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ABSTRACT: Lipid analysis gained significant importance due to
the enormous range of lipid functions, e.g., energy storage,
signaling, or structural components. Whole lipidomes can be
quantitatively studied in-depth thanks to recent analytical advance-
ments. However, the systematic comparison of thousands of
distinct lipidomes remains challenging. We introduce LipidSpace, a
standalone tool for analyzing lipidomes by assessing their structural
and quantitative differences. A graph-based comparison of lipid
structures is the basis for calculating structural space models and
subsequently computing lipidome similarities. When adding study
variables such as body weight or health condition, LipidSpace can
determine lipid subsets across all lipidomes that describe these
study variables well by utilizing machine-learning approaches. The
user-friendly GUI offers four built-in tutorials and interactive visual interfaces with pdf export. Many supported data formats allow an
efficient (re)analysis of data sets from different sources. An integrated interactive workflow guides the user through the quality
control steps. We used this suite to reanalyze and combine already published data sets (e.g., one with about 2500 samples and 576
lipids in one run) and made additional discoveries to the published conclusions with the potential to fill gaps in the current lipid
biology understanding. LipidSpace is available for Windows or Linux (https://lifs-tools.org).

■ INTRODUCTION
Lipids contribute approximately 15−30% of the weight in an
organism and serve many different functions. Their chemical
and structural diversity stipulate multiple challenges in
analytical chemistry and computational handling. The
relatively young research field of lipidomics faces these
challenges primarily for the large-scale and high-throughput
characterization of lipids using mass spectrometry (MS). MS
enables the analysis of hundreds of distinct lipids identified in
one sample (which we refer to in the following as a lipidome)
within minutes, spanning several orders of magnitude in
concentration. Technological innovations are increasing
throughput, stifling laboratories with more measurements
requiring constant evaluation and processing. Here, we
identified four main interconnected lipidomics bottlenecks,
namely, the absent approach to combine quantitative results
with structural information, the simple analysis of multiple
lipidomes (i.e., different sets of lipids originating from other
samples) with additional meta-information, the reanalysis and
integration of publicly available lipidomics data, and the
application of quality control methods.

Lipids can be structurally diverse, making lipidomes hard to
compare when having multiple heterogeneous lipidomes or
using only exact matches of the lipid species’ names/identifiers.

For example, a comparison between a lipidome containing
“LPC 18:0” and lacking “LPC 18:1” and a second lipidome
lacking “LPC 18:0” but containing “LPC 18:1” would be
counted as two distinct differences. However, both lipid
species are chemically very similar. Comparisons based on
structural similarity allow for a novel view and interpretation of
lipidomes, even if particular lipid species are only present in
some samples. So far, quantitative information is not added to
these structural comparison models resulting in being heavily
influenced by low abundant lipid species that do or do not
appear across the sampled lipidomes. However, the quantita-
tive lipidome data analysis remains challenging with hundreds
of lipidomes and additional features or study variables (such as
age, weight, or condition) associated. Many methods for lipid
analysis have been published1−3 but do not consider these
study variables, which are getting increasingly demanded. The
lipidomics community is in the process of standardization in
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terms of controlled vocabulary, standardized nomenclature,4,5

data formats,6 reporting,7 or the demand of submitting both
raw and result files on public repositories to meet the FAIR
guidelines.8 The standardization will allow the community to
add and reanalyze public data concerning other biological
questions and enrich their data. However, the additional data
and the separate handling deters researchers from adding them
to their data analysis. Quality control is a multi-level process
that can be embedded along the complete workflow of a
lipidomics experiment. It can be conducted at the very
beginning or during the data acquisition phase and
consecutively during data analysis. However, without access
to tools and methods that provide functions and visualizations
for simple quality control (QC), QC remains laborious and
time-consuming.

