
8-Hydroxy-2′′′′-deoxyguanosine
as a marker of oxidative DNA damage
related to occupational
and environmental exposures

Introduction

Reactive oxygen species (ROS) are ubiquitous in living aerobic organisms. They

result either from the cells’ metabolism or from the action of exogenous physical sources

(e.g., ionizing radiation, UVA) and/or chemical compounds. Oxygen free radicals can

induce a variety of damage to DNA, including DNA single and double strand breaks,

base modifications and abasic sites (Cadet et al. 1997; Epe 1995; Dizdaroglu 1991), and

they are thought to be involved in the mechanisms of ageing and in carcinogenesis

(Finkel and Holbrook 2000; Beckman and Ames 1997; Wiseman et al. 1995; Feig et al.

1994). Various agents are effective in the hydroxylation of the deoxyguanosine residue

in DNA. This seems to proceed via generation of an oxygen radical, such as the

hydroxyl radical (Kasai and Nishimura 1986), resulting in the formation of 8-hydroxy-

2′-deoxyguanosine (8-OHdG) or 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Evans

et al. 2004). 8-OHdG is by far the most studied oxidative DNA lesion and has gained

much attention because of its mutagenic potential (Grollman and Moriya 1993). The

oxidized guanine residue 8-oxoguanine can pair both in Watson-Crick mode with

cytosine and in Hoogsteen mode with adenine. The latter yields G:C→T:A transversions

in bacteria and human cells (Moriya and Grollman 1993; Le Page et al. 1999). As shown

in cells of patients with Cockayne syndrome, deficiency in nucleotide excision repair

leads to a low level of 8-OHdG repair and a high frequency of G:C→T:A transversions

at the site of the lesion (Le Page et al. 1997, 1999). In addition, these transversions are

frequent in human cancers and are especially prevalent in the mutational spectrum of the

tumor suppressor gene p53 (Hollstein et al. 1996). This points to the significance of

8-OHdG as an endogenous mutagen and to its likely role in the process of carcinogenesis.

The cellular defense system against 8-OHdG mutagenesis involves base excision

repair, nucleotide excision repair, mismatch repair and prevention of incorporation

(Cooke et al. 2000). Base excision repair via DNA glycosylase (hOGG1) represents the

main mechanism of protecting the integrity of the human DNA with respect to 8-OHdG.

The activity of hOGG1 is responsible for the excision of 8-oxoguanine and the

structurally related lesion 2,6-diamino,4-hydroxy-5-formamidopyrimidine, a hydrolytic

ring-opening product of guanine. Some findings indicate that the inactivation of hOGG1

plays a role in the multistage process of carcinogenesis. The human OGG1 gene is

located on the short arm of chromosome 3 (3p26), a region frequently lost in various

types of cancer, especially in small-cell lung cancers where loss of heterozygosity in

nearly 100% of the cases can be observed (Naylor et al. 1987; Hibi et al. 1992). Loss of

one hOGG1 allele may lead to a moderate generation of 8-OHdG in DNA. However,
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loss of both alleles would abrogate hOGG1 activity imposing an increased risk of

mutagenicy on the cell due to the imbalance of oxidative burden and accumulation of

8-OHdG in DNA. In healthy human cells an average oxidation rate of about 300–1,000

guanine bases per cell and day has been assessed (Loft and Poulsen 1996). Significantly

higher levels of 8-OHdG have been found in tumor tissues of lung cancer patients as

compared to apparently normal tissue (Olinski et al. 1992; Jaruga et al. 1994).

The formation of 8-OHdG in DNA and its urinary excretion have been frequently

measured to assess oxidative stress in humans. This paper will review the use of

8-OHdG as a marker of oxidative DNA damage in occupational and environmental

exposure studies, and discuss different experimental approaches.

Methods for the measurement of 8-OHdG

The most commonly measured markers of oxidative DNA damage used in human

biomonitoring studies are 8-OHdG in leukocytic DNA and the excretion of 8-OHdG into

urine.

Determination of 8-OHdG in DNA

High performance liquid chromatography (HPLC)
with electrochemical (EC) detection

A method for the detection of 8-OHdG by HPLC-EC was introduced by Floyd et al.

