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Abstract. With the global increase in experimental data artifacts, har-
nessing them in a unified fashion leads to a major stumbling block -
bad metadata. To bridge this gap, this work presents a Natural Lan-
guage Processing (NLP) informed application, called FAIRMetaText,
that compares metadata. Specifically, FAIRMetaText analyzes the natu-
ral language descriptions of metadata and provides a mathematical sim-
ilarity measure between two terms. This measure can then be utilized
for analyzing varied metadata, by suggesting terms for compliance or
grouping similar terms for identification of replaceable terms. The effi-
cacy of the algorithm is presented qualitatively and quantitatively on
publicly available research artifacts and demonstrates large gains across
metadata related tasks through an in-depth study of a wide variety of
Large Language Models (LLMs). This software can drastically reduce
the human effort in sifting through various natural language metadata
while employing several experimental datasets on the same topic.
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1 Introduction

Metadata are the description of data that scientists, in turn, use for analysis
and other complex downstream tasks. However, if the metadata are not of good
quality, it can hamper retrieval, querying, analysing and harnessing the pub-
licly available digital research artifacts. This problem has been often cited in
the literature ([18, 4]) and was the basis of the keynote talk in a previous set of
proceedings of this workshop [10]. This formidable bottleneck cripples the use
of digital artifacts (including experimental datasets, scientific data descriptions,
ontologies etc.) in an interoperable manner. Metadata often have representa-
tional heterogeneity - that is different terms refer to the same value, which often
do not conform to specifications. The datasets are simply not ‘AI-ready’ if the
metadata are not good.

In a bid to enhance the sharing of scientific data, the FAIR (Findable, Ac-
cessible, Interoperable and Reproducible) principles [26] were introduced. The
purpose was to enable reuse and verify existing scientific data. Though such
principles are exemplary for future scientific data artifacts, the mere presence
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Fig. 1. Real World Metadata - The red boxes bring attention to messy metadata in
real records denoted by black boxes.

of such guidelines does little to unify existing artifacts across seemingly diverse
but semantically similar resources

There is a long reported difficulty in finding datasets pertaining to a specific
format or topic [18]. Our group has been consistently working towards making
research artifacts FAIR, especially in the arena of processing metadata. First,
an in-depth empirical analysis was done that conclusively determined that the
quality of metadata is poor in digital research artefacts [8]. In this process, a
robust software tool was developed - a FAIR Workbench ([9], [19]) that can
recommend cleaning up a research artefact before submitting it.

FAIRMetaText was designed with principles deriving from an earlier research
foray by our lab to incorporate NLP for automating metadata clean-up. The al-
gorithm [8] used the NLP technology available then and performed metadata
analysis in a semi-automated manner. The method handled spelling mistakes
with difficulty and circumvented it by a syntactic similarity function. With the
advent of Large Language Models (LLMs), NLP practitioners are able to make
better strides and provide a completely automated approach, across many do-
mains. Hence, in this work, we endeavor to upgrade our previous algorithm by
(a) using improved NLP models and (b) reducing human intervention. In this
work, an attempt to automatically address some of the metadata issues of web
artifacts has been made with the use of the state-of-the-art Natural Language
Processing (NLP) tools for the existing metadata.
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Experimental metadata are made of reporting guidelines that specify the
name of metadata and ontologies that provide possible values. For example,
while observing diseased samples, sex of the patient has been referred to variously
as ‘F’, ‘female’ and ‘w’. Similarly, the disease is sometimes altogether missing,
mentioned in abbreviations such as ‘SLE’ or presented in multi-lingual terms.
In the previous examples, the field names are ‘sex’ and ‘disease’ and the field
values have been described. As seen in Figure 1, ‘disease’ is variously described
as ‘disease’ and ‘disease name’. FAIRMetaText can handle both field names and
values.

Since the previous version of this algorithm differed significantly in its mech-
anism and was semi-automated, it has not been included in the empirical results.
For the evaluation, both syntactic (spelling and phrase) and semantic similarities
(meaning and context) of metadata are explored.

FAIRMetaText converts metadata into vectors based on the available large
language models. These vectors can then be used in a wide variety of application.
For our empirical study, there will be an exploration of two methods - retrieval
and clustering. The experiments demonstrate that retrieval is useful for metadata
compliance and that clustering is useful for metadata disambiguation through
experiments. For this, both real and simulated datasets have been used. Through
this tool, the authors propose that precious human effort applied to clean up
metadata can be directed towards more useful endeavors.

