The olfactory 
receptor gene TAAR5 is involved in behavioural responses in mam-
mals, and was duplicated in both tayra and sable. We detected one 
putative triplication of FKBP3, a gene associated with immunoregula-
tion, predominantly of T-cell proliferation. Four additional genes are 
associated with the innate immune system (TUFM, UBXN6, SPON2, 
SERPINB1). Two genes (MRPS14 and MRPS23) are involved in energy 
conversion. Two genes (ATF4 and ARDI2) are associated with the car-
diovascular system and development, respectively. The rest of the 
genes are involved in processes related to the cell cycle, and PRR11 
could not be associated with a particular biological process. Among 
duplications in the tayra, seven were recent duplications, 16 are 
under relaxed selection and 10 under purifying selection (Table S5B). 
Gene enrichment analysis revealed an overrepresentation of genes 
in GO categories associated with metabolism/energy conversion 
(Table S5C, multiple pathways, p <  .02), the cardiovascular system 
(multiple pathways, p < .02), the immune system (multiple pathways, 
p < .02) and cell cycle processes (multiple pathways, p < .02).

In the wolverine, two duplicated genes are related to the ner-
vous system: GFRA4 is implicated in motor neuron development 
and KCNS1 in regulating mechanical and thermal pain sensitivity. 
MTM1 is associated with positive regulation of skeletal muscle tissue 
growth and MON1B is implicated in the immune response to viral 

F IGURE  3 Phylogenetic tree and 
divergence times of Guloninae and five 
other carnivorans. The mean age of each 
node is shown, with 95% confidence 
intervals depicted as purple bars. The 
gene and site concordance (gCF, sCF) and 
discordance (gDF, sDF) factors are given. 
While the concordance factors refer to 
the portions of the data in agreement 
with the tree shown, each of the two 
discordance factors (DF1 and DF2) refer 
to the support for each of the two other 
possible alternative quartet resolutions 
for each branch. Also included are the 
tree branch supports as calculated using 
approximate likelihood-ratio tests (aLRT) 
and local posterior probabilities (LPP)
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infection. Three duplicated genes are associated with cell cycle pro-
cesses. Among duplications in the wolverine, one is a recent dupli-
cation, one is under relaxed selection and two are under purifying 
selection (Table S5B). No overrepresentation of GO categories was 
detected.

In the sable, expansions involve gene families associated with the 
nervous system, metabolism, angiogenesis, hair follicle development 
and the immune system, among others (Table S5B). Fourteen genes 
are associated with the nervous system. Among them, six (PPA1, 
THOC6, SHISAL2A, SHISAL1, FICD, DUSP8) are involved in neuronal 
development, two (SYNGR3, TM4SF20) are associated with locomo-
tion, and two (MFSD5 and BICDL2) with energy regulation and se-
cretion. TAAR5 is associated with olfaction, FBXL3 with regulation 
of the circadian clock and TIMM10 with hearing. CD93 is associated 
with regulation of inflammation in the central nervous system. Six 
genes are involved with metabolism and energy conversion (ASB6, 

CRYZL1, SLC25A10, CLDN20, RNF186, BORCS6). Three genes (GPS2, 
BRICD5, HCFC1R1) are associated with the immune system. Two 
genes, CDC42 and TCHHL1, are implicated in hair-follicle develop-
ment. Additionally, CDC42, a gene coding for a cell division control 
protein, is also involved in angiogenesis and haematopoiesis, along-
side SLC25A39, TNFRSF12A and LXN. Three genes (MRPL38, RPP30, 
TBL3) are associated with basal cell cycle processes and two genes 
(SEPT12, CDK2) with gametogenesis.

Among duplications in the sable, seven were recent duplications, 
nine are under relaxed selection, 15 are under purifying selection 
and two are under positive selection (Table S5B). Gene enrich-
ment analysis revealed an overrepresentation of genes in GO cat-
egories associated with metabolism/energy conversion (Table S5C; 
GO:0006839, “Mitochondrial transport,” p = .018), the nervous sys-
tem (multiple pathways, p <  .03) and cell cycle processes (multiple 
pathways, p < .03).