(1986). This technique shows subpicomolar sensitivity and has been widely applied in

the last decade with various modifications. In general, the protocol involves enzymic

hydrolysis to break down the DNA, separation on C18 columns and EC detection

(amperometric or coulometric) of 8-OHdG. Usually the result is expressed in terms of

detected 8-OHdG per amount of undamaged dG (8-OHdG/105 dG). Incomplete

enzymatic release of 8-OHdG from DNA has been considered to cause an

underestimation of the actual amount of 8-OHdG. However, there is evidence that

8-OHdG does not block the activity of nuclease P1 (Douki et al. 1997). The isolation and

enzymatic digestion of DNA have been also discussed as possible sources of an

artifactual oxidation of the DNA. The introduction of a chaotropic NaI method of DNA

isolation and the use of desferal during homogenization resulted in a significant

reduction of the 8-OHdG baseline levels in control cells (Helbock et al. 1998). In

addition, the use of small quantities of DNA (< 20 µg) may be critical for the formation

of artifacts. To minimize this effect, the hydrolysis of > 100 µg of DNA per sample is

considered to be adequate (Helbock et al. 1998). Using a cold (0 °C) high salt guanidine

thiocyanate DNA extraction technique with catalase and 2,2,6,6-tetramethylpiperidine-

N-oxyl as antioxidants during the workup procedure, Hofer and Möller (2002)

demonstrated a background level of 0.074 ± 0.027 8-OHdG/105 dG in human

lymphocytes, which is probably the lowest value obtained yet by HPLC-EC.
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Gas chromatography with mass spectrometry

Gas chromatography with mass spectrometry (GC-MS) is a highly specific, sensitive

and versatile technique for the quantitative analysis of individual products of oxidized

DNA bases including 8-oxoguanine (Dizdaroglu 1993). However, one drawback of this

method is the possible oxidation of guanine during derivatization of 8-oxoguanine by

trimethylsilylation prior to GC-MS (Hamberg and Zhang 1995; Ravanat et al. 1995). In

general, the values of 8-oxoguanine obtained by GC-MS are 10- to 50-fold higher than

those measured by HPLC-EC (Halliwell and Dizdaroglu 1992). The artifactual oxidation

is not restricted to guanine alone, but applies also to thymine, cytosine and adenine

(Douki et al. 1996), which questions the reliability of most published data based on the

use of GC-MS. Prepurification of 8-oxoguanine by HPLC prior to the silylation reaction

or derivatization at room temperature have been recommended to reduce artifactual

formation of 8-oxoguanine (Ravanat et al. 1995; Hamberg and Zhang 1995).

32P-postlabeling

32P-postlabeling has been used to show that ROS are able to induce bulky adducts in

vitro by direct DNA oxidation (Randerath et al. 1991). Major efforts have been made

since then to develop 32P-postlabeling assays for the sensitive detection of 8-OHdG.

These methods are based on the enzymatic radioactive post-labeling of nucleoside

3′-monophosphates (Cadet et al. 1992; Povey et al. 1993). With 32P-postlabeling, how-

ever, the samples are exposed to ionizing radiation which may cause oxidation of

deoxyguanosine (dG) to 8-OHdG (Schuler et al. 1997). To reduce the risk of artifactual

production of 8-OHdG during workup, it is essential to separate 8-OHdG from dG prior

to postlabeling (Podmore et al. 1997; Möller et al. 1998; Zeisig et al. 1999). Recently, an

improved 32P-postlabeling assay for the determination of 8-OHdG in tissue DNA has

been developed using a new micropreparative TLC procedure for the enrichment of

8-OHdGp prior to 32P-labeling (Gupta and Arif 2001). This method shows a high

sensitivity (< 1 8OHdG/107 dG) and needs only small amounts of DNA (1–10 µg).

Methods based on the use of formamidopyrimidine
DNA N-glycosylase

Formamidopyrimidine DNA N-glycosylase (FPG) removes 8-OHGua, leaving AP

sites that are converted into DNA strand breaks by the associated AP endonuclease

activity. Therefore, the use of this lesion-specific enzyme allows for the introduction of

extra strand breaks at sites of oxidative DNA damage. This approach has been

incorporated into different methods: the single cell gel-electrophoresis (comet assay)

(Dusinska and Collins 1996), the alkaline elution technique (Epe and Hegler 1994), and

alkaline unwinding (Hartwig et al. 1996). These assays do not need DNA extraction and

seem to be less prone to artifacts. The background levels are around 0.5 oxoguanines per

106 guanines in normal human cells, which is about one order of magnitude lower than
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the base levels obtained by HPLC-EC (Gedik et al. 1998). A potential problem with the

use of FPG is that it may not detect all the substrate.

Enzyme-linked immunosorband assay

One of the advantages of immunochemical assays is that they are relatively easy to

perform. Various monoclonal and polyclonal antibodies for the determination of

8-OHdG have been developed and characterized (Yin et al. 1995; Ide et al. 1997). After

extraction and digestion of DNA followed by immunoaffinity purification and enzyme-

linked immunosorband assay (ELISA) quantitation of 8-OHdG, a good correlation with

the values obtained by HPLC could be demonstrated. However, the levels determined by

ELISA were 1.1- to 6-fold higher than those measured by HPLC-EC (Yin et al. 1995).