Here, we introduce LipidSpace (Figure 1) for the rapid
analysis of lipidomes, which addresses the above-mentioned
bottlenecks by introducing the structural space and distance
models. Its core feature is the structural comparison of a
multitude of lipidomes. This feature compensates for the issue
of missing lipids over different samples by searching for the
most similar lipid counterparts for a pairwise lipidome
comparison. An interactive, comprehensive view of the
structural similarities between each pair of lipidomes is
provided. It copes with lipidome data sets containing
thousands of lipids in large-scale experiments and hundreds
of samples (Figure 1A). To create such an engine, we applied
the maximum common subgraph (MCS) approach in
combination with the Jaccard index to determine a pairwise
similarity of lipid species based on the molecular structure (see

Figure 1. Comparative lipidome analysis and reanalysis with LipidSpace. (A) Qualitative or quantitative lipidomics data are parsed and translated
to the standard shorthand nomenclature; each lipid is transformed into a chemical graph structure. (B) By applying maximum common subgraph
calculations, distances are calculated between lipids. The lipidomes are visualized using principal component analysis. Determining Hausdorff
distances allows a global clustering and the visualization of lipidome similarity. A rapid examination is applicable by excluding lipids, lipid classes,
samples, or filtering study variables. (C) Visualizing all lipidomes within a study offers a quick grasp of the data. (D) Lipidome clustering
dendrogram, including information about the study variables. (E) Classification of lipids responsible for separating lipidomes with respect to a given
study variable. (F) Statistical evaluation of quantitative lipid differences across lipidomes.
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Figure 1A). Our consistent definition of a structural space that
embeds lipids based on their structural features allows
LipidSpace to connect all samples hierarchically (Figure 1B−
D). The graphical user interface allows one to quickly adjust
the computation of the structural space models by browsing
through their visualizations (Supporting Figure S1). Sample-
associated study variables (such as body mass index, tissue, and
condition) can be added to an analysis for combined
exploration. The built-in feature analysis module assists in
determining which lipids exert the highest effect in distinguish-
ing between individual study variables or combinations thereof
(Figure 1E). The statistics module produces ready-to-use
result figures (Figure 1F). We evaluated LipidSpace on several
aspects to ensure its performance, correctness, and robustness
(“the Methods section”). For all our real-size experiments (up
to 1000 lipidomes), the computation time remained below 5 s
(Table 1). This performance allows the application of
LipidSpace in automated pipelines for real-time computation.

■ METHODS
LipidSpace is designed as a workstation application suitable for
running on a regular office computer without access to a
dedicated computing infrastructure. It is written in C++ using
the Qt (https://qt.io) library for the graphical user interface
(GUI). We compiled LipidSpace for the operating systems
Microsoft Windows and Linux. All binaries and the source
code are available via https://lifs-tools.org and from the
GitHub repository at https://github.com/lifs-tools/lipidspace.
The source code is published under the liberal MIT open-
source license.

Data Import. LipidSpace fully supports the current lipid
shorthand nomenclature.9 It utilizes the C++ library of
Goslin4,5 to parse and standardize lipid names. Lipids with
lipid names of no known lipid name dialect cannot be
imported. Several table formats are supported for the import,
such as flat or pivot tables where lipid content is stored row-
wise and the sample content column-wise or vice versa.
Additionally, files in mzTab-M format6 containing lipidomics
data can be imported, too. In general, these tables need to
provide at least information on which lipid species were
measured with which intensity in which sample. Here, intensity
may be arbitrary units, relative concentrations (e.g., mol %), or
physical units such as concentration in nmol/mL. All current

lipid search engines (such as LipidXplorer,10 LDA,11 or MS-
DIAL12) provide identification and quantification of data
tables in either of the mentioned formats. Their output can be
directly imported into LipidSpace.

Determining the Similarity between Lipid Molecules.
A core processing step within LipidSpace is comparing two
different lipid classes resulting in a distance value. Recent
research proposes feature-based comparisons for arbitrary
molecules13 or more lipid-specific SMILES-based sequence
matching for lipids, as introduced by Marella et al.3 However,
we want to ensure that comparing two molecules always
obtains the same result, even when providing them in different,
non-canonical representations. To overcome this challenge, we
decided to utilize the maximum common subgraph (MCS)
approach14 in combination with the Jaccard index15 because
molecules are best modeled as three-dimensional graph
structures. The MCS approach satisfies the symmetry property
of equivalence relations. That is, the distance between two lipid
structures being compared with each other remains the same
no matter in which order both lipids are compared: dist(A, B)
= dist(B, A). Although the general problem of finding a
maximum common induced subgraph is a time-consuming
task, and the computation time grows exponentially with the
number of considered molecules,14 we exploited several
properties of lipids to make this approach feasible again. For
instance, lipid classes are primarily structured into a fixed sub-
structure (that is, the backbone and headgroup) and variable
structure, for instance, the fatty acyl (FA) chains or long-chain
bases (LCB) with, e.g., changing chain length and double bond
numbers and positions. LipidSpace supports at the moment
131 different lipid classes, and a list of all supported lipid
classes is provided in the Supporting Section S.1. Here, we
claim that two different lipid species are aligned concerning
their headgroup and backbone where applicable. Therefore, we
can precompute the MCS for the head groups of each lipid
class pair utilizing the largest weight common subtree
embeddings (LaWeCSE) algorithm introduced by Droschin-
sky et al.16 This algorithm ensures the required symmetry of an
MCS approach. Depending on the user-defined mode, the FAs
and LCBs of two different lipids are pairwisely compared in
real time, either considering their stereo-specific numbering
(sn) order or selecting the best match among all permutations.
When no specific distinction between fatty acyl chains and