F IGURE  4 Number of candidate genes and their functional groups. Genes identified from analyses of (a, b) positive selection on 
single genes (PSG), and (c, d) gene family expansions. Heatmap scale represents the number of genes. Heatmap cells in grey indicate no 
observations for a given variable
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3.8  |  Structural variation

SVs modify the structure of chromosomes and can affect gene syn-
teny, repertoire, copy number and/or composition (e.g. gain or loss 
of exons), create linkage-blocks and modify gene expression (Chiang 
et al., 2017; Mérot et al., 2020), leading to complex variation in 
phenotypes and genetic diseases (Weischenfeldt et al., 2013). We 
investigated four types of SVs (deletions, duplications, insertions, 
inversions) in the three Guloninae relative to the domestic ferret 
genome.

We identified the highest number of species-specific SVs in sable 
(22,979), followed by tayra (8907) and wolverine (264) (Figure 5a). 
The most abundant SVs detected in all three species are deletions 
(>50 bp), ranging from 183 species-specific deletions in wolverine 
to 21,713 in sable. Duplications were the least frequent SV type 
among the three species (Figure S8A). For all three species, the ma-
jority of SVs are located in intergenic regions (>80%), with a smaller 
proportion found in genic regions, completely or partially overlap-
ping protein-coding genes (untranslated regions, exons, introns). 
According to Variant Effect Predictor (VEP) classification, SVs im-
pacting genic regions are classified either as high-impact variants 
or modifiers (McLaren et al., 2016) with putative consequences on 
gene transcription ranging from transcript truncation to transcript 
ablation or amplification. The highest number of species-specific 
genic SVs was detected in tayra, with 330 (3.70% of species-specific 
SVs), followed by 156 (0.68%) in sable and 53 (20.08%) in wolver-
ine (Figure S8B). Other than the well-documented impact of inver-
sions on intra- and interspecific gene flow (Porubsky et al., 2020; 
Wellenreuther & Bernatchez, 2018), determining the impact of in-
versions overlapping large sets of genes is still challenging, as the 
largest effect is likely to be restricted to genes near SV breakpoints. 
Therefore, we restricted our examination of gene function to loci 
affected by deletions, duplications and insertions (Figure 5b; gene 
names, descriptions and functions are given in Table S6).

In the tayra genome, we observed 14 duplications spanning a 
combined length of 2.92 Mb, putatively affecting 24 protein-coding 
genes. Duplicated genes and gene blocks are associated with repro-
duction, olfaction, metabolism and energy conversion. This included 
RNASEH2B, a gene involved in in utero embryo development, and 
two genes involved in spermatogenesis, DIAPH3 and PCNX1, with 
the latter an example of a complex SV involving heterozygous du-
plication and deletion of an exon (SV ~2 kb in length). We detected 
212 deletions in the tayra genome in relation to the domestic fer-
ret reference, comprising a total length of 2.08 Mb, and affecting 
247  genes, which are associated with reproduction, metabolism/
energy conversion, the nervous system and cell cycle processes, 
among other functional categories (Table S6). Genes involved in pla-
centa development and in utero embryogenesis include HSF1, RSPO2 
and DNMT3A. Additionally, we detected NLRP1 and NLRP8, both as-
sociated with pre-implantation development, and highly expressed 
in oocytes. One short insertion was observed in LIX1L, a gene asso-
ciated with anatomical structure morphogenesis. No overrepresen-
tation of GO categories was detected.

In the wolverine genome, no duplications overlapped genic re-
gions. However, 47 deletions spanning a combined length of 229 kb 
are putatively associated with transcript truncation or ablation in 
48 genes. The majority of affected genes are associated with me-
tabolism/energy conversion, development and basic cell cycle pro-
cesses. These include GLUD1, a gene involved in amino-acid-induced 
insulin secretion, also found to be affected by a shorter deletion 
in sable, and NSDHL, a gene regulating cholesterol biosynthesis. 
Additionally, we detected deletions affecting PARVA, a gene asso-
ciated with angiogenesis and smooth muscle cell chemotaxis, and 
DNAJC7, involved in positive regulation of ATPase activity and reg-
ulation of cellular response to heat. We also detected one insertion 
in a gene of unknown function. No overrepresentation of GO cate-
gories was detected.

In the sable genome, we detected 11 duplications spanning a 
combined length of 324 kb, overlapping 16 genes associated with 
sensory perception, development, the cell cycle and the immune 
system. The 130 detected deletions (combined length of 408 kb) 
overlap 125 protein-coding genes associated with reproduction, 
the immune system, development, metabolism, sensory percep-
tion and the cell cycle. Deletions were identified in two genes 
involved in keratinocyte differentiation, PPHLN1, also affected 
in wolverine, and IVL, associated with hair follicle development. 
Additionally, two short insertions were found in NCOA4 and YIPF5, 
genes associated with mitochondrial iron homeostasis and pro-
tein transport, respectively. Gene enrichment analysis revealed 
an overrepresentation of genes in GO categories associated with 
cellular responses to xenobiotic compounds (Table S6A; multiple 
pathways, p < .05).

