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ABSTRACT

Increasing genetic wheat yield potential is considered by many as critical to increasing global wheat yields and production, baring major
changes in consumption patterns. Climate change challenges breeding by making target environments less predictable, altering regional
productivity and potentially increasing yield variability. Here we used a crop simulation model solution in the SIMPLACE framework to
explore yield sensitivity to select trait characteristics (radiation use efficiency [RUE], fruiting efficiency and light extinction coefficient)
across 34 locations representing the world’s wheat-producing environments, determining their relationship to increasing yields, yield var-
iability and cultivar performance. The magnitude of the yield increase was trait-dependent and differed between irrigated and rainfed
environments. RUE had the most prominent marginal effect on yield, which increased by about 45 % and 33 % in irrigated and rainfed
sites, respectively, between the minimum and maximum value of the trait. Altered values of light extinction coefficient had the least effect
on yield levels. Higher yields from improved traits were generally associated with increased inter-annual yield variability (measured by
standard deviation), but the relative yield variability (as coefficient of variation) remained largely unchanged between base and improved
genotypes. This was true under both current and future climate scenarios. In this context, our study suggests higher wheat yields from these
traits would not increase climate risk for farmers and the adoption of cultivars with these traits would not be associated with increased yield
variability.
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1. INTRODUCTION

Recent decades have seen wheat yields (Hochman et al. 2017;
Schauberger et al. 2018; Reynolds and Braun 2022) and har-
vested area (FAO 2022) stagnate globally. Current rates of yield
increase associated with genetic improvement (<1 % year™,
Dreisigacker et al. 2021) are not sufficient to meet the increase
in wheat grain demand expected by 2050 particularly consid-
ering expected demand growth in Asia (Erenstein et al. 2022),
challenging effort to achieve food security. Evidence for on-farm
conditions suggest that the rate of genetic improvement is even
less optimistic when actual farm production conditions are con-
sidered (Rife ef al. 2019). Nevertheless, increasing the genetic
yield potential (YP) is considered by many as a cornerstone for
an integrated strategy to increase wheat productivity (Foulkes et
al. 2022). In this context, understanding crop yield physiology
can support conventional breeding approaches and increase the
current rates of genetic gains (Reynolds and Langridge 2016;
Richards et al. 2019). While climate change is projected to
increase mean wheat yields in many environments due to CO,
fertilization effects (Webber et al. 2018; Jigermeyr et al. 2021), it
challenges breeding by making target environments less predict-
able (Zheng et al. 2016), altering crop productivity (Abberton et
al. 2016; Atlin et al. 2017; Webber et al. 2018), and potentially
increasing yield variability (Hernandez-Ochoa et al. 2018; Yang
et al. 2019). Ensuring continuity in yield gains thus requires gen-
otypic adaptation, that is the design and development of novel
cultivars with enhanced productivity and stability under future
climates (Ramirez-Villegas et al. 2020).

Increasing average YP through genetic improvement can be
achieved through increasing light interception (LI), radiation
use efficiency (RUE) and/or harvest index (HI) (Reynolds et
al. 2012). The contribution of breeding on the improvement
of LI is uncertain (Richards et al. 2019), with studies reporting
contrasting trends in LI among modern cultivars (Acreche et al.
2009; Yang et al. 2021). Despite the generally high LI for wheat
canopies, there might be scope for further optimizing in-canopy
light characteristics via a modified canopy architecture (Richards
et al. 2019; Slafer et al. 2021). Historically, RUE played a minor
role in the progress of wheat yields (Reynolds et al. 2000), but
recent evidence and theoretical considerations suggest it is a
promising trait to leverage photosynthesis for increasing bio-
mass production in the future (Mitchell and Sheehy 2018;
Asseng et al. 2019a; Molero et al. 2019). On the other hand,
changes in HI have been the main driver of genetic improvement
since the green revolution, increasing yields without substantial
changes in total biomass production (Slafer ef al. 2021). Even if
the potential for reduced height has been completely exploited,
further increases in HI could be reached by optimizing the
source-sink ratio and favouring spike fertility (Reynolds et al.
2017). In particular, fruiting efficiency (FE, the number of grains
produced per unit of spike dry weight at anthesis) is a candidate
trait to increase wheat YD, as it does not display trade-offs with
spike weight, and the negative relationship observed between FE
and average grain weight is likely non-constitutive (Lo Valvo et
al. 2018; Rivera-Amado et al. 2019; Curin et al. 2021).

While improving yield levels has been the main target of
wheat selection (Fischer 2020), genetic improvement may also
affect yield stability (Calderini and Slafer 1999; Sinebo 2005;

Vita et al. 2010). Yield stability is critical for decisions at different
levels of agricultural systems, from farmers’ criteria for adopting
crop cultivars to the design of policies to support prices, input
subsidies, and crop insurance (Macholdt and Honermeier
2016). Both high yield and stability are desirable goals for plant
breeding (Calderini and Slafer 1998), with stability considered
particularly important for sustainable food systems (Calderini
and Slafer 1998). The extent to which these two goals are com-
patible is conditional to the notion of stability (Becker and Leon
1988). In some settings, stability is regarded as the identical per-
formance of a genotype across all environments (static stabil-
ity). This might be preferred when selecting a crop for a marginal
region where farmers are willing to sacrifice high performance in
some years for consistent performance over all years. Conversely,
over a large region, various actors in food production value
chains may prefer crops that respond well in favourable environ-
ments, and to do so in a predictable fashion (dynamic stability)
(Walsh and Lynch 2018). Genotypes and environments interact
to produce an array of phenotypes, challenging the identification
of superior traits and cultivars (Chapman 2008). These interac-
tions are of particular interest when they introduce inconsisten-
cies in the relative rating (of yield levels) in genotypes, measured
by changes in the rank (of yield levels) in genotypes (i.e. crosso-
ver interactions, (Leon et al. 2016)). Crossover interactions play
a major role in the development of strategies for crop improve-
ment, providing a discriminating factor for targeting specific or
wide adaptation (Gauch 2013). A reduction of static yield sta-
bility was observed in response to wheat breeding (Subira et al.
2015). This was regarded as a success of breeding, as improved
genotypes performed better than predecessors under both
favourable environmental conditions as well as in relatively poor
environments (Welcker et al. 2022). Other studies reported that
wheat breeding promoted a reduction of genotype by environ-
ment interactions through the selection of genotypes with high
and stable yields across a wide range of environments (Vita et al.
2010; Voss-Fels et al. 2019), pointing at the opportunity to con-
tinue to breed genotypes with high yield, wide adaptation and
high yield stability.

Despite this, climate change imposes an additional constraint
to breeding. Recent evidence suggests that climate change has
increased crossover interactions, a critical indicator of changes
in the ranking of cultivar performance in different environ-
ments (Xiong et al. 2021). Breeding efforts for future climates
are challenging. In this context, crop models have the potential
to support genotypic adaptation (Chenu et al. 2017) by provid-
ing a way to quantify the interactions between crop traits and
climate factors affecting yield under future conditions. Such
models have been previously applied in assessing levels of trait
expression and trait combinations (Ramirez-Villegas et al. 2015;
Reynolds and Langridge 2016) as well as of plant ideotypes
(Martre et al. 2015a, 2015b; Senapati and Semenov 2020). As
they decompose yield into a number of underlying simpler
traits, crop models are suitable to assist physiological breeding,
ultimately allowing predictions about the value of new cultivars
in terms of YP, genotypic adaptability and stability.

Against this background, the present study uses process-based
simulations to assess (i) the yield stability of lines with high YP
and (ii) to what extent the yield benefits from high-yielding trait
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combinations are expressed in extreme years, under current and
climate change scenarios.

2. MATERIALS AND METHODS

2.1 Crop model description

A modelling solution developed within the SIMPLACE (Enders
et al. 2023 ) modelling framework (www.simplace.net), was used
to simulate growth and development of a population of virtual
wheat genotypes differing for RUE, FE and light extinction coef-
ficient (KDIF). The solution (SIMPLACE-LS hereafter) com-
bined the LintulS crop growth model (Wolf 2012), a modified
version of the soil water balance named SlimWater (Addiscott
and Whitmore 1991), the United Nations Food and Agriculture
Organization's Irrigation and Drainage Paper 56 (FAO-56)
dual crop coefficient procedure for calculating crop evapotran-
spiration (Allen et al. 1998), and modules for estimating the
nitrogen demand and supply (Addiscott and Whitmore 1991),
hourly canopy temperature (Webber et al. 2016) and heat stress
(Gabaldén-Leal et al. 2016) as described more fully in Webber
et al. (2018) and Webber et al. (2020). SIMPLACE-LS simu-
lates crop biomass accumulation as a function of RUE and inter-
cepted radiation. RUE is modulated by water and nutrient stress,
mean temperature and CO, concentration. Incoming radiation
is intercepted by the canopy based on the leaf area index and
KDIF following Beer’s Law. Initial leaf area expansion is expo-
nential as it is assumed to only be limited by radiation capture
until leaf area reaches a value of 0.75 or a development stage of
0.2 is reached. After this time, leaf area expansion is limited by
dry matter partitioning to leaves as the product of daily biomass
increment and a development stage-specific leaf area parame-
ter. Changes in assimilate partitioning to different plant organs
(roots, stems, leaves and grains) are driven by phenological
development, simulated as a function of accumulated tempera-
ture sums, photoperiod and vernalization requirements. Water
use is simulated as the maximum of soil plant available water or
daily potential crop evapotranspiration. The latter is determined
as the product of daily reference crop evapotranspiration (ET0)
and the FAO-56 dual crop coeflicient estimated using daily sim-
ulated leaf area index. Daily plant available soil water is deter-
mined with a modified version of SLIM Water and SLIM Roots
(Addiscott and Whitmore 1991). Water stress is simulated when
daily water uptake is less than daily potential crop evapotran-
spiration. In this case, a reduction factor equal to the ratio of
water uptake to potential crop evapotranspiration reduces RUE,
increase partitioning to roots and increases crop canopy tem-
perature, potentially increasing simulated heat stress impacts as
described in detail by Webber et al. (2016) and Gabaldén-Leal
et al. (2016). Elevated atmospheric CO, concentrations act to
increase RUE and reduce stomatal conductance. The later acts
to reduce the daily rate of transpiration and also raise canopy
temperature, consistent with experimental evidence in wheat
(Kimball et al. 1999). SIMPLACE-LS extended the model solu-
tion as described in Webber et al. (2018) and Webber et al. (2020)
with a new component to allow for sink-limited grain growth
according to the model proposed by Weir et al. (1984) and
implemented in AFRCWHEAT? (Porter 1993). Before anthe-
sis, the partitioning scheme was modified to enable ear growth.
The ear weight and FE (cultivar-specific parameter) determine
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the number of grains set at anthesis. Grain growth is modelled by
allocating all the net assimilate produced after anthesis to grains.
The specific amount of assimilates (20 %) stored in leaves/stems
before anthesis translocate to grains which can be boosted to 30
% by increasing drought intensity based on the method devel-
oped by Soltani and Sinclair (2012). The assimilate demand for
grain filling is determined by the grain number and a temper-
ature-dependent daily maximum growth rate for grain. Grain
growth stops when physiological maturity is reached. All yields
are simulated on a dry matter basis (assuming 0 % moisture con-
tent) and are reported as such throughout this article.