2 Related Work

Metadata issues had been addressed time and again in the past ([18, 21, 2, 3]).
The FAIR [26] principles suggest that metadata must be Findable, Accessible,
Interoperable and Reusable. This work addresses a way to use LLMs [7] to make
data FAIR.

There has been a lot of work in converting Knowledge Graphs, in their en-
tirety, into vectorial embeddings for further processing [25]. This approach helps
in question answering and other related tasks for structured data. This method
is only useful where the metadata are specified perfectly. In this work, the focus
is on developing embeddings for the NLP descriptions, rather than RDF triples
or any other form of structural definitions. However, the presented algorithm is
simply a text-based algorithm that can be applied across a wide variety of web
artifacts.

Metadata alignment where manual mappings such as SSSOM [16] are used to
bridge the gap between web resources, is a popular approach in the community.
However, our work is designed to push the limits of automatically cleaning up
metadata using state of the art NLP techniques.

Multiple research directions have been undertaken by our lab to enhance
metadata authoring and recommendations ([6, 5, 15]). These methods harness
advancements in machine learning and semantic technologies. To ensure the
quality of metadata being submitted, [19], the FAIRware workbench highlights
errors in submitted data with respect to the metadata specifications. The work-
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bench ascertains and tests the quality of new scientific research being submitted.
FAIRMetaText is designed with the existing metadata in mind by exploiting
LLMs. There has been less work in this space of using NLP. As mentioned be-
fore, the earlier version [8] mapped possible candidates syntactically through edit
distance and clustered semantic inputs using primitive word embeddings such as
word2vec [17] and GloVe [22]. The method also involved a human in the loop.
FAIRMetaText combines all the automated steps using the rich embeddings pro-
vided by the LLMs vis-a-vis the static word embeddings explored earlier. Hence,
our current method is more robust, powerful and completely automated.

3 Large Language Models

Text is converted into embeddings, that is a piece of text is embedded in a vec-
tor space. Early näıve methods of embedding text into vector spaces included
converting the word into a one-hot vector. Then, static word embeddings were
in vogue where a single word is converted into a vector using a lookup [17]. This
model fails when an unknown word is presented or when contexts change the
meanings of words. The predecessor of this work [8], relied on a mix of syntactic
analysis followed by the use of such static embeddings. Now, LLMs use com-
plex text embeddings that incorporate context and can handle unknown words.
The evolution of embeddings along with their corresponding visualizations is
presented in Table 1.

Large Language Models (LLMs) have taken up the world of NLP by storm
[7]. LLMs are trained over huge swathes of data (GPT3 uses a dataset of nearly
380 terabytes of data! [1]). They are instances of self-supervised learning where
the data in itself is enough to train the systems without costly annotation. Lever-
aging the freely available text online, large language models identify patterns in
text and have been proven to be successful in generating text. Under the hood
of this generation process is the presence of word embeddings, or rather text
embeddings, that are learned as a by-product. Text embeddings convert a piece
of text to a vector such that similar pieces of text have vectors that are close to
each other in distance. These models can be used on unseen data without further
training for a particular application, which is known as zero-shot learning. Thus,
it is a potent tool, in low resource data or data where annotation is hard, that
has been harnessed for this application. Popular generic LLMs such as BERT,
RoBERTa, CharBERT and PhraseBert have been used along with biologically
specific LLMs such a BioMedLM and BioBERT have been tested. The last LLM
used is GPT3.5. In this work, the embeddings 1 provided by OpenAI are plugged
in directly, as they are more useful for our applications.

4 Applications of Embeddings to Metadata

The following properties of embeddings have been exploited to process metadata
(a) Structural Similarity: Text embeddings that have similar structure (such

1 https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
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Table 1. Evolution of Word Embeddings - The figures are word embeddings represen-
tation. The axes are of large vector dimensions projected on to two dimensions, hence
the dimensions hold no meaning and are unlabelled

Consider a dictionary of five words - ‘the’, ‘a’, ‘Greece’, ‘metadata’, ‘data’ and the
corresponding vectors vthe, va, vGreece, vmetadata, vdata.

One-hot Embeddings: Text is con-
verted into unit vectors that are the
length of the vocabulary. This leads to
sparse vectors that are equidistant. All
words are equidistant and hence does
not capture semantics of similar words.

Frequency-based Embeddings: In-
stead of one-hot embeddings, the
weight of the word is offset by their fre-
quency in their document and the gen-
eral frequency across documents. This
captures some aspects of importance
of words in a document but still does
not capture semantics completely. The
vectors are still high-dimensional and
sparse.