Table 1. Time Benchmark on the Lipidome Distance Model Computation in LipidSpacea

work organism/tissue #of lipidomes #of lipids comp. time (s)

Ejsing et al.26 yeast 8 248 0.082
Ishikawa et al.27 human plasma 60 230 0.099
Sales et al.28 human plasma 71 274 0.124
Carvalho et al.29 fruit fly/mult. tissues 12 350 0.144
Fitzner et al.30 mouse brain 31 616 0.184
Eggers et al.31 human lung 30 557 0.213
Peng et al.32 human/mouse platelet 60 596 0.318
Saw et al.33 human plasma 359 273 1.052
Wolrab et al./RC-HR human plasma 550 366 2.065
Wolrab et al.34/SFC-HR human plasma 854 200 2.068
Wolrab et al.34/4 comb. studies human plasma 2499 577 48.665

aThe two major measures responsible for the computation are the number of lipidomes and the number of lipids within the global lipidome (union
of all lipidomes within an analysis). For all conducted experiments on real-size data from the literature, the computation time remained below 5 s,
making the utilization of LipidSpace feasible for real-time applications and automated pipelines. The benchmark comprises all steps from data
import up to the computation of the global lipidome distance model. The data import and rendering time of the GUI tiles and canvases needs to be
taken into account here.
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long-chain bases is necessary, we refer to them as carbon
chains. One challenge is to align two carbon chains, especially
when their double bond positions are not defined, for instance,
FA 16:1 vs FA 18:2. Unless both carbon chains contain the
exact double bond positions, our strategy is to treat these
double bonds as mismatches (consider Section’ Correctness of
Double Bond Comparisons). When lipid information is only
available on the species level (e.g., PC 34:2), thus lacking
individual carbon chain lengths, we treat these lipids as if they
contain only one carbon chain. For any two lipids on different
lipid information levels (e.g., one on a structurally defined
level, one on a species level), we align both information levels
by decreasing the higher to the lower. We also consider
additional functional groups attached to the carbon chains
(e.g., COOH, OH, oxo, etc.). Once the number of shared
atoms and atom bonds is determined between two lipids, we
compute the distance between lipid species as 1�similarity,
where the similarity, the Jaccard index, is defined as the ratio
between shared elements (intersection) and all elements
(union, Supporting Figure S2). This ensures that the method
forms an equivalence relation, which is mandatory for the
robustness and correctness of the consecutive methods. We
manually picked random lipids and counted their maximum
common subgraphs and distance values to validate that the
algorithm produced correct results.

Creating the LipidSpace Model for One Lipidome.
Having set up a robust method to compute a scalar distance
between two lipid species, the second step is to form a model
representing the relation of all lipids within a sample/lipidome
to each other. Therefore, we first prepare a list of all distinct
lipid species among all lipidomes considered for analysis. Next,
we compute all pairwise distances between these lipid species,
resulting in an n × n matrix where n denotes the number of
lipid species. Afterward, we perform a principal component
analysis (PCA) on the complete matrix. We decided to use an
implementation of the Lanczos method17 [https://github.
com/mrcdr/lambda-lanczos] to compute only the first n’ < n
principal components to reduce overall computation time. We
are utilizing the openBLAS [https://www.openblas.net/]
library for fast matrix multiplication, providing fast basic linear
algebra operations. By default, the lipid Space model contains
seven principal components (best trade-off between accuracy
and performance). However, this property can be set by the
user manually. Since the result includes a union set of lipids
from all lipidomes within the analysis, we denote it as the
global lipid space model. The primary visualization of this
model uses, by default, the first and second principal
components as x and y Cartesian coordinates. Further, we
visualize each lipidome with its respective subset of lipids and
their abundances (Figure 1C; or Supporting Figure S1, top
right). In LipidSpace, the user can alternate the visualization by
changing the mapping of the principal components onto the x
and y dimensions. The visualizations (Supporting Figure S3)
themselves provide browsing functions for simultaneous
moving and zooming, affecting each PCA plot simultaneously
with regular mouse controls.