2.2 Global simulations: location and data description

Simulations of wheat growth and development with both cur-
rent traits and improved traits (described in Section 2.3) were
conducted at 34 global sites (see Supporting Information—
Table S1 and Fig. 3) as part of the Agricultural Model
Intercomparison and Improvement Project(AgMIP) Wheat
team study examining potential of improved traits to increase
YP for historical and possible weather scenarios, as reported
by Guarin et al. 2022. Of these sites, 30 were considered in
past studies (Asseng et al. 2015, 2019b) to represent major
wheat-growing regions which collectively produce about 70
% of global wheat (Reynolds and Braun 2013). These sites
are either irrigated or characterized by high annual average
rainfall, with high average annual yields > 4 t ha™'. Each site
was characterized with a representative soil profile consid-
ering soil depth and soil horizons described by soil water
holding characteristics and texture. The source of the soil
data varied (see Supporting Information—Table S1), using
published profile descriptions where available and taking pro-
file descriptions from the World Inventory of Soil Emission
Potential (WISE) soil database (Batjes 2016). For the first
30, expert information about main wheat cultivars in each
region (e.g. photoperiod sensitivity, vernalization sensitiv-
ity, observed phenology) was assembled in a previous study
(Asseng et al. 2015, 2019b) and considered here to define
the growing season duration and phenology traits in the sim-
ulations for both current and improved traits. For the other
four simulated sites, Buenos Aires (Argentina); Leeston (New
Zealand); Rots (France); and Valdivia (Chile), detailed data-
sets including phenology, biomass dynamics and yield com-
ponents were available for phenology trait calibration (Dueri
et al. 2022; Guarin et al. 2022). Simulations were conducted
with historical data for the 1981-2010 harvest years. Future
scenario simulations were conducted for 2040-2069 for a
moderate and high greenhouse gas representative concen-
tration pathway (RCP), RCP4.5 and RCP8.S respectively,
for five global climate models (GCMs) used by Asseng et al.
(2019b): Hadley Centre Global Environment Model version
2 (HadGEM2-ES), Model for Interdisciplinary Research on
Climate (MIROCS), Max-Planck Institute - Earth System
Model version 1.2 at medium resolution (MPI-ESM-MR),
Geophysical Fluid Dynamics Laboratory coupled general
circulation model (GFDL-CM3) and Goddard Institute for
Space Studies General Circulation Model - Russell (GISS-
E2_R) (Taylor et al. 2015). These climate scenarios were gen-
erated using the Enhanced Delta Method (Ruane ef al. 2015)
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which accounts for shifts in both mean and standard deviation
(SD) of temperature, mean of precipitation and the number of
rainy days. The method has previously been used in the study
of Webber et al. (2018). Irrigation was simulated to capture
the predominant production case as indicated in Supporting
Information—Table S1. For the irrigated simulations, irriga-
tions were applied such that the wheat experienced no water
stress. Nitrogen limitation was not considered in any of the
simulations as these are all high-yielding regions where nitro-
gen is applied to reach close to YP (irrigated production) or
water-limited YP (rainfed conditions). All scenarios under
climate scenarios considered elevated CO, levels (Toreti et
al. 2020), with the corresponding levels: baseline: 360 ppm;
RCP4.5: 499 ppm and RCP8.4: 571 ppm.

2.3 Simulation of virtual genotypes

For each of the 34 sites, locally adapted cultivars were simulated
through site-specific phenology calibration of two parameters
(vernal-photothermal times to anthesis; and thermal time from
anthesis to maturity) based on sowing, anthesis and maturity
dates, as well as vernalization requirement and photoperiod
sensitivity typical of each location (Asseng et al. 2019b). In
addition to the two phenology traits, experimental data were
available for three modern varieties which were grown at S of
the 34 sites, allowed direct calibration of the traits under study
to set the baseline trait values ((Dueri et al. 2022; Guarin et
al. 2022); Table 1). For the other 29 sites, the average value of
RUE and FE from these three cultivars were denoted as default
and used as baseline trait values for the. For these sites, the value
of KDIF calibrated in previous studies (0.6, Liu et al. 2021) was
maintained. From each of these parameterizations at each of the
34 sites for the locally adapted cultivars, 1782 virtual genotypes
per site were generated from the combination of trait levels
exploring a range from + 0 % to + 34 % for RUE, +0 % to + 20
% for KDIF and —10 % to + 10 % for FE (Table 1) relative to
the calibrated baseline values. The maximum value of RUE and

KDIF were selected based on observed values from an improved
high-yielding doubled haploid (DH) line resulting from a cross
between cv. Bacanora and cv. Weebil as compared to the check
variety Bacanora. Details are reported in Guarin et al. (2022).
However, as FE decreased in this DH line, we explored a range
of FE both above and below the reference value. The absence
of correlations among the traits analysed (Molero et al. 2019)
supported the adoption of a full factorial design for sampling
the trait space. The establishment of the RUE range was cor-
roborated by experimental evidence (Garcia et al. 2014). As
the link between RUE and grain number is not directly estab-
lished in crop models as a cultivar-specific parameter, while the
increased grain numbers in DH lines indicated a strong regula-
tory impact on RUE (Bustos et al. 2013), we identified a broad
variation in RUE in our modelling experiment. Other research
findings have also suggested that the advantages of increasing
grain numbers on crop yield are reliant on adequate source
availability (Zhang et al. 2019). Exploration of a wider range
for KDIF and FE was supported by the literature (Zhang et al.
2014; Slafer et al. 2015).

2.4 Stability measures

The stability of virtual genotypes was characterized inde-
pendently for each location in the baseline climate and for the
combinations of location X RCPs x GCMs under climate
change. Within each location, stability was evaluated across
years.

Standard deviation (SD) of yield (y) across years was used
as a measure of temporal yield variability. The coeflicient of
variation (CV), contextualizes the variability against yield lev-
els by dividing SD by the mean yield over the same period.
As such, SD and CV were used as inverse measures of (static)
stability.

The rank and rank variability (RV) were adopted as nonpar-
ametric measures of the genotype performance and stability,

Table 1. Trait values used to generate the virtual genotypes in this study. The virtual genotypes (n = 1782) result from the factorial
combination of the trait levels, reported as percent change compared to base parameterization.

Traits
Radiation use Canopy light extinction Fruiting efficiency
efficiency (RUE) coefficient (KDIF) (FE)
Units gMJ ' of PAR - grains g™ ear
Range explored (min/max, 0%/+34 % 0%/+20 % “10%/+10 %
relative to base value)
Levels (Step) 18 (2%) 11 (2%) 9(2.5%) Total = 1782
Cultivar Base values Locations
Apache’ 2.6 (pre-anthesis) 0.6 130 France—Rots
2.0 (post-anthesis)
Bacanora’ 2.9 (pre-anthesis) 0.5 154 Mexico—Obregon
1.9 (post-anthesis) Chile—Valdivia
Argentina—Buenos Aires
Wakanui’ 2.79 (pre-anthesis) 0.52 103 New Zealand—Leeston
2.0 (post-anthesis)
Default 2.7 (pre-anthesis) 0.6 130 Elsewhere

2.0 (post-anthesis)

“Calibrated for the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat modelling phase 4 exercise.
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respectively. Genotypes were ranked from 1 to n (1782) based
on decreasing average yield in the time series. RV was meas-
ured as the square root of Huehn’s S2 index (Eq.1; Huehn
1990), representing the variance of ranks over environments

(years):

_ X (= 7)°
q—1 (1)

where r,is the rank of the ith genotypes in the jth environment,
7; the average rank across environments and q the number of
environments. The lowest value of the index indicates maximum
stability among the genotypes analysed; values > 0 indicate the
presence of crossover interactions, that is changes in the rank of
genotype i within the time series.

The Finlay-Wilkinson regression approach (Finlay and
Wilkinson 1963) was used to assess how the expected yield (y)
of a genotype varied as a function of the environmental effects.
The two-step ordinary least-square procedure implemented in
the R package FW (Lian and Los Campos 2015) estimated the
parameters of the model (Eq. 2):

S2;

yi=p+g+ (1+b)h+ey (2)

where y is the yield of ith cultivar and jth environment (year),
p is mean yield across cultivars and environments, g is the
main effect of ith cultivar and hj is the main effect of the jth
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environment (year), and e_is an error term which is equal to zero
for the simulated data. The multiplicative term of hj (b, + 1, the
slope of the regression) is the change of expected cultivar per-
formance per unit change of the environment effect, a measure
of the linear sensitivity of a genotype to the environment (also
known as responsiveness, e.g. Calderini and Slafer 1999). The
values of b, are obtained by the best fit over all genotypes and
environments in the sample. The particular value of b, is thus a
relative measure of sensitivity of a genotype compared to the
set of genotypes analysed. Static stability would require a value
of b, near -1, giving a slope near 0. Conversely, genotypes with
b, > 0 may perform well in good environments but underper-
form in bad ones. To identify and quantify these possible trade-
offs across environmental conditions, yield gains derived from
improved traits (as delta yield between virtual and base geno-
types) were regressed on the environment effect. The marginal
effect of a given trait on SD, CV, RV and environment sensitivity
was analysed by setting the other traits to the respective optimal
value, that is the trait value maximizing average yield.