4  | DISCUSSION

Here, we present a highly contiguous genome for the tayra (Eira 
barbara). Contiguity of the assembly and its gene completeness are 
similar to or higher than those of other carnivoran species using the 
same sequencing approach (Armstrong et al., 2019; Etherington 
et al., 2020; Kim et al., 2020), confirming the utility of linked reads 
for assembly of mammal genomes.

Phylogenomic relationships among the mustelids resulted in 
a tree topology and divergence time estimates in agreement with 
previous studies using fewer loci (Koepfli et al., 2008; Koepfli et al., 
2018; Li et al., 2014; Sato et al., 2012). We estimated the split be-
tween Mustela and Guloninae occurred 11.2 Ma (HPDI 13.1–9.5 Ma), 
followed by the split between Eira and the Gulo–Martes group 7.5 Ma 
(HPDI 9–6.1 Ma), and the split between Gulo and Martes at 5.9 Ma 
(HPDI 7.4–4.7 Ma).

Perhaps unsurprisingly, we observed different historical trends 
in effective population size among the three Guloninae. They dif-
fer markedly in ecology, and it is not unexpected that climatic and 
environmental changes (affecting, for example, habitat, ecologi-
cal competition, prey and pathogens) also differentially impacted 
tayra, wolverine and sable populations. Consistent with previous 
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F IGURE  5 Structural variants detected in gulonine species. (a) Shared and species-specific structural variants detected in wolverine (Gulo 
gulo), tayra (Eira barbara) and sable (Martes zibellina). (b) Functional groups of genes affected by species-specific structural variants in three 
gulonine species (SV types: DEL, DUP, INS). Heatmap scale represents the number of genes. Heatmap cells in grey indicate no observations 
for a given variable
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work (Ekblom et al., 2018), we observed low recent effective pop-
ulation size in wolverines, and a concomitant low genome-wide 
heterozygosity.

Contrary to the findings by Weissensteiner et al. (2020) in cor-
vids, we did not observe a positive relationship between variation at 
the nucleotide level (heterozygous SNPs) and variation at the struc-
tural level (heterozygous SVs) within the gulonine species. The tayra 
displayed the highest nucleotide diversity (1.89 SNPs per kbp), but 
only the second highest amount of heterozygous SVs (2,543, 23.6% 
of the total SVs, Figure S9). The sable had the second highest nucle-
otide diversity (1.44 SNPs per kbp), but the highest number of het-
erozygous SVs (14,823, 59.5% of the total). The wolverine displayed 
the lowest variation for both (0.28 SNPs per kbp, and 153 or 43.1% 
heterozygous SVs in total). It is known that SV calling using short-
read data can miss a large number of SVs (Ebert et al., 2021). The fact 
that we did not detect a positive correlation between variation at the 
nucleotide and structural level, as would be expected if diversity of 
SNPs and SVs are correlated with population size, may result from 
our SV analysis relying on short-read data only. Weissensteiner et al. 
(2020), who did report a positive correlation between SNP and SV 
diversity, performed long-read-based SV typing.

Assessment of variation among genome assemblies of closely 
related species is also strongly impacted by the contiguity and com-
pleteness of the analysed assemblies (Gurevich et al., 2013; Totikov 
et al., 2021). This needs to be accounted for when examining variation 
among discontiguous genome assemblies. Here, the low contiguity of 
the wolverine assembly has probably impacted the number of PSGs 
and gene family expansions/contractions detected. Additionally, the 
use of multiple, short insert size libraries sequenced at low coverage 
for the wolverine (Ekblom et al., 2018) has probably resulted in de-
creased SV detectability. We would thus argue that future compara-
tive genomics studies of Guloninae may benefit from improving the 
contiguity and completeness of the wolverine genome.

4.1  | Adaptive genomic variation

Among positively selected genes, gene family expansions and cod-
ing regions impacted by SVs, we found numerous candidate loci that 
may be associated with species-specific traits in Guloninae.