Setting All Lipid Space Models in Relation to Each
Other. Once all lipid space models are derived from the global
model, the user can continue the analysis. Either proceed with
the qualitative data or add the lipid quantities to the analysis.
By default, quantities are included and may be switched off at
any time. The objective is to put all lipid spaces into relation
with each other. Two lipidomes may be very heterogeneous

and contain two sets of lipid species with little overlap.
However, to avoid basing the distance of two lipidomes purely
on the common lipid species, we applied the Hausdorff
distance18 (using a fast implementation19), which measures the
distance of two subsets of elements of a metric space. When
considering quantities, the abundances for a lipidome are
normalized concerning the variance of the first PC of its model
and added to the model. Applying pairwise distance
computations on m lipidomes results in an m × m distance
matrix. In the last step, we calculate an agglomerative
hierarchical clustering, either using single linkage, unweighted
average linkage, or complete linkage clustering. By default,
unweighted average linkage clustering is selected. The resulting
hierarchical clustering, which we refer to as the global lipidome
distance model, is visualized by an interactive dendrogram plot
(Supporting Figure S4). The interactive visualization contains
functions for a rapid and convenient examination of the
lipidomes. For instance, if only a sub-branch of the complete
set of lipidomes should be examined, the user can select the
corresponding sub-branch and start a new analysis on all
lipidomes contained within it. All visualizations can be
exported in PDF format.

Feature Analysis and Selection. LipidSpace can operate
with sample-related study variables, lipids, and their
abundances. Here, we distinguish between categorical study
variables, such as a smoker with values yes or no, or condition,
with values control or perturbed, and numerical study
variables, such as age, weight, body mass index, cholesterol
concentration, etc. If such information is available, the
lipidome distance dendrogram adds it to every branch. We
apply the Kolmogorov−Smirnov (KS) statistic to find the best
value. When drawing the cumulative density functions (CDF)
for both sets, we search for the position of the largest
difference between both CDFs (Supporting Figure S5). We
assign this value as the best separation value. Each inner node
has a left and right branch in the dendrogram. For both
branches, a pie chart shows the relative distribution of values
within the sub-branch according to the best KS separation
value (Supporting Figure S5).

In the following, we will denote lipids as features to find the
most important lipids acting on a specific study variable.
Having a set of lipids, an exhaustive search for the optimal
subset is not applicable since a set’s number of possible subsets
grows exponentially with the number of elements contained in
it. Nowadays, most modern studies cover 100s of lipids. We,
therefore, applied an efficient, fast heuristic sequential forward
selection (SFS) of features.20 SFS starts with zero selected
features. The first step assesses which single lipid best describes
the study variable based on a classification or regression model.
We used multiple linear regression with the Akaike
Information Criterion (AIC)21 to assess model performance.
The lower the AIC, the better the performance of the
regression model. Let n be the total number of features.
Therefore, in the first step, n models are computed. From these
n models, the model with the lowest AIC is chosen. In the
second round, all two-feature subsets with the feature from the
previous round are examined. In the third round, all three-
feature subsets with the two features from the previous round
are examined, and so on. After n steps, we obtain a well-
performing feature subset for each round (representing the
number of features). In the last step, we pick the model
performing the best overall rounds. The computation time is
quadratic with respect to n. To reduce computational time and
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avoid overfitting with too many features, we perform only the
first √n steps.