3. RESULTS

3.1 Traitinfluence onyield, yield stability and genotype
ranking under baseline climate

Higher values of any of the traits considered resulted in a yield
increase across all sites under baseline climate (Fig. 1A-C).
The magnitude of the increase was trait-dependent and dif-
fered between irrigated and rainfed environments. RUE had
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Figure 1. Response of mean yield (A-C) and standard deviation (D-F) to changes in trait values under baseline climate across all sites

and years. Trait values are expressed as percentage change compared to the base parameterization. Solid lines and shaded areas represent,
respectively, the median and the interquartile range of mean yield (A-C) and standard deviation (D-F) across sites. In each panel, the value of
the remaining two parameters is fixed to its value that maximizes yield (A, D: KDIF = +20 %, FE = +10 %; B, E: RUE = +34 %, KDIF = +20 %;

C, F: RUE = +34 %, FE = +10 %).
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the most prominent marginal effect on yield, which increased
by about 45 % and 33 % in irrigated and rainfed sites, respec-
tively, between the minimum and maximum value of the trait,
shown in Fig. 1A with other trait values held at value that max-
imized yield. Changes in FE (Fig. 1B) had a comparatively
smaller effect on yield, and total gains across the full range of
the investigated trait values for FE were consistent between
irrigated (+11 %) and rainfed (+10 %) conditions. The gains
from increasing KDIF, on the other hand, were lower and
mainly expressed under irrigation (+9 % compared to + 3.5
% in rainfed systems; Fig. 1C). On average, a 1 % increase of
RUE was associated with a yield gain of 0.11 t ha™! (irrigated)
and 0.07 t ha™! (rainfed). The respective values for FE were
0.06 and 0.04 t ha™!, whereas for KDIF 0.05 and 0.02 t ha™".
Inter-annual variability, measured by SD, was higher in rainfed
environments and generally increased with trait values pro-
ducing higher yield (Fig. 1D-F), with the exception of FE in
irrigated environments. In these conditions, the variability was
approximately constant across the range of trait values, leading
to a slight reduction in CV (see Supporting Information—Fig.
S1). In rainfed environments, yield variability increased by
16 % when FE increased within the range of values explored
(Fig 1E). The SD across sites responded to changes in RUE
increasing by almost 50 % in both irrigated and rainfed con-
ditions (Fig 1D). For KDIF, the increase of SD was relatively

1500-

larger under irrigation (+16 %) than without (12 %; Fig 1F).
Differences across sites in the magnitude of the increase of
yield and SD led to small divergences in the response of CV to
changes in traits (see Supporting Information—Fig. S1), oth-
erwise consistent within the trait values explored.

Genotype ranking was largely determined by the value of
RUE. Even at high levels of KDIF (+20 %) and FE (+10 %), in
all sites the genotype with the lowest (base) RUE values were
among the poorest performing, ranked around position 1500
out of 1782, that is below the bottom 20th percentile of the rank
of the virtual genotypes by average yield (Fig. 2A). Conversely,
genotypes with the highest RUE values ranked above position
250 (85th percentile) and 100 (9Sth percentile) depending on
the value of FE and KDIF, respectively (Fig. 2B and C). The var-
iability of genotype ranking across years was minimal with the
trait values that maximized yield levels: changes in the genotype
ranking (crossover interactions) were consistently reduced with
increased RUE, FE and KDIF (Fig. 2D-F), corresponding to
genotypes with rank closer to one (Fig. 2A-C). Ranking vari-
ability was highest when FE varied. The highest RV was asso-
ciated with low values of FE in rainfed environments (Fig. 2F).
Compared to the evaluation of genotype performance based on
yield level and SD, less pronounced differences were observed
between irrigated and rainfed systems on the basis of ranking
statistics.
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Figure 2. Response of genotype ranking (A-C) and ranking variability (D-F) to changes in trait combination values under baseline climate.
Trait values are expressed as percentage change compared to the base parameterization. Solid lines represent the median across sites and
shaded areas the interquartile range. While all trait combinations were explored, results are visualized by panel to show the response to changes
in radiation use efficiency, RUE (4, D), fruiting efficiency, FE (B, E) and extinction coefficient, KDIF (C, F) keeping the value of the remaining
two parameters is fixed at the value which maximized yields (A, D: KDIF = +20 %, FE = +10 %; B, E: RUE = +34 %, KDIF = +20 %; C, F:
RUE = +34 %, FE = +10 %). Note a rank near one indicates a best-performing cultivar, while RV near one implies the trait always produces the

same ranking.
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3.2 Yield, yield stability and genotype ranking under climate
change

For the evaluated trait combinations, the sign and magni-

tude of yield and inter-annual yield variability changes under

climate change differed across sites (Fig. 3). Under RCP

4.5 (see Supporting Information for RCP8.5), both aver-

age yield and SD increased across genotypes in about half
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of irrigated sites and one third of the rainfed sites (similarly
for Manhattan, Kansas, USA (USMN) in Fig. 3G). With the
exception of Buenos Aires, Argentina site (ARBU), this led
to a general increase in the CV that, averaged across all the
genotypes tested, reached + 4 % in USMN (see Supporting
Information—Fig. S2). An increase of yield together with
reduced yield variability (e.g. Wageningen, The Netherlands
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Figure 3. Spatial distribution of the study sites with their mean yield and standard deviation (SD) for base with unchanged trait values

(A) and virtual genotypes exploring combinations of improved trait values (B~G) under baseline climate (A-D) and their changes under
climate change scenario RCP 4.5, (E-G). Full names of each site are provided in Supporting Information—Table 1. Changes are reported as
deltas between future and baseline values. Three sites are selected to illustrate different responses to climate change. In panels B-G, selected
genotypes (including the base trait values, squares) are highlighted, with error bars representing the interquartile range across the five GCMs.
Small dots represent the rest of the virtual genotypes tested. All rainfed environments are considered as having on average high, adequate

rainfall and N supply to allow high yields levels.
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(NLWA) in Fig. 3F), and a consequent reduction of CV
resulted in almost half of the rainfed sites (up to about —20
% change in CV) and only 3 out of 21 irrigated ones (up to
-4 % change in CV; see Supporting Information—Fig. S2).
An increase of CV derived from the concurrent reduction of
yield and increase of SD was observed in four irrigated sites
(up to + 17 % change in CV) and one rainfed (+1 % change in
CV). In the remaining sites (four irrigated and two rainfed),
SD of yield either decreased (associated with a reduction of
yield) or displayed a variable response across the genotypes
(as in Leeston, New Zealand—NZLE, Fig. 3E), resulting in a
variable effect on CV. Despite the differences in the magni-
tude of the change in mean yield and SD, the changes in CV
were generally consistent between base (unchanged) trait val-
ues and improved trait values (see Supporting Information—
Fig. S2).

Under baseline climate, genotypes at the opposite ends of the
rank (i.e. lowest- and highest-yielding ones) displayed the high-
est ranking stability, with RV greatly increasing for cultivars in the
middle of the ranking (Fig. 4A-C). This pattern was consistent
across locations and RCPs (see Supporting Information—Fig.
$3). The influence of climate change on the ranking variabil-
ity differed among genotypes. While for most the change was
site-dependent, the highest-ranked genotype identified in the
baseline almost always remained the best genotype across all
sites (Fig. 4D-F and see Supporting Information—Fig. $3). In
addition to the higher yield gains obtained under climate change
compared to the population of virtual genotypes (Fig. 4D-F),
this indicated that these genotypes (yellow diamond in Fig. 4)
remained stable at the top of the ranking. The base genotype
(blue square in Fig. 4) which was among the lowest yielding,

generally displayed minor changes in ranking variability under
climate change (Fig. 4D-F and see Supporting Information—
Fig. S3).

A single trait combination (RUE +34 %, FE+ 10 %,
KDIF + 20 %, at the upper simulated end of all three trait
changes, ‘best genotype’ hereafter) outperformed all the virtual
genotypes in terms of average yield in 32 of the 34 sites under
baseline climate. In the remaining two sites, the highest average
yield was achieved by trait combinations differing from the best
genotype only for KDIF. In Buenos Aires, Argentina (ARBA),
the genotype with KDIF value of + 12 % out-yielded the best
one by only 0.01 t ha™, whereas in Harbin, China (CHHA)
the difference obtained with KDFI + 16 % was more marked
(0.15 t ha™'). Under future climate scenarios, the ‘best geno-
type’ outperformed all the others in each site, including ARBA
and CHHA. This response was consistent across almost all
(332/340) combinations of site x RCP x GCM. The very few
exceptions occurred mostly under RCP8.S, where the difference
in average yield compared to the overall ‘best genotype’ reached
almost 3.0 t ha™'. The changes in yield and SD of the best geno-
type (summarized in Fig. SA) were in line with those observed
for the rest of the virtual genotypes. Changes in ranking and
ranking variability under future scenarios (Fig. SB) indicated
changes in the frequency of crossovers between years in the ‘best
genotype’. Even in the presence of crossover, however, the differ-
ence in yield was negligible in almost all cases, with few extreme
exceptions (see Supporting Information—Fig. S4). The positive
association between changes in ranking and in stability for the
‘best genotype” (Fig. SB) pointed to an increased (decreased)
RV associated with a worse (better) position in the rank under
climate change.
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Figure 4. Ranking variability of base trait values (squares) and virtual genotypes under baseline climate (A-C) and the change in RV under
climate change scenario RCP 4.5 (D-F). Changes are reported as deltas between future and baseline values. Selected genotypes (including the
base one, blue squares) are highlighted, with error bars representing the interquartile range across the five GCMs. Small dots represent the rest

of the virtual genotypes tested.
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environment explained in Section 2.3.