For example, the tayra has an atypical reproductive strat-
egy among Guloninae, namely aseasonal breeding. Among the 
23 genes associated with reproduction in tayra (Figure 6a), 10 were 
pregnancy-related (two PSGs, two GF, six SVs), which may be linked 
to this species’ reproductive strategy. In the hypercarnivorous wol-
verine, we did not observe any candidate loci associated with car-
bohydrate metabolism (“omnivorous diet,” Figure 6b), while several 
were detected in the omnivorous tayra (one PSG, two GF, three SVs). 
However, we did observe seven genes (six PSGs, one GF) associated 
with body condition in wolverines, which may reflect this species’ 
adaptive response to unfavourable environmental conditions in its 
circumpolar habitat. We discuss candidate loci in the context of the 
three species’ ecology in more detail below.

We note that in two analyses (PSGs and gene family evolution), 
we only considered variation in single-copy orthologues, not in the 
entire gene repertoire of these species. Thus, our results are prob-
ably only an incomplete reflection of the genes involved in these 
traits.

4.2  |  Seasonal breeders in the north palaearctic: 
wolverine and sable

Obligate embryonic diapause or delayed implantation of the blas-
tocyst is a widespread reproductive strategy among seasonally 
breeding mustelids and other carnivorans. For example, wolver-
ines and sables delay implantation for several months (Mead, 1981; 
Svishcheva & Kashtanov, 2011). Conspecific encounters are rare 
(Inman et al., 2012; Kashtanov et al., 2015), and thus induced ovu-
lation during encounters is advantageous (Larivière & Ferguson, 
2003). Previous studies in mink showed that increased levels of 
vascular endothelial growth factors (VEGFs) and their receptors cor-
relate with the implantation process (Lopes et al., 2003). VEGFC, pri-
marily associated with angiogenesis and regulation of permeability 
of blood vessels during embryogenesis, was positively selected in 
sable, suggesting its possible involvement in embryo implantation 
regulation in this species. In wolverine, we detected signals of posi-
tive selection in ANAPC7, a gene involved in progesterone-mediated 
oocyte maturation and release from cell arrest prior to fertilization 
(Papin et al., 2004; Reis et al., 2006), that may have a role in increas-
ing progesterone secretion and renewed embryonic development, 
as observed in skunks and mink (Mead, 1989).

Changes in testicular activity and spermatogenesis also correlate 
strongly with season (mink: Blottner et al., 2006, lynx: Jewgenow 
et al., 2006). In the wolverine, positively selected genes involved 
in spermatogenesis included IZUMO3, essential for gamete fusion 
during fertilization (Ellerman et al., 2009), and RNF212B, critical for 
crossing over in gametes (Reynolds et al., 2013). In sable, candidate 
genes involved in spermatogenesis were UBQLNL and SEPT12, with 
the latter also being duplicated. Furthermore, MEIKIN and CDK2, 
both involved in meiosis, show signals of positive selection and rapid 
evolution through gene family expansion, respectively.

Seasonal breeding in many mammals is largely under photope-
riod regulation, suggesting that the circadian system plays an im-
portant role in this reproductive strategy. FBXL3, associated with 
maintenance of circadian clock oscillation in mammals (Shi et al., 
2013; Siepka et al., 2007), is duplicated in sable.

4.3  | Aseasonal breeder in the neotropic: tayra

In tropical regions, reproduction does not depend on season as en-
vironmental conditions are relatively stable throughout the year 
(McNutt et al., 2019). Tayras are aseasonal breeders with multiple 
oestrous cycles per year (Proulx & Aubry, 2017) and do not exhibit 
embryonic diapause (Poglayen-Neuwall et al., 1989). The tayra 
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represents the most basal taxon of the Guloninae and is an excep-
tion regarding its reproductive strategy.

We detected candidate genes in tayra that are related to preg-
nancy, and thus potentially to aseasonal breeding in this species. 
ETV2 and MUC15, both under positive selection, are associated 
with placental and embryo development, and regulation of implan-
tation (Poon et al., 2014; Singh et al., 2019). SLC38A2, which is 
duplicated in tayra, is upregulated in the pre-implantation period 
(Forde et al., 2014) and during late gestation, maintaining fetal 
growth when maternal growth is restricted by undernutrition 

