Cyanwasserstoff

H

MAK 10 ppm

11 mg/m³

Datum der letzten Festsetzung: 1958

Synonyma:

Blausäure

Ameisensäurenitril

Chemische Bezeichnung:

Cyanwasserstoff

Formel:

HCN

Molekulargewicht:

27,03

Schmelzpunkt:

-13,4 °C

Siedepunkt: Dampfdruck bei 20°C: 25,7 °C 600 Torr

1 ppm = $1,123 \text{ mg/m}^3$

 $1 \text{ mg/m}^3 = 0.890 \text{ ppm}$

Allgemeiner Wirkungscharakter

Blausäure wirkt ebenso wie ihre cyanidliefernden Verbindungen über das Cyanidion als Gewebegift. Sie diffundiert außerordentlich leicht durch Zellmembranen und reagiert mit dem dreiwertigen Eisen der Cytochromoxidase. Dadurch wird die Zellatmung blockiert; der Sauerstoff, dessen Transport ungehindert ist, wird nicht verwertet.

Im Anfangsstadium der Vergiftung tritt Hyperventilation auf, Arterialisierung des Venenblutes (rosige Hautfarbe), später tonisch-klonische Krämpfe. Die Todesursache ist meist zentrale Atemlähmung. Das Eintreten der Vergiftungssymptome erfolgt bei Inhalation von Blausäuredämpfen sehr rasch (evtl. in Sekunden), bei Ingestion anorganischer Cyanide langsamer (Minuten), bei perkutaner Resorption – auch durch die unverletzte Haut – und bei Aufnahme organischer Cyanverbindungen u. U. sehr langsam (bis zu Stunden).

Die Elimination von Blausäure geschieht relativ rasch durch Koppelung von Cyanid an Schwefel zu Rhodanid durch das leberständige Enzym Rhodanese; geringe Anteile werden unverändert exhaliert.

Bei parenteraler NaCN-Zufuhr findet man 2/3-3/4 des Cyanids als Rhodanid wieder, 1/4-1/3 wird exhaliert (90 % als CO₂, 10 % als HCN [1, 2]).

Danach ist eine Kumulation unter praktischen Expositionsbedingungen nicht zu erwarten. Da der Komplex Cyanoferricytochromoxidase leicht reversibel ist, tritt nach Überstehen des kritischen Vergiftungsstadiums rasche Erholung ein.

Erfahrungen beim Menschen

Systematische Felduntersuchungen sind in der Literatur nicht mitgeteilt. Die vielseitige Verwendung in Landwirtschaft, Industrie und Labor führt trotz aller Vorsichtsmaßnahmen immer wieder zu akuten unfallbedingten Vergiftungen. Aus tödlichen Vergiftungen durch Ingestion (einmalige Aufnahme) wird auf beim Menschen minimal tödliche Dosen von 0.7-3.5 mg/kg Körpergewicht (als Cyanid berechnet) geschlossen [3]. Der Tod tritt ein, wenn die Cyanidkonzentration im Blut einen kritischen Wert von mindestens $5 \mu g \, \text{CN}^-/\text{ml}$ (ca. $0.2 \, \mu \text{M/ml}$) erreicht [4].

Bei Inhalation von Blausäuredampf ist die Wirkung weniger von der aufgenommenen Gesamtmenge als vielmehr von der Konzentration abhängig, da die Entgiftung zu Rhodanid mit der Aufnahme bis zu 10 ppm Schritt hält (gefolgert aus Tierversuchen [5]). Entsprechende Humanerfahrungen fehlen, doch deuten die Resultate mit verschiedenen Spezies auf gleiche Empfindlichkeit auch des Menschen. Die Angaben über die Geruchsschwelle schwanken zwischen 0,2 und 5,1 ppm [6, 7]. Dafür dürfte nicht nur die unterschiedliche Methodik der Untersucher verantwortlich sein. Vielmehr ist das Geruchsvermögen individuell sehr unterschiedlich ausgeprägt.