This was explained by a possible nonspecific binding of material by the immuno-

columns resulting in nonspecific inhibition in the ELISA, or crossreactivity with other

modified bases present in the immunoaffinity purified samples. Evans et al. (1999) also

reported a good correlation between 8-OHdG values obtained by ELISA and HPLC-EC.

Their results of 8-OHdG with ELISA were about 1.8-fold higher than those measured by

HPLC-EC.

Determination of 8-OHdG in urine

The rationale for the measurement of 8-OHdG in urine is based on the existence of

specific repair systems for the removal of oxidative DNA damage (Cooke et al. 2000).

Plasmids containing 8-OHdG were replicated only at a rate of 25 % in excision repair

deficient human cells as compared to the rate of proficient cells and showed a 3- to

5-fold increased frequency of G:C→T:A transversions (Klein et al. 1992). This suggests

that nucleotide excision repair is essential for the elimination of 8-OHdG in humans. The

amount of modified nucleosides excreted into urine is considered to represent the whole

body oxidative DNA damage, but there is no direct indication of a balance between

oxidative damage of nuclear DNA and urinary excretion of 8-OHdG. To test the utility

of urinary 8-OHdG, intravenous injection of 8-OHdG was applied to rats (Shigenaga et

al. 1989). This showed a 66 % recovery in the first 24 h urine collection and no

detectable degradation of 8-OHdG after administration and excretion. The dietary

contribution to the excretion of 8-OHdG was found to be of low significance (< 2 % of

the total 8-OHdG detected). Compared with the determination of 8-OHdG in leukocyte

DNA, the measurement of urinary 8-OHdG offers some advantages: (1) the method is

non-invasive (2) there is no production of artifacts during sample procedure or

derivatization, (3) 8-OHdG undergoes no further metabolization and shows high stability

in urine (Poulsen et al. 1998), and (4) the excretion of 8-OHdG is likely to reflect the

oxidative DNA damage and repair from all cells in the organism. For example, an

amount of 14 nmol 8-OHdG in 24 h urine would point to 140 oxidatively damaged and

repaired guanines per each cell of the human body (∼6 × 1013 cells) per day. It has been

argued that cell death might be a source of urinary DNA lesions, but recently Cooke

et al. (2005) came to the conclusion that urinary 8-OHdG levels are independent of cell

death. However, at present it is not clear to what extent the nucleotide pool contributes to
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the presence of 8-OHdG in urine. Misincorporation of the damaged triphosphate 8-OH-

dGTP from the nucleotide pool into DNA can be prevented by the enzyme 8-hydroxy-

2′-deoxyguanosine triphosphatase which hydrolyses 8-OH-dGTP to the monophosphate

8-OH-dGMP (Bialkowski and Kasprzak 1998). Subsequent digestion of 8-OH-dGMP

may give rise to 8-OHdG, which can be removed from the cell and excreted in the urine

(Cooke et al. 2000).

HPLC-EC and GC-MS have been preferentially used for the analysis of 8-OHdG in

urine. Separation of the analyte from the complex constituents of the urinary matrix

represents a major challenge in the development of accurate methods. Therefore, many

variant purification procedures have been described for HPLC techniques: e.g., solid

phase extraction (Shigenaga et al. 1989), coupled-column HPLC (Loft et al. 1992;

Tagesson et al. 1992; Kasai 2003), use of carbon columns (Bogdanov et al. 1999) or

immunoaffinity isolation of 8-OHdG (Degan et al. 1991). In addition, solid phase

extraction and/or HPLC have been used for clean-up procedure prior to GC-MS analysis

of urinary 8-OHdG (Teixeira et al. 1995; Holmberg et al. 1999). HPLC systems have

been also used in combination with tandem mass spectrometry (Weimann et al. 2001;

Ravanat et al. 1998) and with a triple mass spectrometer (Renner et al. 2000). Recently,

isotope dilution liquid chromatography with tandem mass spectrometry has been shown

to be a highly specific and sensitive method for the detection of urinary 8-OHdG (Hu

et al. 2004).

Erhola et al. (1997) used a monoclonal antibody based competitive ELISA for the

detection of urinary 8-OHdG, accentuating some advantage of the method with respect

to analyzing time and running cost. However, the values of urinary 8-OHdG were about

3- to 5-fold higher than normal 8-OHdG levels observed with HPLC-EC. Recently, fast

methods for the determination of urinary 8-OHdG by capillary electrophoresis with UV

detection (Kvasnicova et al. 2003) or amperometric detection (Mei et al. 2003) have

been developed with detection limits of 17 µM and 20 nM, respectively.