3.3 Yield gains from improved crop traits across
environments

The increased inter-annual variability displayed by the highest
yielding genotype compared to the base parameterization was
associated with yield gains along all environmental conditions
(i.e. years within a site; Fig. 6). Across all year x location com-
binations explored, the ‘best genotype’ was never outperformed
by the base one (data not shown). Under baseline climate, gains
were higher in irrigated sites (average of 4.1 t ha™' for the ‘best
genotype’ across locations) than under rainfed ones (average 3.2
t ha™'). Across locations, yield gains from improved crop traits
were more variable in rainfed sites (spanning from an average of
1.2 tha™ in Kojonup, Australia (AUKO) to 6.7 t ha™' in Valdivia,
Chile (CLVA)) than in irrigated sites (from 2.9 t ha™' in Nanjing,
China (CHNJ) to 5.2 t ha™! in Ludhiana, India (INLU)).
Yield gains were consistently smaller in relatively worse years

(corresponding to negative environment effect) than under
favourable (positive environmental effect) conditions (Fig. 6).
The gains ranged from 0.04 t ha™! (worst year) to 2.4 t ha™ (best
year) in AUKO, whereas the respective values for CLVA were 4.6
and 7.7 tha™! (rainfed sites). In CHNJ and INLU (irrigated), the
gains ranged respectively from 2.4 to 3.4 tha™ and from 4.0 to 6.0
t ha™ between the worst and best year of the time series. Across
sites and environmental conditions, yield gains of the ‘best geno-
type’ were distributed around 49% (rainfed) and 53% (irrigated)
of the yield achieved by the base genotype. The advantage from
improved traits displayed in the baseline was preserved under
climate change, with only minor differences across locations
(Fig. 6). On average, yield gains for the best genotype increased
under RCP4.5 by 0.06 t ha™' in irrigated conditions and 0.34 t
ha™! in rainfed sites. The respective values for RCP8.5 were 0.2 t
haand 0.6 tha™.
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The slope of the Finlay-Wilkinson regression highlighted an
increased sensitivity to changes in environmental conditions for
improved genotypes. This was mostly driven by changes in RUE:
with the other traits being at their optimal value (i.e. FE = +10
% and KDIF = +20 %), the slope of the regression ranged from
0.86 to 1.1S for irrigated sites and from 0.89 to 1.23 for rainfed
sites under baseline climate across the range of trait variation
explored (Fig. 7A). Genotypes with the highest RUE (+34 %)
displayed higher environment sensitivity than the base geno-
type regardless the value of the other traits (slope always > 1 in
Fig. 7B and C). The marginal contribution of KDIF to genotype
sensitivity was comparatively smaller than RUE (Fig. 7C). Also
in this case, the slope of the regression increased with increasing
values of KDIF, and genotypes displayed a lower sensitivity in
irrigated sites than in rainfed ones, likely due to the wider range
of drought stress conditions explored in the latter. Higher FE val-
ues determined an increasing sensitivity only under rainfed con-
ditions, whereas with irrigation the slopes were consistent within
the range of FE explored. With irrigation, therefore, changes in
FE did not alter the environmental sensitivity of the genotypes.
Under climate change, the sensitivity of the genotypes to envi-
ronmental conditions was either comparable or reduced across
the trait space compared to baseline climate (Fig. 7). Effects of
elevated CO, reducing transpiration rates implemented in the
model reduced the effects of marginal drought under irrigated
conditions under a moderate climate change scenario (RCP4.5,
result not shown).

4. DISCUSSION

4.1 Implications for breeding for YP in a changing climate

This study used a crop simulation model to evaluate the rela-
tionship between crop traits conferring high yield and yield
stability as this varied across major wheat-growing areas and
climate scenarios. The model was tested against experimental
data from modern cultivars grown in high-yielding environ-
ments (Dueri et al. 2022; Guarin et al. 2022) where it demon-
strated its suitability for the simulation of wheat YP under
favourable conditions while displaying a coherent response to

changes in crop traits values (Bustos et al. 2013). In particular,
the model was specifically extended to account for sink-limi-
tations during grain growth for an appropriate description of
the influence of FE on yield formation. The simulation results
confirmed the importance of constitutive traits conferring
high yields across environments for achieving wide adapta-
tion. Regardless of the location or environmental conditions,
increased RUE led to higher simulated yields, and the high-
est-yielding genotype identified was stable in terms of ranking.
In particular, among the traits considered, improved RUE was
the most effective in raising YP, thus supporting the idea of pri-
oritizing increased photosynthetic efficiency for future breed-
ing efforts (Reynolds ef al. 2012; Zhao et al. 201S5; Slattery
and Ort 2021). FE also appeared as a relevant target trait for
breeding (Slafer et al. 2015). On the one hand, increasing the
value of this trait produced consistent yield gains under irri-
gated and rainfed locations while, on the other hand, lower FE
values were associated with a reduced ranking stability of the
genotypes.

Higher yields from improved traits were generally associ-
ated with increased inter-annual yield variability (measured by
SD), but the relative yield variability (as CV) remained largely
unchanged between the base traits and improved genotypes. In
this context, improved wheat would remain a low-risk crop for
farmers (Cernay et al. 2015), and the adoption for high-yielding
cultivars should not be hindered by their yield variability, mainly
in high-yielding environments. Such trait combination leading
to simultaneous improvement in yield stability and high yield
across environments is also captured for other crops such as oil-
seed rape (Du ef al. 2020). Additionally, optimum crop manage-
ment has been shown to counteract variability associated with
GxE, such that increasing yields through using higher-yielding
cultivars with more modern farming systems does not appear to
necessarily decrease yield stability (Calderini and Slafer 1998).
However, in other studies, improved crop traits led to a greater
sensitivity to changes in environmental conditions. For instance,
there was a trade-off between yield increase and yield stability
of soybean under non-optimal management across environ-
ments (Zhang ef al. 2022). Under the conditions explored here,
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Figure 7. Sensitivity to environmental conditions (slope of the Finlay-Wilkinson regression, see Section 2.4) as influenced by changes trait
values. Trait values are expressed as percentage change compared to the base parameterization. Solid and dashed lines represent the mean
across sites under baseline and climate change (RCP4.5) conditions, respectively. The shaded areas represent the variation of such mean
(interquartile range) across the five GCMs. To aid visualization, in each panel, the value of the remaining two parameters is fixed to an
optimum value (A: KDIF = +20 %, FE = +10 %; B: RUE = +34 %, KDIF = +20 %; C: RUE = +34 %, FE = +10 %).
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however, no trade-offs in yields were observed for improved gen-
otypes, thatis the genotype with the best average performance did
not underperform in relatively worse environments. Conversely,
higher yields in optimal environments (i.e. good years within a
site) translated into yield spillover in relatively more marginal
conditions (unfavourable years). Simmonds (1991) argued that
lines selected for high performance in high-yielding environ-
ments may often underperform in low-yielding environments.
Despite the higher sensitivity to environment conditions, how-
ever, improved genotypes still outperformed the base genotype
over the range of the environments tested. While such result may
be influenced by the sampling of the locations for the current
study (high yielding, either irrigated or characterized by high
rainfall), this is in line with previous findings confirming that
the trend described by Simmonds (1991) has yet to become an
issue. In Argentina, Australia, Italy and the UK, modern culti-
vars have consistently out-yielded older ones, even in the low-
est-yielding conditions and despite the increased environmental
sensitivity associated with increased YP (Del Pozo et al. 2021),
as well as in high-yielding environments. In general, constitu-
tive traits maximizing productivity sustained a significant yield
improvement also under moderate stress (Vita et al. 2010), thus
making modern elite cultivars genetically more suitable than
older wheat cultivars to increase productivity in low-input pro-
duction systems (Voss-Fels et al. 2019).

This results of this simulation study suggest a limited prospect
for targeted breeding for YP when informed only by simulation
modelling capturing these traits in response to climate and soil
and no other limiting factors. Importantly, we must stress that
our study also assumed phenology adapted to each environment
and as such identified a combination of traits, not a genotype.
With this in mind, these study results suggest that there are
the best combination of these traits are largely constant across
mega-environments (Gauch 2013). In our study, the changes
in the genotype ranking based on average yield were minimized
while approaching the top of the ranking, and a single genotype
consistently outperformed all the others across all locations. We
realize that this is largely an artefact the fact that in this simula-
tion limiting factors were not considered, and this phenomenom
is rarely observed under actual production conditions. This is
nevertheless an interesting result as it suggests observed RV in
experiments may not be related to the traits associated with high
yield and rather adaptation to yield-limiting factors. In the simu-
lations, the lack of variability in the top-ranked trait combination
thus prevented the subdivision of the sites into sub-regions for
targeted breeding (Atlin ef al. 2000) to leverage narrow adapta-
tion for increasing YP. This finding is consistent with literature
analysing both real-world and simulated data. Reynolds and
Langridge (2016) observed that lines characterized by the best
physiological traits expressed the highest average yields across
all study sites. In a simulation study covering the UK and New
Zealand environments, Senapati et al. (2019) found that some
of the cultivar parameters were subject to a strong selection pres-
sure and converged to a single optimal value for all the locations.
Also in our study, a global optimum for combined trait values
was found, corresponding to the combination of the highest
RUE, FE and KDIF within the range explored. The consistency
of this outcome across non-stressed environments suggests that
genotype selection in a few optimal environments could be a
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successful strategy for developing superior lines for increas-
ing YP. From there, local breeders must adapt them to reflect
the local phenology, diseases resistance, quality and stressor
exposure. Indeed, root ideotypes are different for irrigated and
rainfed conditions according to several studies (Schmidt and
Gaudin 2017; Rezzouk ef al. 2022), though in our study, ideo-
types for both irrigated and rainfed conditions are almost the
same with our focus on only aboveground traits (Schmidt and
Gaudin 2017; Rezzouk et al. 2022).

Climate change was responsible for changes in both produc-
tivity and inter-annual yield variability, with changes being loca-
tion-dependent. This however, did not alter the picture outlined
under baseline climate: the best-performing trait combination
in the baseline was confirmed successful under climate change
and such best genotype was consistently the best across envi-
ronmental conditions (see Supporting Information—Fig. S4).
This allows us to cautiously suggest that current breeding efforts
aimed at increasing YP through the traits studied here may not
likely be jeopardized by climate change for the high-yielding
environments explored. However, our results are based on sim-
ulations from one model only in which the effects of elevated
atmospheric CO, largely counteract the yield losses associated
with accelerated phenology with warmer temperatures (Webber
et al. 2018). Previous modelling studies predicted the possibil-
ity of substantial increase in genetic YP of wheat under climate
change in high productive countries (Senapati et al. 2019). Our
study confirmed such projection for most of the sites analysed,
with few exceptions where a decrease in yield was associated
with an increased inter-annual variability under climate change
(see Supporting Information—Fig. S2). In these cases, genetic
improvement showed little potential for adaptation, with all the
virtual genotypes within the trait space explored displaying a
similar response.

Globally, increased yield stability has tended to be a minor
breeding objective despite its potential (Annicchiarico 2002).
Conducting such experiments to evaluate interactions between
genotype and environment are complex, challenging to interpret
and expensive. In order to ensure the reliability of yield stability
by direct selection, time and resources are used extensively to rep-
licate such experiments over several locations and years, which
is continually insufficient covering all genotype X environment
interactions (Banterng et al. 2006). Variability in observed yield
of the genotypes echoes not only the responses of the genotypes
to different soil and climatic conditions at different sites, which
are of the main target of breeding programs, but also results
from the effects of other variables, including pests and diseases
or measurement errors (Falcon ef al. 2020). Implementing new
traits such as higher RUE in modern genotypes that we projected
up to 45 % yield improvement coupling with higher yield stabil-
ity represent important advances in a range of efforts needed to
achieve food security over contrasting environments assuming
optimal management. However, yield improvement in natu-
ral conditions (not a modelling framework) would come with
potential hidden costs that could undermine future food secu-
rity. Higher biomass accumulation would demand to maintain
synthetic fertilizers rate and increase the pesticide application to
ensure productivity (Hawkesford 2014) and control pests and
diseases (Bilsborrow et al. 2013), projected to more frequent
outbreaks associated with climate change (Bajwa et al. 2020).
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Those factors would have long-term negative environmental and
economic consequences on sustainability of cropping systems
(Cook 2006).