Statistics. LipidSpace contains a statistic module compris-
ing several aspects of the imported data. Based on the provided
study variables, bar plots, histograms, and box plots visualize
the distribution of lipidomes (or lipids, respectively) with
respect to their lipid quantities. For all bar plots and box plots,
the underlying source data can be added to the plot as a scatter
plot above the boxes. The box plots on the lipid level also offer
the visualization of statistical results. Box plots on the lipidome
level contain either a t-test or ANOVA (depending on the
number of distinct values within a study variable). The
lipidome histogram contains an accuracy measure for the
capability of the selected lipids to describe the selected study
variable. When having a nominal study variable with only two
values (e.g., knockout vs wild type), a receiver operating
characteristic (ROC) curve figure is provided. It illustrates how
well a selection of lipids among all lipidomes can separate both
conditions from each other. Another quality control measure is
the distribution of coefficients of variation (CV) for each lipid
again based on the provided study variables. For instance, data
sets from two different experiments/studies can quickly be
checked if having a similar CV distribution (if expected) or
not. Another figure contains a p-value distribution plot with an
adjustable statistical test based on a chosen nominal study
variable. An equally distributed p-value histogram might
indicate either no regulation between the groups of the chosen
study variable or, e.g., a misconducted experiment where a
preceded perturbation did not occur. A more advanced
statistical figure is the volcano plot, which only appears when
a nominal study variable with only two categories is selected.
All these statistics are also available in other statistics programs
such as MetaboAnalyst, LipidSuite, or Lipid Mini-On.22−24

However, we included them into LipidSpace for user
convenience to offer an all-in-one solution.

Quality Control in LipidSpace. For QC, visualizations
and statistic figures described in the previous section are
implemented in LipidSpace. Further, a built-in QC function
tests during data import if the loaded data conforms to
Benford’s law25 and informs the user with additional details if
not. According to the law, a big set of numbers (especially
obtained from observations) over several orders of magnitude
have a leading digit distribution of a reciprocal function.
Lipidomics data not conforming to the law might indicate a
low range of quantitative values or insufficient data imputation
(if applied before). The fourth interactive built-in tutorial
introduces best practice methods for QC (see the “Interactive
Tutorials” section). A list of all measures and approaches that
can be applied for QC in LipidSpace is available in the
Supporting Section S.2.

Evaluation of LipidSpace to Ensure Performance,
Correctness, and Robustness. Performance. LipidSpace is
implemented in C++ and utilizes highly optimized mathe-
matics libraries for its computations. Thus, it can quickly
process big data sets with over 1000 lipidomes. We tested the
performance of the analysis routine, where the lipid spaces for
each lipidome and the global lipidome distance model were
computed, excluding rendering times of the Graphical User
Interface. Our testing platform was a standard laptop (Lenovo
Thinkpad X1 Carbon, Intel i7 1.8 GHz octa-core laptop, 16 GB
main memory). The results are presented in Table 1. The
overall computation time depends on both the number of
lipidomes and the total distinct number of lipid species. For

instance, the computational complexity of computing the PCA
is cubic with respect to the number of provided distinct lipid
species (O(n2)). On the other hand, the complexity of
computing the Hausdorff distances and the resulting
hierarchical clustering is quadratic in the number of lipid
species (O(n2)) and cubic to the number of provided
lipidomes (O(m3)). However, many expensive steps within
the computational pipeline can be easily parallelized, such as
computing the pairwise lipid or Hausdorff distances. By
utilizing highly optimized mathematics libraries and fast
implementations, we achieved analysis times between 0.1 s
for 8 lipidomes and 229 lipids and up to 48 s for 2499
lipidomes with 577 lipids. Nevertheless, for all experiments
with <1000 lipidomes, the computation time remained below 5
s (Table 1). This allows an application of LipidSpace in
automated pipelines for real-time computation.

Correctness of Double Bond Comparisons. Our second
experiment focuses on the situation when lipids with fatty acyl
chains or long-chain bases are provided without any specific
double bond (DB) position. We, therefore, extracted all lipids
from databases such as LIPID MAPS and SwissLipids on the
highest structural resolution level, containing explicit informa-
tion about all double bond positions on their carbon chains.
We extracted all carbon chain information from each database
individually. Next, we calculated a pairwise comparison of all
carbon chains for each database to determine the probability of
two arbitrary carbon chains having x overlapping (at the same
position) double bonds. We checked counting the DB
positions from both ends, from the carbonyl carbon group
(forward) and from the methyl group (ω/backward). For
instance, when comparing the fatty acyl chains linoleic acid/FA
18:2(9Z,12Z) and arachidonic acid/FA 20:4(5Z,8Z,11Z,14Z)
with each other, their double bond positions counted from the
beginning (9, 12) and (5, 8, 11, 14) have no match, but two
matches (ω-6, ω-9) and (ω-6, ω-9, ω-12, ω-15) when
counting backward. Supporting Figure S6 illustrates the result
of this experiment. For the LIPID MAPS database, a complete
mismatch probability of at least 73% in both directions at 73%.
Since the SwissLipids database only contains 85 distinct DB
sets, the mismatch probability in the forward direction is about
64% but also over 71% in the backward direction. Therefore,
when no DB position information is provided, we automati-
cally count all DB matches as mismatches for each pairwise
lipid comparison to find the maximum common subgraph.
When DB positions are provided, the MCS will be computed
by considering the DB positions in the forward direction. For
example, a comparison of the lipids “FA 18:2” and “FA 18:1”
provides 36 common/matching components (atoms and
bonds) out of 39 united components in an MCS. In contrast,
a comparison of “FA 18:2(9,12)” and “FA 18:1(9)” provides
38 intersecting components out of 39 united components.