Loft et al. (1992) identified three factors, smoking, body mass index and gender

as significant determinants of urinary excretion of 8-OHdG. In smokers (n = 30, 320 ±

99 pmol 8-OHdG/kg/24 h) a 1.5-fold higher level of urinary 8-OHdG was found as

compared to nonsmokers (n = 53, 213 ± 84 pmol 8-OHdG/kg/24 h). In 52 women

8-OHdG in urine was 240 ± 106 as opposed to 271 ± 96 pmol/kg/24 h in 31 men. In non-

smokers, gender was the most important determinant of 8-OHdG excretion, whereas

body mass index was the only significant predictor in smokers. In women, both smoking

and body mass index were significantly associated with urinary 8-OHdG, whereas in

men only smoking was a marginally significant predictor.

Usually published values of urinary 8-OHdG are given in pmol/kg/24 h, nmol/kg/

24 h or nmol/mmol creatinine (Rev. Loft and Poulsen 1998). Frequently, spot urine

samples corrected for creatinine have been used for the analysis of 8-OHdG. However,

the correlation between the 8-OHdG to creatinine ratio in spot samples and the 24 h

excretion of 8-OHdG has been shown to be rather poor (r = 0.5) (Poulsen et al. 1998).

8-OHdG to creatinine ratios may be adequate for crossover studies with repeated

sampling in the same subjects whereas 24 h urine collecting is preferable in cross

sectional studies. There is no published evidence for an artifactual formation of 8-OHdG

in the organism and for its degradation upon release. In addition, 8-OHdG in urine shows

high stability when stored at –20°C, as determined by repeated measurements within an

interval of 6 months (Pilger et al. 2002a).
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Use of 8-OHdG in occupational
and environmental exposure studies

Smoking

Most of the studies on the formation of 8-OHdG in humans consider smoking as a

main confounding factor, and there is substantial evidence that smokers have higher

levels of 8-OHdG than non-smokers. Kiyosawa et al. (1990) observed a 1.5-fold increase

in leukocyte 8-OHdG in ten healthy men after smoking two cigarettes within 10 min.

This indicates that smoking may induce oxidative DNA damage in peripheral blood cells

in a relatively short time. By multiple regression analysis, Loft et al. (1992) identified

smoking as the most determining factor of the urinary excretion of 8-OHdG, suggesting

that smoking is associated with a 50 % increase in oxidative DNA damage. However, the

higher urinary excretion rate of 8-OHdG in smokers was not found to be decreased by

antioxidant supplementation (D-α-tocopheryl acetate, ascorbic acid, coenzyme Q10)

(Prieme et al. 1997). In contrast, 4 weeks of smoking cessation resulted in a 21 %

decrease in urinary 8-OHdG of 58 individuals (Prieme et al. 1998). The control group of

smokers showed a 16 % higher level of 8-OHdG in urine than the smoking cessation

group, and there was a significant correlation between the daily cigarette consumption

and the excretion of 8-OHdG in the 123 examined smokers. Asami et al. (1996) reported

a 1.88-fold higher level of 8-oxoguanine in leukocyte DNA and a 1.6-fold higher

8-oxoguanine repair capacity in smokers as compared to non-smokers. In addition, a

positive correlation between the levels of 8-oxoguanine and the Brinkman index (ciga-

rettes per day × years) was found in smokers and ex-smokers, indicating that oxidative

DNA damage may be associated with the number of cigarettes smoked per lifetime.

Smokers also showed a 1.43-fold higher level of 8-OHdG in non-cancerous lung tissues

than non-smokers, the difference being statistically significant (Asami et al. 1997). The

latter study also showed a positive correlation for the Brinkman index and 8-OHdG in

the normal lung tissues from smokers and ex-smokers. Exposure to environmental

tobacco smoke (ETS) has been suggested to cause oxidative DNA damage too. In

38 non-smokers exposed to ETS (as determined by plasma cotinine measurements) a

1.6-fold higher level of 8-OHdG in leukocyte DNA could be observed as compared to

the control group (Howard et al. 1998). These exposed individuals showed also

significantly increased levels of catalase and glutathione peroxidase in blood. Pourcelot

et al. (1999) showed a 16 % higher level 8-OHdG in spot urine of 30 male smokers as

compared to 30 male non-smokers, which is in good accordance with the assessed

difference of 20 % in the excretion of 8-OHdG between smokers and non-smokers,

derived from a longitudinal study (Pilger et al. 2001). The latter study could not confirm

an effect of passive smoking on urinary 8-OHdG. Lodovici et al. (2000) observed a

2.2-fold higher level of 8-OHdG in leukocyte DNA of smokers as compared to non-

smokers, whereas no correlation between the 8-OHdG levels and the number of

cigarettes smoked per day could be demonstrated (Table 1).