(Coan et al., 2010). HSD17B10, duplicated in tayra, is highly ex-
pressed in fetal and maternal livers, maintains pregnancy and 
provides protection against excitotoxicity (Hill et al., 2011). 
RBP2, also duplicated in tayra, regulates retinoids during oogen-
esis and embryogenesis, and positively impacts oocyte matura-
tion in mice, cattle, pigs and sheep (Brown et al., 2003; Harney 
et al., 1993). Furthermore, six genes involved in placental devel-
opment, implantation and embryogenesis (HSF1, RSPO2, NLRP1, 
NLRP8, RNASEH2B and DNMT3A) have been affected by partial 
deletions or duplications in tayra, raising the possibility of further 

F IGURE  6 Summary of functional categories of (a) reproduction and (b) metabolism-related genes derived from analyses of positively 
selected genes (PSG), gene family expansion (GF) and structural variation (SV). N represents the total number of detected genes. Vector 
graphics of species are created based on royalty-free images (Source: Shutterstock)
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modification (e.g., functional or regulatory) of these pregnancy-
related genes. Partial deletions or duplications overlapping one or 
more exons in protein-coding genes impact RNA splicing patterns 
and subsequently protein functions. They lead to production of 
protein isoforms with different structural and functional proper-
ties, or modulate mRNA translational efficiency, or lastly, lead to 
pseudogenization of a gene (Wang et al., 2015; Xing & Lee, 2006).

4.4  |  Resource availability in the northern 
Palaearctic: wolverine and sable

Surviving the winter is challenging for nonhibernating northern 
palearctic species and requires specific mechanisms to cope with 
adverse temperatures and food scarcity. Thus, efficient storage and 
mobilization of fat is very important in low-productivity environ-
ments (Inman et al., 2012). Three PSGs detected in the wolverine 
are involved in formation of adipose tissue, MTPAP, OIP5 and ZADH2 
(Han et al., 2012; Inoue et al., 2014; Yu et al., 2013) and selective 
fatty acid mobilization stimulated by fasting periods (Inman et al., 
2012; Krebs et al., 2004), as observed in mink (Nieminen et al., 2006) 
and raccoon dog (Mustonen et al., 2007).

One of the responses to prolonged periods of nutrient depri-
vation and extreme environmental conditions is suppressed bone 
resorption and formation (Lennox & Goodship, 2008; McGee-
Lawrence et al., 2015). While the control of autophagy is import-
ant for the survival of blastocysts during delayed implantation 
(Lee et al., 2011; Lim & Song, 2014), it is also very important in 
maintaining bone homeostasis (DeSelm et al., 2011; Montaseri 
et al., 2020). It is thus of note that genes involved in bone mass 
regulation, resorption (PPP1R18, TMEM38B) and autophagy (NBR1) 
are under positive selection in wolverines. We also detected a du-
plication of the muscle growth-regulating gene MTM1. While a 
lack of MTM1 will lead to muscle hypotrophy through unbalanced 
autophagy in humans and mice (Al-Qusairi et al., 2013), a gene 
duplication may facilitate muscle growth or counteract muscle 
reduction.

In sable, fatty acids are mobilized from fat deposits (Nieminen 
& Mustonen, 2007), and we observed duplications of ASB6, 
SLC25A10, RNF186 and BORCS6, which regulate fat storage and 
response to nutrient availability (Mizuarai et al., 2005; Okamoto 
et al., 2020; Schweitzer et al., 2015; Wilcox et al., 2004). The 
partial deletions we detected in APOD, PDHB, LDLR and CERS5, 
all associated with lipoprotein metabolism (Carmo et al., 2009; 
Gosejacob et al., 2016; Serão et al., 2011; Tavori et al., 2015), in-
dicate modification of genes in pathways associated with energy 
conservation in this species.

We observed partial deletions in DNAJC7 in both sable and 
wolverine, indicating independent modification of this thermoreg-
ulation gene (Sonna et al., 2002) in gulonines inhabiting colder envi-
ronments. Another gene in which we detected independent partial 
deletions in sable and wolverine is GLUD1, which regulates insulin 
homeostasis (Fahien & Macdonald, 2011). Modification of this gene 

may impact “adaptive fasting” in these species, an adaptation to pro-
longed periods of nutrient deprivation observed in several carniv-
orans (Martinez & Ortiz, 2017; Viscarra et al., 2013).

Sables are famous for their dense fur, and we observed two du-
plications that may be linked to this trait: TCHHL1, involved in hair 
morphogenesis (Wu et al., 2011), and CDC42, required for differenti-
ation of hair follicle progenitor cells (Wu et al., 2006).