In einem Selbstversuch wurde die kutane Resorption bestimmt: 0 6 Vol% (= 6000 ppm) wurden 50 min symptomlos ertragen; bei 2,2 Vol% (= 22000 ppm) mußte nach 27 min, bei 5,5 Vol% (= 55000 ppm) nach 22 min der Versuch abgebrochen werden. Durch entsprechenden Schutz war die Einatmung ausgeschlossen [8]. In anderen Berichten wird angegeben, daß die Hauptresorption bei einer Konzentration von 2 oz./1 000 cu.ft. (ca. 1100 ppm) beginnt und bei 6-10 oz./1 000 cu.ft. (ca. 3000-5000 ppm) rasch zunimmt [9].

Sehr umstritten ist eine chronische Blausäurevergiftung [10, 11]. Es wurde vermutet, daß die Entgiftung von Cyanid und damit die Ausscheidung des Thiocyanats individuell sehr unterschiedlich sei. Der erhöhte Thiocyanatspiegel rufe dann eine hypothyreote Struma und/oder Symptome einer Thiocyanatvergiftung hervor [10].

Tierexperimentelle Befunde

Für die Inhalation finden sich in der Literatur folgende Toxizitätsangaben:

Tierart	Konz. in ppm	Zeit- dauer	Symptome	Lit.
Maus	1300	1-2 min	tödlich	[12]
Ratte	1000	10 min	tödlich	[13]
Meerschw.	725	14 min	ohne toxische Wirkung	[14]
Ratte	500	10 min	nicht tödlich	[13]

Tierart	Konz. in ppm	Zeit dauer	Symptome	Lit.
Katze	315		nach 2 min Atemstillstand,	ſe]
TT 1	21.5		in 5–10 min Tod	[5]
Hund	315		schnell tödlich	[15]
Meerschw.	315	00 1	tödlich	[12, 16]
Meerschw.	200	90 min	erträglich, ohne Symptome	[16]
Katze	180	10 min	Krämpfe nach 5-15 min, Atemstillstand nach 30 min	[16]
Kaninchen	150	33 min	tödlich	[17]
Ratte	142	30 min	LC ₅₀	[18]
Kaninchen	135	30 mm	Dyspnoe	[19]
Katze	125	6-7 min	deutlich toxisch	[16]
Kaninchen	125	105 min	tödlich	[17]
Affe	125	12 min	deutlich toxisch	[16]
Kaninchen	120	12 mm.	keine toxischen Zeichen	[12, 16]
Ratte	118	12 Std	min, letale Dosis	[13]
Hund	115	30 min	Atemstillstand	[12]
Maus	110	45 min	tödlich	[12, 16]
Katze	110	30 min	Atemstillstand	[5]
Ratte	110	90 min	tödlich	[12, 16]
Katze	95	60 min	schwere, aber überlebte Vergiftung	[5]
Hund	90	00 11121	für Std erträglich	[12, 16]
Katze	56	60 min	dauernd ertragen, noch	. , ,
			Vergiftungssymptome	[5]
Katze	54	110 min	Krämpfe, danach Erholung	[20]
Katze	48	140 min	tödlich	[20]
Meerschw.	45		Zunahme d. Atemfrequenz um 15-	23% [21]
Maus	45	2 1/2 Std	tödlich	[12]
Maus	40	7 Std	erträglich, ohne klin. Erscheinungen	[19]
Hund	35-65		Erbrechen, Krämpfe, Erholung	[12, 16]
mehrere Arten	35	mehrere Std	ohne Vergiftungssymptome	[5]
Katze	27-36	46 Std	ertragen ohne Symptome	[20]
Hund	30		erträglich	[12, 16]
Meerschw.	7,5	2 Std	ohne klin. Erscheinungen	[21]

Für die Zufuhr von Salzen der Blausäure auf enteralem oder parenteralem Wege finden sich in der Literatur folgende Toxizitätsangaben:

Cyanwasserstoff

Tierart	Zufuhr	Konzentration	Symptome	Lit.
Hund	iv	0,08 mg/kg/min KCN	mittlere Überlebensdauer 28 ± 1,2 min	[22]
Hund	sc	5,36 ± 0,28 mg/kg NaCN	LD_{50}	[23]
Katze	iv	4 u. 8 mg/kg KCN/2 min	Atemlähmung	[24]
Katze	sc	1,1 mg/kg	letale Dosis	[25]
Meerschw.	iv	0,2 mg/kg/min NaCN	Atemstillstand nach 23.6 ± 1.0 min	[26]
Ratte	iv	1,8 mg/kg	tödliche Dosis (auf freie HCN berechnet)	[27]
Ratte	sc	3,5 mg/kg	tödliche Dosis (auf freie HCN berechnet)	[27]
Ratte	oral	4,5 mg/kg	tödliche Dosis (auf freie HCN berechnet)	[27]
Maus	sc	4 mg/kg	mittlere letale Dosis (auf freie HCN berechnet)	[27]
Maus	sc	8,5 mg/kg KCN	LD_{50}	[28]
Maus	oral	0,4 mg/kg	mittlere letale Dosis (auf freie HCN berechnet)	[27]
Maus	oral	8,5 mg/kg	LD ₅₀	[29]

Über die Entgiftungsgeschwindigkeit von Cyanid finden sich folgende Angaben: Kontinuierliche Infusion von 0.08 mg/kg/min KCN in Hunde führt bei der Geschwindigkeit von $0.032 \text{ mg CN}^-/\text{kg/min}$ in $28 \pm 1.2 \text{ min zum Tode } [22]$. Bei Meerschweinchen beträgt die Entgiftungsrate 0,04 mg/kg/min HCN, bzw. 2,4 mg/kg/Std [30]. Aus Inhalationsversuchen mit Blausäure [5] läßt sich errechnen, daß dabei 0,4 mg/kg/Std entgiftet werden (keine Vergiftungssymptome beobachtet), bei schweren, aber überlebten Vergiftungen 1,05 mg/kg/Std. Bei tödlich vergifteten Ratten betrug die Cyanidkonzentration im Blut 2,7-

 $5.0 \, \gamma/\text{ml} \, [18].$

Folgende Untersuchungen wurden zur langfristigen Exponierung unternommen: Hunde inhalierten 45 ppm/30 min bei einem freien Intervall von 6-8 Tagen insgesamt 19mal. Es wurde ein typisches Vergiftungsbild mit Dyspnoe, intestinalen Erscheinungen, Tremor und Krämpfen beobachtet. Die Tiere starben innerhalb von 1-2 Mon. Pathologisch-anatomisch fanden sich Degenerationserscheinungen und Hämorrhagien im ZNS [31]. Zeichen einer Neurodegeneration, wie sie pathologisch-anatomisch bei der Thiocyanatintoxikation gefunden werden, wurden nach subkutaner Zufuhr von 0,5 mg KCN einmal wöchentlich über 22 Wochen bei Ratten beobachtet [32]. Nach täglicher oraler Applikation von 0,5-2,0 mg/kg KG NaCN über 12 Mon trat bei Hunden ein typisches Vergiftungsbild verschiedenen

Grades auf, während nach 1-jähriger Beobachtungszeit mit Ausnahme von Erythrozytenzahl, Hb-Gehalt und Zusammensetzung der Serumproteine bei den verschiedenen klinischen Funktionsproben keine von den Ausgangswerten bzw. von dem Kontrolltier abweichenden Veränderungen festgestellt werden konnten [33]. Die chronische Toxizität bei Fütterung wurde an Ratten untersucht. Das Futter wurde mit 100–300 ppm begast. Während einer Fütterungsperiode von 2 Jahren wurden keine Veränderungen an der Schilddrüse beobachtet, obwohl die Thiocyanatkonzentration im Gewebe der Tiere zugenommen hatte [34].

Begründung des MAK-Wertes

Der MAK-Wert gründet sich auf die aus Tierversuchen gewonnenen Erkenntnisse über Art und Geschwindigkeit der Entgiftung von Cyanid im Organismus. Es wird angenommen, daß der Mensch über das gleiche Entgiftungspotential verfügt wie die verschiedenen geprüften Tierarten. Danach wird die mit 10 ppm HCN aufgenommene Cyanidmenge so rasch entgiftet, daß es zu keiner Akkumulation toxischer Konzentrationen kommt.

Wegen der Gefahr der Hautresorption ist die Kennzeichnung "H" erforderlich.