The economic significance of releasing high-yielding, more
stable genotypes from the scale of farmers’ income to global
wheat market volatilities are considerably more challenging to
predict (Shiferaw et al. 2013). Supply and demand balance and
oil price (as a primary substance of synthetic fertilizers) are the
most influential drivers of fluctuations in food price (Tadesse et
al. 2014). Here is where economic scenario analysis comes into
play to evaluate whether the modern genotypes can revert the
global wheat market to an age of over-supply or an increase in
food demand is consistently larger than supply (Fuss et al. 2015;
Le Mouél and Forslund 2017).

4.2 Role and limitations of the modelling study in

supporting breeding
Crop models can be employed to support breeding efforts for
overcoming such challenges to measure the yield stability and
gain of the genotypes over the environments, separately con-
trolling the effects of other influencing variables (e.g. pests and
diseases, environmental heterogeneity, or measurement errors)
and testing the performance of the genotypes across an unlim-
ited number of environments (Suriharn et al. 2008; Chenu et al.
2011; Salmerén et al. 2017; Clarke et al. 2019). Comparing the
results of yield stability analysis from multi-environment exper-
iments and crop model outcomes showed that simulated yield
is overestimated as expected; however, the crop model captured
the relative mean yield change across the environments for study
genotypes (Banterng et al. 2006). Modelling genotype X envi-
ronment interactions can support breeding programs in raising
YP by testing virtual genotypes well before a resource-intensive
and time-consuming selection takes place (Chapman 2008;
Chenu et al. 2011; Robert et al. 2020). Moreover, in a changing
climate, models can provide timely assessments of the produc-
tivity of current elite genetic material, as well as of the potential
for genetic adaptation to anticipated climate change (Lopes et
al. 2015; Hammer et al. 2020). However, the accurate predic-
tion of genotype performance across multiple environments
is conditional to the availability of crop models accounting for
the necessary physiological processes at an appropriate level of
complexity, the development of a well-constrained parameter set
and the quality of the input data to drive the model (Ramirez-
Villegas et al. 2020).

The methods and model used in this specific study also suf-
fered a number of limitations. While baseline default cultivars
were locally adapted by calibration of thermal times and con-
sidering photoperiod sensitivity and vernalization require-
ment typical in each region, the study considered only three
improved modern varieties in defining baseline trait values
which is clearly a simplification. As for the model used in this
study, again it was tested against experimental data from mod-
ern cultivars grown in only a few high-yielding environments
(Dueri et al. 2022; Guarin et al. 2022). While it demonstrated
its suitability for the simulation of wheat YP under favourable
conditions where it displayed a coherent response to changes
in crop traits values (Bustos et al. 2013), we did not test it
across all sites studied. Furthermore, we acknowledge that the

model does not include all the relevant interactions among
the traits studied. For example, the possibility that RUE may
be indirectly influenced by sink limitation (Liang et al. 2018)
is ignored in the implementation used in this study, though
the current state of understanding for source-sink interac-
tions—recently published as a wiring diagram—supports the
possibility to do so (Reynolds et al. 2022). Moreover, model
improvements are necessary to include the effects of drought
(Ratjen et al. 2012) and heat stress (Maiorano et al. 2017) on
spike fertility. While this was not a critical issue for the cur-
rent study due to the focus on high yielding, either irrigated or
high-rainfall locations, such improvements will become nec-
essary for extending the analysis to low-yielding environments
characterized by a more frequent occurrence of stresses. The
present study outlined the possibility for improved crop traits
to raise YP with no trade-offs in terms of yield stability under
current climate and climate change scenarios, but such out-
come was supported by the results of a single crop model.
However, as the crop model structure is a main source of
uncertainty in modelled response to changes in crop traits and
climate conditions (Martre et al. 2015c), a next step to extend
this study would be to apply a multi-model ensemble to quan-
tify the uncertainty bracketing these outcomes. However, it
will be challenging to understand and explain the behaviour
of a multi-model median without investigating individual
models where there is a genotype by climate-year by model
interaction.

The determination of crop model parameters is crucial for
the model to correctly capture genotype behaviour across dif-
ferent environments. The trait space explored—represented by
the range of model parameters—was supported by both exper-
imental data (Bustos et al. 2013) and the literature on the traits
considered (Reynolds et al. 2007; Furbank et al. 2015; Slattery
and Ort 2021). Despite being focussed on relevant traits and
levels of expressions for breeding, the results of our analysis
were constrained by the specific trait space explored. A global
optimum of trait combinations may lay beyond these bound-
aries, and it may require to take into account additional traits.
In our relatively simple parameter space, we could assume no
correlation among the traits selected (Molero et al. 2019).
This choice was consistent with other model-based ideotyping
studies (Casadebaig et al. 2016; Senapati et al. 2019), but such
approach could be inadequate when considering a more com-
plexlandscape of trait combinations. In any case, moving from a
set of prescribed changes in model parameters to a range of phe-
notypic screens that are measurable and can be selected for in
breeding trials remains a challenging process (Ramirez-Villegas
et al. 2020).

Finally, this study focussed by design on high-yielding envi-
ronments. Despite the sampling of favourable sites, the anal-
ysis of bad years provided an indication of a yield spillover
effect improving yields under relatively marginal conditions,
outlining breeding for high YP as a win-win situation across
environments both in terms of productivity and yield stabil-
ity. However, further study is required to explore the benefits
of improved traits for YP in more marginal environments, to
confirm the absence of trade-offs under limiting growing con-
ditions (Reynolds et al. 2011; Zhao et al. 2015; Slattery and
Ort 2021).
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5. CONCLUSIONS

This study has addressed the question as to whether higher
potential yields could possibly jeopardize efforts towards food
security by introducing higher yield variability and possibly
yield failures in the face of climate change. The results of simula-
tion study using a single crop model suggest that such trade-offs
are not likely to appear under average climate change conditions
for high-yielding traits in high-yielding wheat regions. However,
potential environmental costs and risks associated with higher
nitrogen fertilization rates required to achieve high yields, par-
ticularly in the face of increasingly variable and extreme climate
were not included in our study. The study provides some prom-
ise of the possibility to increase YP across environments without
increasing relative yield variability.

SUPPORTING INFORMATION

The following additional information is available in the online
version of this article —

ACKNOWLEDGEMENTS

The study was supported by the International Wheat Yield
Partnership (IWYP, grant IWYP11S), through funding
the International Maize and Wheat Improvement Center
(CIMMYT) and by the Agricultural Model Intercomparison
and Improvement Project (AgMIP). P.M. acknowledges sup-
port from the metaprogram Agriculture and forestry in the face
of climate change: adaptation and mitigation (CLIMAE) of
the French National Research Institute for Agriculture, Food
(INRAE). A.C.R. received support via NASA Earth Sciences
funding for the GISS Climate Impacts Group.

CONFLICT OF INTEREST STATEMENT

We have no conflicts of interest.

REFERENCES

Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, Oliveira AC
de, Cseke L], Dempewolf H, Pace C de, Edwards D, Gepts P, Green-
land A, Hall AE, Henry R, Hori K, Howe GT, Hughes S, Humphreys
M, Lightfoot D, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC,
Ortiz R, Paterson AH, Tuberosa R, Valliyodan B, Varshney RK, Yano
M. 2016. Global agricultural intensification during climate change: a
role for genomics. Plant Biotechnology Journal 14:1095-1098.

Acreche MM, Briceno-Félix G, Martin Sanchez JA, Slafer GA. 2009.
Radiation interception and use efficiency as affected by breeding in
Mediterranean wheat. Field Crops Research 110:91-97.

Addiscott TM, Whitmore AP. 1991. Simulation of solute leaching in soils
of differing permeabilities. Soil Use and Management 7:94-102.

Allen RG, Pereira LS, Raes D, Smith M. 1998. FAO irrigation and drainage
paper No. 56. Rome: Food and Agriculture Organization of the United
Nations 56, e156.

Annicchiarico P. 2002. Genotype x environment interaction. Challenges and
opportunities for plant breeding and cultivar recommendations. Rome,
Great Britain: Food and Agriculture Organization of the United
Nations.

Asseng S, Ewert F, Martre P, Rétter RP, Lobell DB, Cammarano D, Kim-
ball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman
PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Chal-
linor AJ, Sanctis G de, Doltra J, Fereres E, Garcia-Vila M, Gayler S,

Wheat crop traits for high yield and stability —« 13

Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD,
Kersebaum KC, Koehler A-K, Miiller C, Naresh Kumar S, Nendel C,
O’Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ruane
AC, Semenov MA, Shcherbak I, Stéckle C, Stratonovitch P, Streck T,
Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf ], Zhao
Z,7ZhuY. 201S. Rising temperatures reduce global wheat production.
Nature Climate Change 5:143-147.

Asseng S, Martre P, Ewert F, Dreccer MF, Beres BL, Reynolds M, Braun
H-J, Langridge P, Le Gouis J, Salse J, Baenziger PS. 2019a. Mod-
el-driven multidisciplinary global research to meet future needs: the
case for ‘improving radiation use efficiency to increase yield. Crop
Science 59:843-849.

Asseng S, Martre P, Maiorano A, Rétter RP, O’Leary GJ, Fitzgerald GJ,
Girousse C, Motzo R, Giunta F, Babar MA, Reynolds MP, Kheir
AMS, Thorburn PJ, Waha K, Ruane AC, Aggarwal PK, Ahmed M,
Balkovi¢ J, Basso B, Biernath C, Bindi M, Cammarano D, Challinor
AJ, Sanctis G de, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R,
Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaur-
ralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum K-C, Klein
C, Koehler A-K, Liu B, Minoli S, Montesino San Martin M, Miiller
C, Naresh Kumar S, Nendel C, Olesen JE, Palosuo T, Porter JR, Prie-
sack E, Ripoche D, Semenov MA, Stéckle C, Stratonovitch P, Streck
T, Supit I, Tao F, van der Velde M, Wallach D, Wang E, Webber H,
Wolf ], Xiao L, Zhang Z, Zhao Z, Zhu Y, Ewert E. 2019b. Climate
change impact and adaptation for wheat protein. Global Change Biol-
0gy 25:155-173.