However, not all studies confirm an effect of smoking on the production of 8-OHdG.

Van Zeeland et al. (1999) even found lower levels of leukocyte 8-OHdG in smokers than

in non-smokers and an inverse relationship between 8-OHdG and lifetime smoking. In
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filling station attendants exposed to benzene as well as in workers from asbestos, rubber

and azo-dye industries no influence of smoking on the urinary excretion of 8-OHdG was

found (Lagorio et al. 1994; Tagesson et al. 1993). In industrial art glass workers a

significant effect of smoking on 8-OHdG excretion was found only among females

(Tagesson et al. 1996).

Benzene, toluene, styrene and xylenes

On the basis that oxidative processes might be involved in the mechanisms of

benzene toxicity, Lagorio et al. (1994) measured urinary 8-OHdG in 65 filling station

attendants. Personal sampling on about seven time-points throughout a year was used to

assess the exposure to benzene, toluene and xylenes. The authors reported a significant

correlation between urinary 8-OHdG and the average yearly exposure to benzene. In

contrast, exposures to toluene and xylenes, although highly correlating with the benzene

level, were not found to affect the urinary concentration of 8-OHdG. The limitations of

this study are related to the assessment of exposure, which was not derived from

biomonitoring data, and to the possibility that other constituents of gasoline may cause

oxidative DNA damage.

Liu et al. (1996) provided a direct evidence for the influence of benzene exposure on

oxidative DNA damage. To test the possible association of internal benzene exposure

with the formation of 8-OHdG in DNA, they included the measurement of urinary trans,

transmuconic acid (TTMA) in a study on 87 benzene exposed workers. Both parameters,

air benzene and TTMA, showed a significant correlation with 8-OHdG in lymphocyte

DNA. There was also a good correlation between 8-OHdG and micronucleus frequency.

Female workers showed significantly higher levels of 8-OHdG than male workers when

exposed to the same concentration of air benzene, whereas no significant difference in

lymphocyte 8-OHdG between female and male healthy controls was observed. Air

toluene was found to show negative correlation with TTMA, 8-OHdG and micronucleus

formation, which indicates that toluene might inhibit the metabolism and the

genotoxicity of benzene. In workers with low exposure to benzene (2.46 mg/m3) no

increase in 8-OHdG was found as compared to controls.

Nilsson et al. (1996) found equal levels of urinary 8-OHdG in 30 benzene exposed

workers and controls. However, 8-OHdG in late-evening urine from exposed workers

was significantly increased over pre-shift values. Unfortunately, the authors did not use

the same time schedule for the sampling in the control group, which makes it difficult to

decide whether the elevated late-evening 8-OHdG was an exposure-related effect.

Nevertheless, regression analysis resulted in a significant correlation between benzene

exposure and 8-OHdG during the shift.

Based on their observation that styrene-7,8-oxide exposure in blood induces high

molecular weight DNA fragmentation possibly due to oxidative stress, Marczynski et al.

(1997) investigated the ability of styrene exposure to elevate 8-OHdG in white blood

cells of 17 boatbuilders occupationally exposed to styrene. A significant increase in

8-OHdG was found in the styrene exposed group as compared to controls, but no evi-

dence could be provided that styrene exposure > 10 years is more effective in producing

oxidative DNA damage than short time exposure.
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Asbestos

Various types of asbestos fibers induce 8-OHdG when incubated in vitro with DNA

in the presence of hydrogen peroxide (Kasai and Nishimura 1984). Tagesson et al.

(1993) found a significantly higher urinary excretion of 8-OHdG in 30 asbestos exposed

workers as compared to 41 controls. Hanaoka et al. (1993) measured 8-OHdG in

peripheral blood cells of asbestosis patients, observing no significant difference in the

level of 8-OHdG between patients and controls without asbestos exposure. Therefore,

the authors concluded that 8-OHdG is not a sensitive marker for past asbestos exposure

at low levels. In contrast, Takahashi et al. (1997) could demonstrate a positive

correlation between 8-OHdG in leukocyte DNA and incremental grades of asbestosis. In

this study 8-OHdG showed also a positive correlation with the cumulative exposure to

asbestos. Marczynski et al. (2000a) conducted a study on 496 asbestos-exposed workers

in order to determine whether asbestos induces the formation of 8-OHdG in white blood

cells. The data of this study point to a 1.7- to 2-fold increase in 8-OHdG due to asbestos

exposure. However, no correlation was found between 8-OHdG and possible

determinants, such as the duration of asbestos exposure, cumulative fibrous dust dose,

asbestos-related diseases, age, smoking status, acute febrile infections, and intake of

medicines, aspirin, calcium, magnesium, hormones and vitamines (Marczynski et al.