Distributed Embeddings: Using
neural networks and large corpus of
data, in this method of building dis-
tributed embeddings, the context of
words are used to learn dense vectorial
representations. This method produces
relatively denser embeddings of length
3̃00. These embeddings can capture se-
mantic relationships. In our example,
the words ‘data’ and ‘metadata’ are
closer. However, these embeddings can-
not handle out-of-vocabulary words.

Transformer Embeddings: Trans-
former based models obtain denser rep-
resentations based on larger models
and more data. These embeddings can
handle out-of-vocabulary words as the
vector is constructed from representa-
tions of sub-words rather than words.
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as spelling or character) are closer together in the vector space; and (b) Seman-
tic Similarity: Text snippets that have similar meaning are closer together in
vector space.

4.1 Retrieval for Metadata Compliance

Given a metadata term w and a permissible list of ontological terms D =
{d1, d2, ..., dk}, if w /∈ D, then w is said to be non-compliant. For compliance,
the task is to retrieve d ∈ D such that the cosine similarity between the vector
forms generated by model m to obtain vec(d) and vec(w), is maximum ∀dinD.
For evaluation, a check against a specified ground truth of which ontological
term dtrue ∈ D matches is performed. Then, accuracy is calculated based on the
number of matches across n data points

∑
d = dtrue/n.

4.2 Clustering for Metadata Unification

Given a set of metadata terms {t1, t2, ..., tn} ∈ T , it is converted into a set of
vectors {v1, v2, ..., vn} ∈ V. Then, the popular clustering algorithm k-means [14]
is employed to group them into clusters C. For evaluation, the purity metric
is used (by labeling each cluster with a majority vote) to measure against a
set of cluster labels that were not used as part of the algorithm. Assume that
the true cluster assignments C⊔∇⊓⌉ are known beforehand for these terms. For
each cluster c ∈ C, determine the majority label of the data points according to
C⊔∇⊓⌉ Then, measure the fraction of data-points that adhere to this labelling. the
experiments also involve qualitative examination of the clusters by projecting the
vectors onto a two dimensional space using visualisation algorithms like t-SNE
[13].

5 Methods

In this section, the methods of evaluating two tasks are presented - (i) Metadata
compliance and (ii) Metadata Unification. The datasets and evaluation metrics
are described along with the performance of FAIRMetaText on these tasks.

5.1 Retrieval for Metadata Compliance

For this task, three datasets have been chosen. To demonstrate the generalis-
ability of our approach, two web artifacts - the Adult and Mushroom datasets
are explored. These datasets were chosen from the UC Irvine Machine Learning
Repository [4] as they had a large number of text categorical variables and can
be easily extrapolated to any digital experimental data. The third dataset is the
authors’ own in-house expert-curated dataset on tissue samples. The dataset val-
ues are derived from HuBMAP specifications [23] and expert introduced errors.
These datasets have a large number of categorical values. Also, these experiments
involve only the dataset description in text and not the actual samples.
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Algorithm 1 Metadata Analysis

1: procedure GetVectors(d, D, m)
2: V ← ∅
3: for d ∈ D do ▷ For every word d in dataset D
4: vd ← m(d) ▷ Get vector generated by m for d
5: V ← V ∪ vd
6: return V
7: procedure MetadataCompliance(word w, accepted terms D, model m)
8: sim← 0
9: V ← GetVectors(d, D, m)
10: for v in V do
11: simw ← CosineSimilarity(w, v)
12: simd ← ∅
13: if thensimw > sim
14: sim← simw

15: simd ← d ▷ Storing the word d corresponding to v

16: return simd

17: procedure MetadataUnification(metadata terms T , model m, k)
18: V ← GetVectors(d, D, m)
19: clusters ← KMeans(V , k)
20: return clustersd ▷ Clusters of words corresponding to clusters

With the Adult and Mushroom datasets, the dataset specifications are per-
turbed by single character substitutions using a publicly available NLP aug-
menter [12]. The NLP augmenter is a piece of software that introduces errors
into words based on user requirement. Hence, this process generated the two new
datasets after adding single character errors. These simulated datasets are used
for evaluation. A single character perturbation can be easily rectified using Lev-
enshtein distance [11]. However, with no training, this experiment demonstrates
the efficacy of this method on many other facets through varied experiments.
This experiment, as demonstrated in Table 2, measures the ability of the algo-
rithm to identify syntactic similarities.