Atlin GN, Baker RJ, McRae KB, Lu X. 2000. Selection response in subdi-
vided target regions. Crop Science 40:7-13.

Atlin GN, Cairns JE, Das B. 2017. Rapid breeding and varietal replace-
ment are critical to adaptation of cropping systems in the developing
world to climate change. Global Food Security 12:31-37.

Bajwa AA, Farooq M, Al-Sadi AM, Nawaz A, Jabran K, Siddique KH.
2020. Impact of climate change on biology and management of wheat
pests. Crop Protection 137:105304.

Banterng P, Patanothai A, Pannangpetch K, Jogloy S, Hoogenboom G.
2006. Yield stability evaluation of peanut lines: a comparison of an
experimental versus a simulation approach. Field Crops Research
96:168-175.

Batjes NH. 2016. Harmonized soil property values for broad-scale mod-
elling (WISE30sec) with estimates of global soil carbon stocks. Geo-
derma 269:61-68.

Becker HC, Leon J. 1988. Stability analysis in plant breeding. Plant Breed-
ing 101:1-23.

Bilsborrow P, Cooper J, Tétard-Jones C, Srednicka-Tober D, Baranski
M, Eyre M, Schmidt C, Shotton P, Volakakis N, Cakmak I, Ozturk L,
Leifert C, Wilcockson S.2013. The effect of organic and conventional
management on the yield and quality of wheat grown in a long-term
field trial. European Journal of Agronomy 51:71-80.

Bustos DV, Hasan AK, Reynolds MP, Calderini DE. 2013. Combining
high grain number and weight through a DH-population to improve
grain yield potential of wheat in high-yielding environments. Field
Crops Research 145:106-115.

Calderini DF, Slafer GA. 1998. Changes in yield and yield stability in
wheat during the 20th century. Field Crops Research 57:335-347.

Calderini DF, Slafer GA. 1999. Has yield stability changed with genetic
improvement of wheat yield? Euphytica 107:51-59.

Casadebaig P, Zheng B, Chapman S, Huth N, Faivre R, Chenu K. 2016.
Assessment of the potential impacts of wheat plant traits across envi-
ronments by combining crop modeling and global sensitivity analysis.
PLoS One 11:¢0146385.

Cernay C, Ben-Ari T, Pelzer E, Meynard J-M, Makowski D. 2015. Estimat-
ing variability in grain legume yields across Europe and the Americas.
Scientific Reports 5:11171.

Chapman SC. 2008. Use of crop models to understand genotype by envi-
ronment interactions for drought in real-world and simulated plant
breeding trials. Euphytica 161:195-208.

Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer MF, Chapman
SC. 2011. Environment characterization as an aid to wheat improve-
ment: interpreting genotype-environment interactions by modelling

€202 JaqWIBAON G| U0 Jasn - "A'8 (47vZ) Bunyosioisyeyospueielby Jeny wniusz-ziugie] Aq 958122/ /€ LOPBIP/Z/S/a1onie/s1uejdooljisul/woo dno olwapese//:sdiy Woll papeojumoc]



14 .« Stellaetal

water-deficit patterns in North-Eastern Australia. Journal of Experi-
mental Botany 62:1743-1758.

Chenu K, Porter JR, Martre P, Basso B, Chapman SC, Ewert F, Bindi M,
Asseng S. 2017. Contribution of crop models to adaptation in wheat.
Trends in Plant Science 22:472-490.

Clarke, SJ, McLean, ], George-Jaeggli, B, McLean, G, Voil, P de, Eyre, JX,
Rodriguez, D. 2019. Understanding the diversity in yield potential
and stability among commercial sorghum hybrids can inform crop
designs. Field Crops Research 230:84-97.

Cook RJ. 2006. Toward cropping systems that enhance productivity and
sustainability. Proceedings of the National Academy of Sciences of the
United States of America 103:18389-18394.

Curin F, Otegui ME, Gonzélez FG. 2021. Wheat yield progress and sta-
bility during the last five decades in Argentina. Field Crops Research
269:108183.

Del Pozo A, Jobet C, Matus I, Méndez-Espinoza AM, Garriga M, Castillo
D, Elazab A. 2021. Genetic yield gains and changes in morphophysi-
ological-related traits of winter wheat in southern Chilean high-yield-
ing environments. Frontiers in Plant Science 12:732988.

Dreisigacker S, Crossa J, Pérez-Rodriguez P, Montesinos-Lopez O, Ros-
yara U, Juliana P, Mondal S, Crespo-Herrera L, Govindan V, Singh RP,
Braun HJ. 2021. Implementation of genomic selection in the CIM-
MYT global wheat program, findings from the past 10 years. Crop
Breeding, Genetics and Genomics 3:e210004.

Du Y-L, Xi Y, Cui T, Anten NP, Weiner J, Li X, Turner NC, Zhao Y-M,
Li F-M. 2020. Yield components, reproductive allometry and the
tradeoff between grain yield and yield stability in dryland spring
wheat. Field Crops Research 257:107930.

Dueri S, Brown H, Asseng S, Ewert F, Webber H, George M, Craigie R,
Guarin JR, Pequeno DNL, Stella T, Ahmed M, Alderman PD, Basso
B, Berger AG, Mujica GB, Cammarano D, Chen Y, Dumont B, Rezaei
EE, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler §,
Hochman Z, Hoogenboom G, Kersebaum KC, Nendel C, Olesen JE,
Padovan G, Palosuo T, Priesack E, Pullens JWM, Rodriguez A, Rotter
RP, Ramos MR, Semenov MA, Senapati N, Siebert S, Srivastava AK,
Stockle C, Supit I, Tao F, Thorburn P, Wang E, Weber TKD, Xiao L,
Zhao C, Zhao J, Zhao Z, Zhu Y, Martre P. 2022. Simulation of winter
wheat response to variable sowing dates and densities in a high-yield-
ing environment. Journal of Experimental Botany 73:5715-5729.

Enders A, Vianna M, Gaiser T, Krauss G, Webber H, Srivastava AK, Sei-
del SJ, Tewes A, Rezaei EE, Ewert F. 2023. SIMPLACE—a versatile
modelling and simulation framework for sustainable crops and agroe-
cosystems. in silico Plants S:1-18.

Erenstein O, Jaleta M, Mottaleb KA, Sonder K, Donovan J, Braun H-J.
2022. Global trends in wheat production, consumption and trade. In:
Reynolds MP, Braun H-J, eds. Wheat improvement. Cham: Springer
International Publishing, 47-66.

Falcon CM, Kaeppler SM, Spalding EP, Miller ND, Haase N, AlKhal-
ifah N, Bohn M, Buckler ES, Campbell DA, Ciampitti I, Coffey L,
Edwards J, Ertl D, Flint-Garcia S, Gore MA, Graham C, Hirsch CN,
Holland JB, Jarquin D, Knoll J, Lauter N, Lawrence-Dill CJ, Lee EC,
Lorenz A, Lynch JP, Murray SC, Nelson R, Romay MC, Rocheford
T, Schnable PS, Scully B, Smith M, Springer N, Tuinstra MR, Wal-
ton R, Weldekidan T, Wisser RJ, Xu W, Leon N. 2020. Relative utility
of agronomic, phenological, and morphological traits for assessing
genotype-by-environment interaction in maize inbreds. Crop Science
60:62-81.

FAO. 2022. World food and agriculture—statistical yearbook 2022. Rome,
Italy: FAO.

Finlay KW, Wilkinson GN. 1963. The analysis of adaptation in a
plant-breeding programme. Australian Journal of Agricultural Research
14:742.

Fischer RA. 2020. Breeding wheat for increased potential yield: contrast-
ing ideas from Donald and Fasoulas, and the case for early generation
selection under nil competition. Field Crops Research 252:107782.

Foulkes MJ., Molero G, Griffiths S, Slafer GA, Reynolds MP. 2022. Yield
potential. In: Reynolds MP, Braun H-J, eds. Wheat improvement.
Cham: Springer International Publishing, 379-396.

Furbank RT, Quick WP, Sirault XR. 2015. Improving photosynthe-
sis and yield potential in cereal crops by targeted genetic manip-
ulation: Prospects, progress and challenges. Field Crops Research
182:19-29.

Fuss S, Havlik P, Szolgayové J, Schmid E, Reuter WH, Khabarov N, Ober-
steiner M, Ermoliev Y, Ermolieva T, Kraxner F. 2015. Global food
security & adaptation under crop yield volatility. Technological Fore-
casting and Social Change 98:223-233.

Gabaldon-Leal C, Webber H, Otegui ME, Slafer GA, Ordéfiez RA, Gaiser
T, Lorite IJ, Ruiz-Ramos M, Ewert F. 2016. Modelling the impact of
heat stress on maize yield formation. Field Crops Research 198:226-
237.

Garcia GA, Serrago RA, Gonzalez FG, Slafer GA, Reynolds MP, Miralles
DJ. 2014. Wheat grain number: identification of favourable phys-
iological traits in an elite doubled-haploid population. Field Crops
Research 168:126-134.

Gauch HG. 2013. A simple protocol for AMMI analysis of yield trials.
Crop Science 53:1860-1869.

Guarin JR, Martre P, Ewert F, Webber H, Dueri S, Calderini D, Reyn-
olds M, Molero G, Miralles D, Garcia G, Slafer G, Giunta F, Pequeno
DNL, Stella T, Ahmed M, Alderman PD, Basso B, Berger AG, Bindi
M, Bracho-Mujica G, Cammarano D, Chen Y, Dumont B, Rezaei
EE, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler S,
Hochman Z, Hoogenboom G, Hunt LA, Kersebaum KC, Nendel C,
Olesen JE, Palosuo T, Priesack E, Pullens JWM, Rodriguez A, Rotter
RP, Ramos MR, Semenov MA, Senapati N, Siebert S, Srivastava AK,
Stockle C, Supit I, Tao F, Thorburn P, Wang E, Weber TKD, Xiao L,
ZhangZ, Zhao C, Zhao ], Zhao Z, Zhu Y, Asseng S. 2022. Evidence for
increasing global wheat yield potential. Environmental Research Letters
17:12404S.

Hammer GL, McLean G, Oosterom E, Chapman S, Zheng B, Wu A,
Doherty A, Jordan D. 2020. Designing crops for adaptation to the
drought and high-temperature risks anticipated in future climates.
Crop Science 60:605-621.