2000b). This supports the view that inhalation of asbestos is the causal factor for the

observed differences in the level of 8-OHdG between asbestos workers and controls.

Silica

Exposure to silica has often been associated with the development of fibrotic lung

disease, and silica has been designated as a carcinogen. Schins et al. (1995) measured

8-OHdG in peripheral blood lymphocytes of 38 retired coal workers, eight of them

showing coal workers’ pneumoconiosis. The levels of 8-OHdG in the miners were

significantly higher than in the non-exposed controls. However, 8-OHdG in lymphocytes

did not differ between miners with coal workers’ pneumoconiosis and miners without

coal workers’ pneumoconiosis. In this study no association between 8-OHdG and the

individual cumulative dust exposure was found, nor was there a synergistic effect

between smoking and occupational exposure.

Pilger et al. (2000) determined urinary 8-OHdG and 8-OHdG in leukocyte DNA of

63 workers occupationally exposed to quartz and 42 patients with silicosis. No

significant differences in 8-OHdG between healthy workers and silicosis patients were

observed. Interestingly, in case of silicosis, urinary 8-OHdG correlated positively,

whereas 8-OHdG in leukocytes correlated negatively with the forced expiratory volume

in 1 s and the forced vital capacity. In the subgroup of silicosis patients with leukocytic

8-OHdG above the median level of all patients, a significantly lower urinary excretion of

8-OHdG was found as compared to the corresponding group of healthy workers. From

these data the authors concluded that a less effective repair of 8-OHdG may be

associated with a higher degree of pulmonary airway obstruction in patients with

silicosis. Although no quantification of dust exposure was included in this study,

workers with a personally estimated high dust exposure showed higher levels of

8-OHdG in leukocytes than did workers with a moderate dust exposure.
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Chromium and cobalt

Hexavalent chromium is an established carcinogenic agent that has been shown to

induce the formation 8-OHdG and FPG-dependent DNA strand breaks in human white

blood cells in vitro (Lee et al. 2004, 2005). Substantial interindividual variation in the

level of sodium dichromate-mediated oxidative DNA damage was found in vitro when

analyzing white blood cells from 72 healthy adults by the FPG-comet assay. These

differences in DNA strand breaks introduced by FPG have been suggested to be due to

Cys326 variants of the human OGG1 gene (Lee et al. 2005). Urinary concentrations of 8-

OHdG in 48 electroplating workers were higher than those in 19 healthy controls. In

addition, a statistically significant positive correlation (r = 0.44, P < 0.5) between the

urinary concentrations of chromium (µg/g creatinine) and 8-OHdG (nM/kg) was

observed (Kuo et al. 2003). However, when relating the urinary concentration of

8-OHdG to that of creatinine, no significant difference in the levels of 8-OHdG between

exposed workers and controls could be demonstrated in this study. Recently, Sørensen et

al. (2005) found a significant association of PM2.5 bound chromium and vanadium with

lymphocyte 8-OHdG in 49 students who have been monitored for PM2.5 exposure with

portable equipment. By contrast, chromium and vanadium in personal samples of PM2.5

were not associated with urinary 8-OHdG. In a recent cross-sectional study, children

with urinary chromium concentrations > 2.2 µg/g creatinine showed higher urinary

8-OHdG levels (15.5 ± 1.3 ng/mg creatinine, n = 71) than did those with urinary

chromium < 2.2 µg/g creatinine (11.6 ± 0.6 ng/mg creatinine, n = 71) (Wong et al.

2005).

Since cobalt has similar chemical properties to iron, there is reason to suppose Fenton

like mechanisms for the production of ROS by cobalt. In human diploid fibroblasts,

exposure to cobalt(II) in vitro (0–50 µM) caused an increase in 8-OHdG from 1.4 ± 0.4

to 2.2 ± 0.7 residues/105 dG (n = 3). Higher concentrations of cobalt(II) up to 250 µM,

however, did not further elevate the level of 8-OHdG in DNA of fibroblasts (Ivancsits

et al. 2002). In 24 male workers exposed to cobalt dusts no significant increase in

urinary 8-OHdG was detected as compared to 27 control subjects (1.52 ± 1.69 µmol/mol

creatinine and 1.46 µmol ± 1.48 µmol/mol creatinine, respectively) (De Boeck et al.