4.5  |  Resource availability in the Neotropics: tayra

Tayras exploit diverse food sources and experience relatively sta-
ble resource availability all year round (Zhou et al., 2011). Shifts 
in dietary preferences have been linked to positive selection in 
single genes (Kosiol et al., 2008) and to copy number variation in 
metabolism-related gene families in mammals (Hecker et al., 2019; 
Rinker et al., 2019). In tayra, we found candidate genes associated 
with fructose metabolism, which may be associated with the ad-
dition of fruits and honey to this species’ diet. For example, UOX, 
involved in regulation of purine metabolism and conversion of 
fructose to fat (Johnson & Andrews, 2010), and DERA, associated 
with catabolic processes, were both under positive selection in 
tayra, and part of significantly overrepresented GO categories in 
this species.

High rates of lineage-specific variation in gene family size, espe-
cially those families involved in immune response or detoxification 
of xenobiotic molecules (Thomas, 2007), are probably associated 
with environmental changes during speciation (Lynch & Conery, 
2000; Zhang, 2003). We found a duplication of N6AMT1, which is 
associated with conversion of an arsenic metabolite, monomethylar-
sonous acid, to the less toxic dimethylarsonic acid (Ren et al., 2011). 
Arsenic with geothermal origins (e.g., volcanic activity) is common in 
Latin America, where it represents a severe threat to public health 
and the livelihoods of millions of people, with chronic exposure lead-
ing to various diseases (Morales-Simfors et al., 2020; Zhang et al., 
2015). This duplication may represent an adaptation of tayra to this 
xenobiotic compound.

Finally, we also found candidate genes associated with lens fibre 
formation and retinal vascularization in tayra, including gene expan-
sions of ANKRD13A (Avellino et al., 2013) and RBP2 (D’Ambrosio 
et al., 2011). It has been suggested that tayras detect prey primar-
ily by smell, as their eyesight has been described as being relatively 
poor (Defler, 1980; Wilson & Mittermeier, 2009). However, this has 
not been experimentally tested, and it is somewhat contradictory to 
the observed behaviour of caching of unripe but mature stages of 
both native and non-native fruits (Soley & Alvarado-Díaz, 2011). As 
tayras inhabit (sub)tropical forests, where mammals rely on vision, 
alongside olfaction, to forage and avoid potentially poisonous prey 
(Alatalo & Mappes, 1996; Nelson et al., 2011; Webb et al., 2008), 
we suggest that “poor” eyesight would not be advantageous, as this 
would impede recognition of noxious prey displaying conspicuous 
coloration (Blount et al., 2009). It may thus be appropriate to revisit 
tayras’ visual acuity.
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4.6  |  Conclusion and future outlook

Mustelids are a remarkable example of adaptive radiation, and we 
show how positively selected loci, changes in gene family size and 
SVs have shaped genomes in this diverse taxonomic group. We 
demonstrated that, in particular, the latter two sources of varia-
tion contribute many loci potentially involved in adaptive genomic 
evolution. In the past, these types of genomic variation were often 
not considered in comparative genomic studies of nonmodel spe-
cies, even though they encompass more nucleotides than SNPs. To 
fully explore the impact of different types of genomic variants on 
phenotypic variation, gene expression data would be necessary. 
Comparative analysis of gene expression patterns and elucidating 
protein interactions and pathways is a domain of functional genom-
ics, and was unfortunately outside the scope of our study.

The mustelid subfamily Guloninae includes three monotypic 
genera (Eira, Gulo and Pekania) as well as the martens (eight Martes 
species). A feasible short-term goal regarding future genomics 
studies of this subfamily is the generation of reference genomes 
for all remaining Guloninae, which is a goal of the Martes Genome 
Consortium, launched in 2018. Additionally, existing reference ge-
nomes may be improved in contiguity using, for example, Hi-C ap-
proaches (e.g., Dudchenko et al., 2017; DNAzoo.org). This will be a 
strong foundation for both inter- and intraspecific genomics studies 
of Guloninae, which includes species of conservation concern (wol-
verine and Nilgiri martens: “vulnerable” on the IUCN red list), spe-
cies that hybridize in nature (e.g., European pine martens and sables; 
Davison et al., 2001; Kassal & Sidorov, 2013), and species character-
ized by convergent evolution of ecological adaptations (e.g., delayed 
implantation, seasonal moulting, sociality, scent glands).
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