With the Tissue Sample dataset, users give a lot of semantic equivalences
which are syntactically different as the wrong input. This phenomenon has been
visualised in Figure 2. The input was two sets of both user input and meta-
data specification. The vectors are of size 784 and to visualise them, they were
projected onto two axes using t-SNE [13]. The clustering algorithm correctly
identified the diversity in text. In the figure, in the left bottom corner, the meta-
data specification ‘OCT embedded’ is closest to the user term optimal cutting
temperature. These semantic details are hard to capture in traditional metadata
tools.

The accuracy results for two settings - with and without definition for the
expert curated dataset is presented in Table 3. Without definition, the spec-
ification terms D are simply converted into vectors and compared against the
query term w. In the other setting, the specification terms are augmented by con-
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Fig. 2. Visualising Semantic Similarity of Embeddings: The vectorial representations
of seven terms have been projected onto two dimensions and presented here. Given two
types of terms - domain specific terms and a set of Boolean terms, the clustering algo-
rithm correctly identifies the semantic categories. Furthermore, the full form ‘optimal
cutting temperature’ is close to the phrase ‘OCT embedded’.

catenating their definitions as well. Hence, D will become {d1 + defn(d1), d2 +
defn(d2), ..., dk + defn(dk)}. The NLP models will output a vector for these
new chunks of text of size 784, that can then be used for the accuracy analysis
reported in Table 3. The number of samples was small (62), again a highlight
of the difficulty of low-resource datasets.

Table 2. Metadata Compliance Suggestion
on Simulated Data: Accuracy of retrieval in
percentage, dataset size in Parenthesis

Model Adult Mushroom

[808] [2222]

BERT 46.71 45.19

ROBERTA 56.14 68.09

CharBERT 43.00 47.14

PhraseBERT 47.71 51.09

GPT 87.78 86.95

Table 3. Metadata Compliance on
Real Data: Accuracy of retrieval in per-
centage - with and without the use of
definition of metadata

Model No Defn With Defn

BERT 58.70 45.65
ROBERTA 52.17 45.65
CharBERT 52.17 41.30
PhraseBERT 54.35 54.34
BioBERT 58.69 56.52
BioMedLM 47.82 45.65

GPT 63.04 67.39

Among all the LLMs, the GPT embeddings outperform with a large margin.
The improved results with definitions suggests that with good representation
of meanings of categorical specifications, text algorithms can do better. This
observation is a pertinent point for the collection of metadata in future.
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5.2 Clustering for MetaData Unification

For these experiments, the sources include the BioSample [24] resource which is a
database maintained by the U.S. National Center for Biotechnology Information
(NCBI) that provides descriptions and metadata for biological samples used in
research. In BioSample, there is a list of attributes with their synonyms that
can be used for simulating the clustering task. As already mentioned, clustering
the vectors will lead us to discover groups of similarly meaning metadata terms.
Purity will be used to measure the clustering. Since the knowledge of synonyms is
known beforehand, one can evaluate quality of the clustering algorithm that had
been presented with unlabelled metadata terms. In Table 4, the experiments
have been presented by the outcome of the k-means clustering algorithm on
BioSample synonym dataset at k = 100, 200 and 500 on a set of 1500 terms.

Table 4. Metadata Unification: Purity of clustering metadata terms and their syn-
onyms using k means for varying k

Model Purity (k=100) Purity (k=200) Purity (k=500)
BERT 59.36 59.40 57.18
ROBERTA 58.83 58.70 57.90
CharBERT 61.01 61.54 60.82
PhraseBERT 64.99 64.46 61.48
BioBERT 58.90 59.30 58.30
BioMedLM 59.03 59.03 58.10
GPT 79.48 75.51 72.99

Qualitatively, the NCBI’s GEO (U.S. National Center for Biotechnology In-
formation’s Gene Expression Omnibus) database has been used to examine clus-
ters more closely. GEO is a public database that provides access to a large col-
lection of gene expression data. The GEO database includes data from a variety
of platforms, such as micro-arrays, next-generation sequencing, and gene expres-
sion profiling assays. The text descriptions in the ’characteristics’ column of all
tuberculosis samples were extracted and clustered. This process was done using
the R package GEOMetaDB [27]. With a similar approach of projection onto
two dimensions using t-SNE, the findings are presented in Figure 3. As can be
judged from the images, similar terms lie close to each other in the vector space.
Given below in Figure 4 is another experiment where all ‘age’ related terms were
clustered. These experiments describe how text information within metadata can
be harnessed for practical applications of compliance and unification.