2000). In a study on the effect of internal exposure to cobalt and chromium on the

excretion of 8-OHdG, 16 out of 46 patients with total hip replacements had blood levels

of cobalt above 5 µg/l, which indicated a considerable release of cobalt from the used

implants. However, no increase in urinary 8-OHdG could be demonstrated in these

patients (Pilger et al. 2002b). Contrary to these findings, Hengstler et al. (2003) reported

a decreased repair activity for 8-oxoguanine at exposure to cobalt > 4 µg/m3 in the air. In

addition, the repair activity for 8-oxoguanine correlated negatively with levels of DNA

strand breaks in mononuclear blood cells. Recently, Mateuca et al. (2005) reported that

urinary 8-OHdG in 73 workers exposed to cobalt containing dusts was positively

influenced by the interaction between smoking and dust exposure.
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Fine particulate matter

Fine particulate matter (< 2.5 µm) can cause the formation of 8-OHdG in the

presence of hydrogen peroxide in vitro (Shi et al. 2003). Kim et al. (2004) investigated

the urinary excretion of 8-OHdG in twenty boilermakers exposed to fine particulates.

The relevant exposure consisted of residual oil fly ash and metal fumes. The subjects

were monitored during a 5-day work period. The mean urinary concentrations of 8-

OHdG were found to be significantly lower for each pre-workshift sample as compared

to the corresponding post-workshift sample. In addition, a significant correlation

between PM2.5 8-hr-time weighted average concentration and urinary 8-OHdG was

derived, indicating an increase in 8-OHdG of 1.68 µg/g creatinine each 1 mg/m3 PM2.5

exposure. PM2.5 vanadium, manganese, nickel and lead concentrations also showed

significant correlation with urinary 8-OHdG, whereas PM2.5 chromium exposure was

only marginally associated with urinary 8-OHdG. Smoking was not found to modulate

the association between urinary 8-OHdG and total PM2.5 concentrations, whereas chronic

bronchitis could be identified as a significant predictor of 8-OHdG in these workers.

Personal exposure to PM2.5 was found to be a predictor of 8-OHdG in lymphocyte DNA

with an 11 % increase of 8-OHdG per µg/m3 increase in personal PM2.5 exposure

(Sørensen et al. 2003). This relationship was assessed over 48 h in 68 subjects. To

account for seasonal variation, the measurements were repeated four times in one year.

Interestingly, no correlation between 8-OHdG in DNA, urinary 8-OHdG and FPG-

sensitive sites was observed in this study.

Polycyclic aromatic hydrocarbons

Epidemiological studies have shown an increase in cancer incidence among workers

exposed to Polycyclic aromatic hydrocarbons (PAHs). Autrup et al. (1999) compared

carcinogen-DNA adduct levels with other exposure markers in 107 healthy bus drivers

and 102 mail carriers. A significant positive correlation between urinary 8-OHdG and

the level of benzo[a]pyrene bound to serum albumin was observed, and a negative

correlation between 8-OHdG and the level of 2-amino-adipic semialdehyde was found.

However, no association of 8-OHdG in urine with DNA adducts and malondialdehyde in

plasma was found, and there was no difference in the mean levels of 8-OHdG between

busdrivers working in the city center and in suburban or semirural areas.

Toraason et al. (2001) monitored urinary 8-OHdG and leukocyte 8-OHdG in

26 roofers exposed to coal-tar pitch dust and/or asphalt fume. No significant difference

between start-of-week and end-of week values of urinary 8-OHdG was evident in asphalt

roofers or controls. In addition, there was no significant difference in urinary 8-OHdG

between asphalt roofers and controls. Although there was no significant difference in the

urinary 8-OHdG excretion between controls and coal-tar exposed roofers, end-of-week

urinary 8-OHdG in the latter was significantly elevated over start-of-week values. In

contrast, end-of-week leukocyte 8-OHdG values in coal-tar exposed workers were

significantly decreased as compared with start-of-week values. The authors interpreted

this as an induction of repair mechanisms by coal-tar exposure that decreases the steady

state level of oxidative DNA damage.
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Marczynski et al. (2002) determined 8-OHdG in white blood cells of coke-oven

workers and graphiteelectrode-producing plant workers exposed to PAHs. Clearly

elevated levels of 8-OHdG in white blood cells of PAH-exposed workers were measured

together with an increased frequency of DNA strand breaks. However, no association

between the PAH metabolite 1-hydroxypyrene in urine and 8-OHdG could be demon-

strated. In addition, no correlation of 8-OHdG with either benzo[a]pyrene concentrations

or the sum of 16 PAH levels in the air at work place could be established.

Kim et al. (2003) used urinary 1-hydroxypyrene, 2-naphthol and leukocyte 8-OHdG

to investigate the association between environmental PAH exposure and oxidative stress

in 105 healthy Korean males without occupational PAH exposure. A significant

correlation between urinary 1-hydroxypyrene and the 8-OHdG level in leukocytes could

be observed, whereas urinary 2-naphthol correlated positively with 8-OHdG only in non-

smokers and in subjects with GSTM1 null-type.