Hawkesford MJ. 2014. Reducing the reliance on nitrogen fertilizer for
wheat production. Journal of Cereal Science 59:276-283.

Hernandez-Ochoa IM, Asseng S, Kassie BT, Xiong W, Robertson R, Luz
Pequeno DN, Sonder K, Reynolds M, Babar MA, Molero Milan A,
Hoogenboom G. 2018. Climate change impact on Mexico wheat pro-
duction. Agricultural and Forest Meteorology 263:373-387.

Hochman Z, Gobbett DL, Horan H. 2017. Climate trends account for
stalled wheat yields in Australia since 1990. Global Change Biology
23:2071-2081.

Huehn M. 1990. Nonparametric measures of phenotypic stability. Part 1:
Theory. Euphytica 47:189-194.

Jagermeyr J, Miiller C, Ruane AC, Elliott J, Balkovic J, Castillo O, Faye
B, Foster I, Folberth C, Franke JA, Fuchs K, Guarin JR, Heinke J,
Hoogenboom G, lizumi T, Jain AK, Kelly D, Khabarov N, Lange
S, Lin T-S, Liu W, Mialyk O, Minoli S, Moyer EJ, Okada M, Phil-
lips M, Porter C, Rabin SS, Scheer C, Schneider JM, Schyns JF,
Skalsky R, Smerald A, Stella T, Stephens H, Webber H, Zabel F,
Rosenzweig C. 2021. Climate impacts on global agriculture emerge
earlier in new generation of climate and crop models. Nature Food
2:873-88S.

Kimball BA, LaMorte RL, Pinter PJ, Wall GW, Hunsaker DJ, Adamsen
FJ, Leavitt SW, Thompson TL, Matthias AD, Brooks TJ. 1999. Free-
air CO 2 enrichment and soil nitrogen effects on energy balance and
evapotranspiration of wheat. Water Resources Research 35:1179-1190.

Le Mouél C, Forslund A. 2017. How can we feed the world in 20502 A
review of the responses from global scenario studies. European Review
of Agricultural Economics 44:541-591.

Leon N de, Jannink J-L, Edwards JW, Kaeppler SM. 2016. Introduction to
a special issue on genotype by environment interaction. Crop Science
56:2081-2089.

Lian L, Los Campos G de. 2015. FW: an R package for Finlay-Wilkin-
son regression that incorporates genomic/pedigree information and
covariance structures between environments. G3 (Bethesda, Md.)
6:589-597.

€202 JaqWIBAON G| U0 Jasn - "A'8 (47vZ) Bunyosioisyeyospueielby Jeny wniusz-ziugie] Aq 958122/ /€ LOPBIP/Z/S/a1onie/s1uejdooljisul/woo dno olwapese//:sdiy Woll papeojumoc]



Liang X, Liu Y, Chen J, Adams C. 2018. Late-season photosynthetic rate
and senescence were associated with grain yield in winter wheat of
diverse origins. Journal of Agronomy and Crop Science 204:1-12.

Liu S, Baret F, Abichou M, Manceau L, Andrieu B, Weiss M, Martre P.
2021. Importance of the description of light interception in crop
growth models. Plant Physiology 186:977-997.

Lo Valvo PJ, Miralles DJ, Serrago RA. 2018. Genetic progress in Argen-
tine bread wheat varieties released between 1918 and 2011: changes
in physiological and numerical yield components. Field Crops Research
221:314-321.

Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K,
Aktas H, Ozer E, Ozdemir F, Manickavelu A, Ban T, Vikram P.
2015. Exploiting genetic diversity from landraces in wheat breed-
ing for adaptation to climate change. Journal of Experimental Botany
66:3477-3486.

Macholdt J, Honermeier B. 2016. Variety choice in crop production for
climate change adaptation. Outlook on Agriculture 45:117-123.

Maiorano A, Martre P, Asseng S, Ewert F, Miiller C, Rétter RP, Ruane
AC, Semenov MA, Wallach D, Wang E, Alderman PD, Kassie BT,
Biernath C, Basso B, Cammarano D, Challinor AJ, Doltra J, Dumont
B, Rezaei EE, Gayler S, Kersebaum KC, Kimball BA, Koehler A-K,
Liu B, O’Leary GJ, Olesen JE, Ottman M]J, Priesack E, Reynolds M,
Stratonovitch P, Streck T, Thorburn PJ, Waha K, Wall GW, White JW,
Zhao Z, Zhu Y. 2017. Crop model improvement reduces the uncer-
tainty of the response to temperature of multi-model ensembles. Field
Crops Research 202:5-20.

Martre P, He J, Le Gouis J, Semenov MA. 2015a. In silico system analysis
of physiological traits determining grain yield and protein concentra-
tion for wheat as influenced by climate and crop management. Journal
of Experimental Botany 66:3581-3598.

Martre P, Quilot-Turion B, Luquet D, Memmah M-MO-S, Chenu K.,
Debaeke P. 2015b. Model-assisted phenotyping and ideotype design.
In: Sadras VO, Calderini D, eds. Crop physiology. Oxford: Elsevier,
349-373.

Martre P, Wallach D, Asseng S, Ewert F, Jones JW, Rotter RP, Boote KJ,
Ruane AC, Thorburn PJ, Cammarano D, Hatfield JL, Rosenzweig
C, Aggarwal PK, Angulo C, Basso B, Bertuzzi P, Biernath C, Brisson
N, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant RF, Heng L,
Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC,
Miiller C, Kumar SN, Nendel C, O’leary G, Olesen JE, Osborne TM,
Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto
P, Stockle CO, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M,
Waha K, White JW, Wolf J. 2015¢c. Multimodel ensembles of wheat
growth: many models are better than one. Global Change Biology
21:911-925.

Mitchell PL, Sheehy JE. 2018. Potential yield of wheat in the United King-
dom: how to reach 20 t ha™. Field Crops Research 224:115-125.

Molero G, Joynson R, Pinera-Chavez FJ, Gardiner L-J, Rivera-Amado C,
Hall A, Reynolds MP. 2019. Elucidating the genetic basis of biomass
accumulation and radiation use efficiency in spring wheat and its role
in yield potential. Plant Biotechnology Journal 17:1276-1288.

Porter JR. 1993. AFRCWHEAT?2: a model of the growth and develop-
ment of wheat incorporating responses to water and nitrogen. Euro-
pean Journal of Agronomy 2:69-82.

Ramirez-Villegas J, Watson J, Challinor AJ. 2015. Identifying traits for
genotypic adaptation using crop models. Journal of Experimental Bot-
any 66:3451-3462.

Ramirez-Villegas J, Molero Milan A, Alexandrov N, Asseng S, Challinor
AJ, Crossa J, Eeuwijk F, Ghanem ME, Grenier C, Heinemann AB,
Wang J, Juliana P, Kehel Z, Kholova J, Koo J, Pequeno D, Quiroz R,
Rebolledo MC, Sukumaran S, Vadez V, White JW, Reynolds M. 2020.
CGIAR modeling approaches for resource-constrained scenarios:
I. Accelerating crop breeding for a changing climate. Crop Science
60:547-567.

Ratjen AM, Bottcher U, Kage H. 2012. Improved modeling of grain num-
ber in winter wheat. Field Crops Research 133:167-175.

Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manés Y, Mather DE,
Parry MAJ. 2011. Raising yield potential of wheat. I. Overview of a

Wheat crop traits for high yield and stability —« 1§

consortium approach and breeding strategies. Journal of Experimental
Botany 62:439-452.

Reynolds M, Calderini D, Condon A, Vargas M. 2007. Association of
source/sink traits with yield, biomass and radiation use efficiency
among random sister lines from three wheat crosses in a high-yield
environment. The Journal of Agricultural Science 145:3-16.

Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry
M, Slafer G. 2012. Achieving yield gains in wheat. Plant, Cell &
Environment 35:1799-1823.

Reynolds M, Langridge P. 2016. Physiological breeding Current Opinion
in Plant Biology 31:162-171.

Reynolds MP, Braun HJ. 2013. Achieving yield gains in wheat: overview.
In: Reynolds MP, Braun HJ, eds. Proceedings of the 3rd International
Workshop of Wheat Yield Consortium. CIMMY T, Obregon, Mexico.

Reynolds MP, Braun H-J. eds. 2022. Wheat improvement. Cham: Springer
International Publishing.

Reynolds MP, Pask AJD, Hoppitt WJE, Sonder K, Sukumaran S, Molero
G, Pierre CS, Payne T, Singh RP, Braun HJ, Gonzalez FG, Terrile II,
Barma NCD, Hakim A, He Z, Fan Z, Novoselovic D, Maghraby M,
Gad KIM, Galal EG, Hagras A, Mohamed MM, Morad AFA, Kumar
U, Singh GP, Naik R, Kalappanavar IK, Biradar S, Sai Prasad SV,
Chatrath R, Sharma I, Panchabhai K, Sohu VS, Mavi GS, Mishra VK,
Balasubramaniam A, Jalal-Kamali MR, Khodarahmi M, Dastfal M,
Tabib-Ghaffari SM, Jafarby J, Nikzad AR, Moghaddam HA, Ghojogh
H, Mehraban A, Solis-Moya E, Camacho-Casas MA, Figueroa-Lopez
P, Ireta-Moreno J, Alvarado-Padilla JI, Borbon-Gracia A, Torres A,
Quiche YN, Upadhyay SR, Pandey D, Imtiaz M, Rehman MU, Hussain
M, Hussain M, Ud-Din R, Qamar M, Sohail M, Mujahid MY, Ahmad
G, Khan AJ, Sial MA, Mustatea P, Well E von, Ncala M, Groot S de,
Hussein AHA, Tahir ISA, Idris AAM, Elamein HMM, Manes Y, Joshi
AK. 2017. Strategic crossing of biomass and harvest index—source
and sink—achieves genetic gains in wheat. Euphytica 213:213-257.

Reynolds MP, Slafer GA, Foulkes JM, Griffiths S, Murchie EH, Carmo-
Silva E, Asseng S, Chapman SC, Sawkins M, Gwyn ], Flavell RB.
2022. A wiring diagram to integrate physiological traits of wheat yield
potential. Nature Food 3:318-324.

Reynolds MP, van Ginkel M, Ribaut JM. 2000. Avenues for genetic mod-
ification of radiation use efficiency in wheat. Journal of Experimental
Botany 51:459-473.

Rezzouk FZ, Gracia-Romero A, Kefauver SC, Nieto-Taladriz MT, Serret
MD, Araus JL. 2022. Durum wheat ideotypes in Mediterranean envi-
ronments differing in water and temperature conditions. Agricultural
Water Management 259:107257.