Robustness of Structural Preservation in Higher Dimen-
sions. The following experiment is designed to validate the
robustness of LipidSpace model generation by comparing its
output with published results. We created a list of 14
diacylglycerophosphocholines PC 12:0/[12−24,26]:0 to ex-
amine the spatial organization of lipids in a structural space
model (Supporting Figure S7). The structural similarity
between these 14 lipids was determined in a model consisting
only of these lipids and within an extensive set of lipids (here
500 lipids from different categories). They preserve the
sequential positioning in the shape of an arc, although slightly
distorted, giving evidence that they keep their individual
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distances to each other even when higher dimension
calculations are required.

Interactive Tutorials. LipidSpace is equipped with four
interactive tutorials on different topics guiding the user

Figure 2. Different use cases for LipidSpace. (A) Confirmation of discoveries in published studies: (upper) LSM 18:1;O2 performs well to separate
all measured samples based on their condition32 with an accuracy of 100%, (lower) main differences in lipid concentration of male and female
(either taking contraceptives (CC) or not) plasma lipidomes28 caused by PC, PE, and SM lipids. 23 lipids can achieve separation of data sets with
an accuracy of 93%; (B) extended analyses on published studies: (left) feature analysis on Smpd1 knockout32 data reveal a correlation between the
increase of PG and decrease of CL and a systematic shift of double bonds for Cer 18:x;O2 subclass, (right) six ethnicity-dependent studies show
that SM had the most lipid species involved in the gender separation models; (C) QC of seven different human plasma experiments: (left) global
structural space of all 1037 samples, (top right) hierarchical clustering of all samples shows similarities across four studies (experiment 1−4 from
study,34 ex. 5 from ref 27 6 from ref 28, and 7 from ref 33), (bottom right) study aggregated structural spaces reveal differences of lipid species
compositions (at most on sn-position level) and concentrations among studies.
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through the actual user interface (UI) by enabling only the UI
controls that are necessary for the current tutorial steps. The
tutorials are designed to give an introduction to (i) data
import, (ii) handling of the UI for result interpretation, (iii)
feature analysis, and (iv) quality control methods.