6 Discussion

Metadata are the often underappreciated aspects of experimental datasets. This
approach is a roadblock to efficient usage of scientific artifacts. While one can
postulate theories to improve the collection of such web artifacts in future, there
is a pressing need to grapple with the existing huge mass of poor quality of
metadata [21].
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Fig. 3. Clustering of Personal vs Diagnostic Entities - Two dimensional projection
of embedding vectors of metadata fields and values. Red terms correctly clustered
diagnostic metadata and purple terms clustered patient metadata. The axes are a
projection of large vector dimensions on to a 2D space and hence are unlabelled.

This work described FAIRMetaText which can help in this requirement.
FAIRMetaText is an NLP based tool that can analyze the textual descriptions
of metadata and help immensely in cleaning up the low quality data. Scientists
spend a lot of time trying to look up relevant pieces of information on datasets
that are simply hard to access. FAIRMetaText can cut their searching time dras-
tically. Since LLMs encode complex semantic information, they can be leveraged
to give text embeddings that can model metadata with no user/domain specific
training. These embeddings were shown to capture both syntactic and semantic
similarity of metadata. This study was done with an empirical analysis with dif-
ferent LLMs. Surprisingly, the generic GPT model was found to perform better
than models trained especially for bio-medicine in the case of medical meta-
data. One possible surmise for this is that this is because of the much larger
data these generic models have been trained on, that can account for vagaries
in form, spelling and semantics.

A natural question at this juncture is whether doing away with FAIRMeta-
Text and directly employing ChatGPT can help. ChatGPT has a strict text-to-
text interface (Fig 5). FAIRMetaText goes under the hood and employs em-
beddings in a way suitable for metadata analysis. For example, clustering over
20000 terms would be tedious. Hence, FAIRMetaText builds on top of GPT
embeddings and is tailored for metadata clean-up. Using FAIRMetaText, (a)
one can monitor the quality of data and metadata of research artefacts being
submitted online and (b) analyze and compare existing metadata to make arte-
facts inter-operable. This tool can be used on any metadata term - both field
names and field values. The prototype will be released soon. The requirement for
FAIRMetaText to enforce metadata compliance is a set of accessible metadata
specifications that can be used to model the metadata terms. For metadata uni-
fication, the text descriptions of metadata must be machine accessible - easily
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Fig. 4. Clustering of ‘Age’ Related Terms - Two dimensional projection of embedding
vectors of metadata fields and values relating to ‘age’. Different configurations of the
term ‘age’ are clustered into the same bin - whether they are ‘age = [X]y’ or ‘age in
years: [X]’. The axes are a projection of large vector dimensions on to a 2D space and
hence are unlabelled.

Fig. 5. ChatGPT and Metadata Compliance

downloadable and easy to parse. In future iterations of this product, FAIRMeta-
Text will involve parsing various formats such as ‘json’ and ‘xml’ and ‘text’ files
for generalised processing.

When this model was tested on the real data requirements, the GPT model,
though best, could only provide a retrieval accuracy of 60 percent. This suggests
that further training or finetuning of these LLMs for the purpose of metadata
analysis could potentially improve the performance. User data and information
of metadata non-compliance can also be logged in future to enhance the model.
The experiments show that, despite the shortcomings, there is an enormous
potential to be harnessed as the formidable results from generic models suggest.
Unlike traditional deep learning models that require large amounts of data, just
a fraction of that size is enough for fine-tuning or enhancing the embeddings
with domain-specific information. This investigation leads to a conclusion that
indeed, FAIRMetaText is a significant and promising direction for automatically
making varied existing messy metadata FAIR and for specifying FAIR compliant
metadata suggestions for future experimental datasets.
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7 Conclusion

To address concerns of the quality of existing metadata, the authors presented
an automatic metadata analysis and improvement tool. In accordance with the
FAIR principles, the power of Large Language Models was used for automatically
analyzing metadata. The current text embedding methods fare better than the
erstwhile word embeddings [8] due to the following properties, namely identifying
both syntactic and semantic properties congruently and the ability to handle out
of vocabulary texts. The efficacy of our algorithms were demonstrated for meta-
data compliance and unification. These experiments were performed on both
simulated and real datasets . In future work, the authors look to analyse actual
user logs for metadata compliance and develop annotated datasets for evalu-
ating the algorithms better. Fine-tuning LLMs with domain-specific data has
been shown to improve performance in the literature [7]. In this work, commer-
cial GPT embeddings have been used. An exploration of open-source versions of
the same forms the basis of the next increment of this tool.
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