Richards RA, Cavanagh CR, Riftkin P. 2019. Selection for erect canopy
architecture can increase yield and biomass of spring wheat. Field
Crops Research 244:107649.

Rife TW, Graybosch RA, PolandJA. 2019. A field-based analysis of genetic
improvement for grain yield in winter wheat cultivars developed in
the US central plains from 1992 to 2014. Crop Science 59:905-910.

Rivera-Amado C, Trujillo-Negrellos E, Molero G, Reynolds MP,
Sylvester-Bradley R, Foulkes MJ. 2019. Optimizing dry-matter parti-
tioning for increased spike growth, grain number and harvest index in
spring wheat. Field Crops Research 240:154-167.

Robert P, Le Gouis J, Rincent R; BreedWheat Consortium. 2020.
Combining crop growth modeling with trait-assisted prediction
improved the prediction of genotype by environment interactions.
Frontiers in Plant Science 11:827.

Ruane AC, Winter JM, McDermid SP, Hudson NI. 2015. AgMIP climate
data and scenarios for integrated assessment. In: Rosenzweig C, Hillel
D, eds. Handbook of climate change and agroecosystems. ICP series on
climate change impacts, adaptation, and mitigation. London: Imperial
College Press, 45-78.

Salmerén M, Purcell LC, Vories ED, Shannon G. 2017. Simulation of gen-
otype-by-environment interactions on irrigated soybean yields in the
U.S. Midsouth. Agricultural Systems 150:120-129.

Schauberger B, Ben-Ari T, Makowski D, Kato T, Kato H, Ciais P. 2018.
Yield trends, variability and stagnation analysis of major crops in
France over more than a century. Scientific Reports 8:16865.

€202 JaqWIBAON G| U0 Jasn - "A'8 (47vZ) Bunyosioisyeyospueielby Jeny wniusz-ziugie] Aq 958122/ /€ LOPBIP/Z/S/a1onie/s1uejdooljisul/woo dno olwapese//:sdiy Woll papeojumoc]



16 .« Stellaetal

Schmidt JE, Gaudin ACM. 2017. Toward an integrated root ideotype for
irrigated systems. Trends in Plant Science 22:433-443.

Senapati N, Brown HE, Semenov MA. 2019. Raising genetic yield poten-
tial in high productive countries: designing wheat ideotypes under
climate change. Agricultural and Forest Meteorology 271:33-45.

Senapati N, Semenov MA. 2020. Large genetic yield potential and
genetic yield gap estimated for wheat in Europe. Global Food Security
24:100340.

Shiferaw B, Smale M, Braun H-J, Duveiller E, Reynolds M, Muricho G.
2013. Crops that feed the world 10. Past successes and future chal-
lenges to the role played by wheat in global food security. Food Security
$:291-317.

Simmonds NW. 1991. Selection for local adaptation in a plant breeding
programme. Theoretical and Applied Genetics 82:363-367.

Sinebo W. 2005. Trade off between yield increase and yield stability in
three decades of barley breeding in a tropical highland environment.
Field Crops Research 92:35-52.

Slafer GA, Elia M, Savin R, Garcia GA, Terrile II, Ferrante A, Miralles DJ,
Gonzilez FG. 2015. Fruiting efficiency: an alternative trait to further
rise wheat yield. Food and Energy Security 4:92—109.

Slafer GA, Savin R, Pinochet D, Calderini DF. 2021. Wheat. In: Sadras 'V,
Calderini D, eds. Crop physiology case histories for major crops. Cam-
bridge, Massachusetts: Elsevier, 98-163.

Slattery RA, Ort DR. 2021. Perspectives on improving light distribution
and light use efficiency in crop canopies. Plant Physiology 185:34—48.

Soltani A, Sinclair TR. 2012. Modeling physiology of crop development,
growth and yield. Wallingford: CABL

Subira J, Alvaro F, Del Garcia Moral LF, Royo C. 2015. Breeding effects
on the cultivarxenvironment interaction of durum wheat yield. Euro-
pean Journal of Agronomy 68:78-88.

Suriharn B, Patanothai A, Pannangpetch K, Jogloy S, Hoogenboom G.
2008. Yield performance and stability evaluation of peanut breed-
ing lines with the CSM-CROPGRO-peanut model. Crop Science
48:1365-1372.

Tadesse G, Algieri B, Kalkuhl M, Braun J von. 2014. Drivers and triggers
of international food price spikes and volatility. Food Policy 47:117-
128.

Taylor AL, Dessai S, Bruin WB de. 2015. Communicating uncertainty
in seasonal and interannual climate forecasts in Europe. Philosophical
Transactions. Series A, Mathematical, Physical, and Engineering Sciences
373:20140454.

Toreti A, Deryng D, Tubiello FN, Miiller C, Kimball BA, Moser G, Boote
K, Asseng S, Pugh TAM, Vanuytrecht E, Pleijel H, Webber H, Durand
J-L, Dentener F, Ceglar A, Wang X, Badeck F, Lecerf R, Wall GW, van
den Berg M, Hoegy P, Lopez-Lozano R, Zampieri M, Galmarini S,
O’Leary GJ, Manderscheid R, Mencos Contreras E, Rosenzweig
C. 2020. Narrowing uncertainties in the effects of elevated CO2 on
crops. Nature Food 1:775-782.

Vita P de, Mastrangelo AM, Matteu L, Mazzucotelli E, Virzi N, Palumbo
M, Lo Storto M, Rizza F, Cattivelli L. 2010. Genetic improvement
effects on yield stability in durum wheat genotypes grown in Italy.
Field Crops Research 119:68-77.

Voss-Fels KP, Stahl A, Wittkop B, Lichthardt C, Nagler S, Rose T, Chen
T-W, Zetzsche H, Seddig S, Majid Baig M, Ballvora A, Frisch M,
Ross E, Hayes BJ, Hayden MJ, Ordon F, Leon J, Kage H, Friedt W,
Stiitzel H, Snowdon RJ. 2019. Breeding improves wheat produc-
tivity under contrasting agrochemical input levels. Nature Plants
5:706-714.

Walsh B, Lynch M. 2018. Evolution and selection of quantitative traits.
Oxford: Oxford University Press.

Webber H, Ewert F, Kimball BA, Siebert S, White JW, Wall GW, Ottman
M], Trawally D, Gaiser T. 2016. Simulating canopy temperature for
modelling heat stress in cereals. Environmental Modelling & Software
77:143-1SS.

Webber H, Ewert F, Olesen JE, Miiller C, Fronzek S, Ruane AC, Bour-
gault M, Martre P, Ababaei B, Bindi M, Ferrise R, Finger R, Fodor
N, Gabaldén-Leal C, Gaiser T, Jabloun M, Kersebaum K-C, Lizaso JI,
Lorite IJ, Manceau L, Moriondo M, Nendel C, Rodriguez A, Ruiz-
Ramos M, Semenov MA, Siebert S, Stella T, Stratonovitch P, Trombi
G, Wallach D. 2018. Diverging importance of drought stress for maize
and winter wheat in Europe. Nature Communications 9:4249.

Webber H, Lischeid G, Sommer M, Finger R, Nendel C, Gaiser T, Ewert
F. 2020. No perfect storm for crop yield failure in Germany. Environ-
mental Research Letters 15:104012.

Weir AH, Bragg PL, Porter JR, Rayner JH. 1984. A winter wheat crop
simulation model without water or nutrient limitations. Journal of
Agricultural Science 102:371-382.

Welcker C, Spencer NA, Turc O, Granato I, Chapuis R, Madur D,
Beauchene K, Gouesnard B, Draye X, Palaffre C, Lorgeou J, Melkior S,
Guillaume C, Presterl T, Murigneux A, Wisser RJ, Millet E], van Eeu-
wijk F, Charcosset A, Tardieu F. 2022. Physiological adaptive traits are
a potential allele reservoir for maize genetic progress under challeng-
ing conditions. Nature Communications 13:3225.

WolfJ. 2012. User guide for LINTULS: Simple generic model for simulation
of crop growth under potential, water limited and nitrogen, phosphorus
and potassium limited conditions. Wageningen: Wageningen University.

Xiong W, Reynolds MP, Crossa ], Schulthess U, Sonder K, Montes
C, Addimando N, Singh RP, Ammar K, Gerard B, Payne T. 2021.
Increased ranking change in wheat breeding under climate change.
Nature Plants 7:1207-1212.

Yang C, Fraga H, van Ieperen W, Trindade H, Santos JA. 2019. Effects of
climate change and adaptation options on winter wheat yield under
rainfed Mediterranean conditions in southern Portugal. Climatic
Change 154:159-178.

Yang H, Mo P, Chen Y, Chen R, Wei T, Xie W, Xiang X, Huang X, Zheng
T, Fan G. 2021. Genetic progress in grain yield radiation and nitrogen
use efficiency of dryland winter wheat in Southwest China since 1965:
progress and prospect for improvements. Crop Science 61:4255-4272.

Zhang H, Richards R, Riffkin P, Berger J, Christy B, O’Leary G, Acuna
TB, Merry A. 2019. Wheat grain number and yield: the relative
importance of physiological traits and source-sink balance in south-
ern Australia. European Journal of Agronomy 110:125935.

Zhang L, Hu Z, Fan ], Zhou D, Tang F. 2014. A meta-analysis of the can-
opy light extinction coefficient in terrestrial ecosystems. Frontiers in
Earth Science 8:599-609.

Zhang Z-H, Palta JA, Lu P, Ren M-J, Zhu X-T, He J. 2022. Traditional
soybean (Glycine max) breeding increases seed yield but reduces
yield stability under non-phosphorus supply. Functional Plant Biology
49:132.

Zhao J, Yang X, Lin X, Sassenrath GF, Dai S, Lv S, Chen X, Chen F, Mi G.
201S. Radiation interception and use efficiency contributes to higher
yields of newer maize hybrids in Northeast China. Agronomy Journal
107:1473-1480.

Zheng B, Chenu K, Chapman SC. 2016. Velocity of temperature and
flowering time in wheat—assisting breeders to keep pace with climate
change. Global Change Biology 22:921-933.

€202 JaqWIBAON G| U0 Jasn - "A'8 (47vZ) Bunyosioisyeyospueielby Jeny wniusz-ziugie] Aq 958122/ /€ LOPBIP/Z/S/a1onie/s1uejdooljisul/woo dno olwapese//:sdiy Woll papeojumoc]