A study on 119 coke-oven workers could not confirm an association between

leukocyte 8-OHdG and urinary 1-hydroxypyrene (Zhang et al. 2003). A marginally sig-

nificant positive correlation was found between 8-OHdG and leukocyte aromatic DNA

adducts. It is noteworthy that the urinary concentrations of 1-hydroxypyrene in this study

were about 17- to 678-fold higher as compared to the concentrations of 1-hydroxypyrene

in the unexposed subjects examined by Kim et al. (2003).

In contrast to the study of Zhang et al. (2003) a significant positive correlation

between urinary 1-hydroxypyrene and urinary 8-OHdG was reported by Hu et al. (2004),

who examined 91 workers in a coke oven plant. However, the results were dependent on

the method used for the determination of 8-OHdG. Only the LC/MS/MS measurements

of urinary 8-OHdG resulted in a significant difference between exposed workers and

controls, whereas the ELISA method failed to uncover this difference.

Nilsson et al. (2004) reported an increased urinary excretion of 8-OHdG in engine

room personnel (51 men) exposed to PAHs. The excretion of 8-OHdG was found to be

highest among personnel who reported skin contact with oil. A highly significant

correlation between urinary 8-OHdG and urinary 1-hydroxypyrene could be

demonstrated. Recently, Marczynski et al. (2005) observed an increase in DNA strand

breaks in 17 PAH-exposed workers who showed elevated concentrations of five

hydroxyphenantrenes and two naphtalenes in urine after alteration of PAHs in the

production material. This, however, was not associated with a significant increase in

8-OHdG in white blood cells of these workers, and no significant correlations of

8-OHdG with markers of external exposure and biomarkers of exposure were found.

Reliability of 8-OHdG as a biomarker
of oxidative stress in humans

Despite considerable efforts to improve the analysis of 8-OHdG and to determine

predictors of 8-OHdG formation, a number of questions concerning the occurrence of

artifactual background and the environmental factors affecting the steady state level of
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8-OHdG remain still unanswered (Collins et al. 2004). Some critical aspects related to

the use of 8-OHdG in human biomonitoring studies are:

– The measurement of 8-OHdG remains, at least partly, an analytical challenge and the

results strongly depend on the method used.

– Further investigation is needed to establish procedures that prevent artifactual

oxidation of the DNA (Cadet et al. 1998).

– There are significant inter-laboratory differences in the base levels of 8-OHdG.

Projects on the quality control of 8-OHdG assays (European Standards Committee on

Oxidative DNA Damage) are still far away from a consensus on the level of oxidative

damage in normal cellular DNA (ESCODD 2002).

– 8-OHdG is an unspecific marker, and a variety of confounding factors (e.g., age,

gender, diet, smoking, alcohol consumption, physical activity, vitamin status) may

affect the formation of 8-OHdG (Toraason et al. 1999; Chen et al. 1999; Bianchini

et al. 2001). Beside this, the presence of 8-OHdG in DNA and urine may depend on

other factors, such as DNA repair capacity (Gackowski et al. 2003; Cooke et al.

2005) or inflammatory reactions (Horiike et al. 2005).

– Effects of workplace exposures on the induction of 8-OHdG have been reported with

controversial results.

– The formation or elimination of 8-OHdG may exhibit a considerable inter- and

intraindividual variation (Pilger et al. 2001). Recently, levels of oxidative DNA

damage ranging from 6.02 to 18.48 % were detected in white blood cells from

72 healthy donors by the FPG-modified comet assay (Lee et al. 2005). In addition, a

substantial interindividual variation of FPG-induced DNA strand breaks in response

to treatment of these cells with sodium dichromate was found, indicating differences

in the accumulation of oxidative DNA damage.

– The interpretation of urinary 8-OHdG is not unequivocal. For example, an unchanged

excretion of urinary 8-OHdG at increased oxidative burden does not rule out a

decreased repair capacity and an accumulation of 8-OHdG in DNA (Poulsen et al.

1998). In addition, the contribution of the nucleotide pool to the concentration of

8-OHdG in urine is not clear.

– No significant correlation between urinary 8-OHdG and 8-OHdG in DNA could be

demonstrated as yet (Foksinski et al. 2003)

Conclusion

8-OHdG is the most commonly measured marker of oxidative DNA damage. Many

human biomonitoring studies have been performed in the last decade with the aim to

investigate the influence of occupational and environmental exposures on the formation

of 8-OHdG. However, there is still the problem with variable results and the lack of well

established dose responses derived from human exposure. In addition, further work is

needed to reach a consensus on the background level of 8-OHdG.
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