Literatur

- 1. Boxer, G. E., J. C. Richards: Arch. Biochem. 39, 7 (1952)
- 2. Tolbert, B. M., A. Hughes: Metabolism 8, 73 (1953), zit. von (25)
- 3. Halstrom, F., K. O. Moller: Acta pharmacol. (Kbh) 1, 18 (1945)
- 4. Friedberg, K. D.: Arch. Toxikol. 24, 41 (1968)
- 5. Flury, F., W. Heubner: Biochem. Z. 95, 249 (1919)
- 6. Prentiss, A. M.: "Chemicals in War", McGraw-Hill, New York 1937, zit. von (15)
- 7. Sherrard, C. C.: Publ. Hlth Rep. 43, 1016 (1928), zit. von (9)
- 8. Schütze, W.: Arch.Hyg. 98, 70 (1927)
- O'Donnell, J. E., H. W. Mundt, W. N. Knudsen, P. H. Delano: J.industr. Hyg. 22, 253 (194))
- Hardy, L. H., W.McK.Jeffries, M. M. Wasserman, W. R. Waddell: New Engl.J.Med. 242, 968 (1950)
- 11. Wolfsie, J. H., B. C. Shaffer: J.occup.Med. 1, 281 (1959)
- 12. Flury, F., F. Zernik: "Schädliche Gase", S. 400, Springer, Berlin 1931
- 13. U.S. Public Health Service, zit. von (9)
- 14. Schwab, R.: Z.ges.exp.Med. 67, 513 (1929)
- Fassett, D. W.: in Patty, F. A.: "Industrial Hygiene and Toxicology", Vol. II, S. 1996, 2nd rev. ed., Interscience Publishers, John Wiley & Sons, New York/ London 1962
- 16. Dudley, H. C., T. R. Sweeny, J. W. Miller: J.industr. Hyg. 24, 255 (1942)
- 17. Ahlmann, H.: Med. Inaug.-Diss. Würzburg 1905
- 18. Hofmann, H. Th.: Persönliche Mitteilung 1971, Medizinisch-Biologische Forschungslaboratorien, Gewerbehygiene u. Toxikologie der BASF AG, Ludwigshafen
- 19. Dschang, K. Y.: Med. Inaug.-Diss., Würzburg 1928
- 20. Wagschal, F.: Med. Inaug.-Diss. Würzburg 1903
- Henschler, D.: Unveröffentl. Untersuchungen des Toxikologischen Instituts d. Universität Würzburg, 1965

6 Cyanwasserstoff

- Mercker, H., W. Lochner, E. Gestenberg: Naunyn-Schmiedeberg's Arch.exp.Path. Pharmak. 232, 459 (1958)
- 23. Chen, K. K., C. L. Rose: J.Amer.med.Ass. 149, 113 (1952)
- Offterdinger, H., N. Weger: Naunyn-Schmiedeberg's Arch.exp.Path.Pharmak. 264, 289 (1969)
- Kobert, R. 1891, zit. in Heffter, A.: "Handbuch der experimentellen Pharmakologie",
 Band, S. 772. Springer Berlin 1923
- 26. Friedberg, K. D., H. A. Schwarzkopf: Arch. Toxikol. 24, 235 (1969)
- 27. Forst, J.A.: Naunyn-Schmiedeberg's Arch.exp.Path.Pharmak. 128, 1 (1928)
- 28. Way, J. L., S. L. Gibbon, M. Sheehy: J.Pharmacol.exp.Ther. 153, 381 (1966)
- 29. Sheehy, M., J. L. Way: J.Pharmacol.exp.Ther. 161, 162 (1968)
- Weber, D., K. D. Friedberg, L. Lendle: Naunyn-Schmiedeberg's Arch.exp.Path. Pharmak. 244, 1 (1962)
- 31. Valade, P.: Bull.Acad.nat.méd. 136, 280 (1952), Abstr.Arch.industr.Hyg. 7, 265 (1953)
- 32. Smith, A. D. M., S. Duckett, A. H. Waters: Nature 200, 179 (1963)
- 33. Hertting, G., E. Schnetz: Naunyn-Schmiedeberg's Arch.exp.Path.Pharmak. 236, 196 (1959)
- 34. Howard, J. W., R. F. Hanzal: J.Agr.Food Chem. 3, 325 (1955)

abgeschlossen am 26.4.1971