■ RESULTS AND DISCUSSION
We reanalyzed open-access platelet and plasma data sets to
prove LipidSpaces applicability. The reanalysis of the platelet
lipidome data32 within acidic sphingomyelinase (Smpd1−/−)
mouse knockout (KO) across different stimuli confirms the
author’s results that LSM 18:0;OH and LSM 18:1;O2 can
separate both conditions with an accuracy of 100% (Figure 2A,
top). A comparison of lipid concentrations in males and
females in the second study28 revealed significant differences
mainly in the lipid classes PC, PE, and SM, confirmed by
applying LipidSpace (Figure 2A, bottom), too. The third
study33 investigated the differences in lipid compositions
among three Asian ethnicities. As in the study, LipidSpace also
computed that PC O-40:7 and PE O-40:7 show the best
separation capabilities with a p-value ≪ of 0.001 (Supporting
Figure S8). In the second phase, we searched for new potential
mechanisms and differences in lipid concentrations within the
same studies. For the first study, we revealed that the best
separation result could also be achieved by PG 36:3 with 100%
accuracy (Figure 2B, top left). Especially, the increase of the
main PG species (Supporting Figure S9) is interesting since
they are cardiolipin (CL) precursors. The dropping concen-
trations (Figure 2B, top left) of four major abundant CL
species might indicate a reduced CL metabolism or fewer
mitochondria and tentatively a mitochondrial impairment in
the Smpd1-deficient platelets. Additionally, a systematic shift
of double bonds for the Cer 18:x;O2 subclass is recognizable
with Cer 18:0;O2 lipids increasing during knockout, Cer
18:1;O2 show low variation, and Cer 18:2;O2 are significantly
decreasing (Figure 2B, bottom left). We can only speculate
why individual Cer 18:2;O2 levels are dropping. However,
with a reduced mitochondrial capacity indicated by lower CL
levels, enzymes responsible for ceramide desaturation may
already be reduced during proplatelet formation to lower
energy consumption and stabilize signaling.35 Since gender
differences in metabolism are still poorly defined, we
reinvestigated the female lipid metabolism across ethnicities.
Therefore, we compared the data from several different human
plasma lipidome studies.27,28,33,34 We identified sphingomye-
lins (SM) as the main discriminators for gender-specific
lipidomes (Figure 2B, right) overall studies. Further analysis of
enzymatic activities of “acidic sphingomyelinase” or “sphingo-
myelin synthase 2” might uncover an underlying mechanism
explaining the significantly higher concentrations of SM in the
female plasma lipidomes. Additional results for the third study
were achieved by comparing lipidomes derived from Chinese
and Indian populations since their lipidomes differed the most
(Supporting Figure S10). Using the feature selection function
of LipidSpace, we detected that many lipids distinguishing
both lipidome sets are polyunsaturated phospholipids contain-
ing ether bonds with dropping levels in the Indian subgroup.
Since ether lipids are known to work as scavenger molecules of
radicals, we assume that the Indian cohort experienced more
oxidative stress due to the different food diets. LipidSpace
supports assessing differences across several platforms
regarding missing species and divergent quantities. We,
therefore, evaluated in the third phase seven published

human plasma lipidomics experiments within four stud-
ies27,28,33,34 measured with different acquisition techniques
for QC. For the heterogeneity of the cohorts, we only
considered samples from healthy humans within the data sets.
This evaluation covers 702 different lipid species over 1037
samples (Figure 2C, left). A pure qualitative comparison
(Supplementary Figure S11) displays that samples within their
studies have a higher species overlap than across the studies.
When adding quantitative data, the distances between samples
from different studies are reduced (Figure 2C, top right),
indicating that a certain consensus is achieved among all
samples (because many differing lipids are of low concen-
tration with little impact). When comparing the global
lipidome with study-specific lipidomes, one can see which
lipid classes are primarily present or completely absent (Figure
2C, bottom right). For instance, in some studies, sphingolipid
classes are missing, while sterol esters (SE) are noticeably
higher in others.

■ CONCLUSIONS
To our best knowledge, we introduced LipidSpace, which is
(to our best knowledge) the first tool capable of processing
large-scale lipidomics experiments in a minute by examining
the structural and quantitative distance of all lipidomes to each
other. A fully interactive graphical user interface simplifies the
lipidomes’ examination by browsing through one lipid space
model, browsing several lipid space models simultaneously, or
investigating the global lipid distance model. On top, the built-
in feature analysis function makes it easy to search for high-
impact lipids within this experiment. Selecting or deselecting
lipid species, classes, categories, sample features, or even
complete samples allows the user to verify the impact on these
entities by quickly reanalyzing the remaining lipids. It provides
multiple possibilities for quality control at several stages. The
performance of LipidSpace allows it to be applied in real-time
pipelines or systems such as web services. Several input file
formats support makes it even easier to integrate the tool into
an existing workflow. In summary, LipidSpace enables
horizontal (across studies) and vertical (across species)
lipidome comparisons in combination with associated study
variables, as needed for analysis of clinical studies, and opens
further avenues to gain insights into the lipid-specific
composition and its connection to underlying cellular
mechanisms.

■ ASSOCIATED CONTENT

Data Availability Statement
LipidSpace can be downloaded as Windows or Linux binary
(no installation necessary) from our portal https://lifs-tools.
org. The source code is available under the MIT license at
https://github.com/lifs-tools/lipidspace.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.3c02449.

List of supported lipid classes in LipidSpace; quality
control measures and approaches; the graphical user
interface of LipidSpace; visualization of an exemplary
lipidomics space analysis (PDF)
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