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Abstract

Background: Epithelial splicing regulatory protein 1 (ESRP1) and 2 (ESRP2) regulate alternative splicing events of
various pre-mRNAs. Some of these targets play a role in cancer-associated processes, including cytoskeleton
reorganization and DNA-repair processes. This study was undertaken to estimate the impact of ESRP1 and ESRP2
alterations on prostate cancer patient prognosis.

Methods: A tissue microarray made from 17,747 individual cancer samples with comprehensive, pathological,
clinical and molecular data was analyzed by immunohistochemistry for ESRP1 and ESRP2.

Results: Nuclear staining for ESRP1 was seen in 38.6% (36.0% low, 2.6% high) of 12,140 interpretable cancers and in
41.9% (36.4% low, 5.3% high) of 12,962 interpretable cancers for ESRP2. Nuclear protein expression was linked to
advanced tumor stage, high Gleason score, presence of lymph node metastasis, early biochemical recurrence, and
ERG-positive cancers (p < 0.0001 each). Expression of ESRPs was significantly linked to 11 (ESRP1)/9 (ESRP2) of 11
analyzed deletions in all cancers and to 8 (ESRP1)/9 (ESRP2) of 11 deletions in ERG-negative cancers portending a
link to genomic instability. Combined ESRPs expression analysis suggested an additive effect and showed the worst
prognosis for cancers with high ESRP1 and ESRP2 expression. Multivariate analyses revealed that the prognostic
impact of ESRP1, ESRP2 and combined ESRP1/ESRP2 expression was independent of all established pre- and
postoperative prognostic features.

Conclusions: Our data show a striking link between nuclear ESRP expression and adverse features in prostate
cancer and identifies expression of ESRP1 and/or ESRP2 as independent prognostic markers with a potential for
routine application.
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Background

Prostate cancer was responsible for approximately 358,000
cancer related deaths with 1,270,000 newly diagnosed cases
in 2018 and is the most common cancer in Western soci-
eties [1]. The clinical course is highly variable ranging from
highly aggressive to harmless with no need for therapy.
Until today, established prognostic parameters include clin-
ical stage, serum level of prostate specific antigen (PSA),
tumor extent and preoperative Gleason grade. Better (mo-
lecular) markers are needed to predict tumor behavior and
identify patients with no need for therapy.

Epithelial splicing regulatory proteins (ESRP1 and
ESRP2) are members of the heterogeneous nuclear ribo-
nucleoprotein (hnRNP) family of RNA binding proteins
that plays a role in the regulation of alternative splicing
events of pre-mRNAs [2]. In situ hybridization of whole
tissue sections from mice showed specific epithelial ex-
pression of ESRPs in diverse tissues and organs suggest-
ing that ESRPs maintain epithelial phenotype
development during epithelial-mesenchymal-transition
(EMT) [3-5]. Some ESRP-regulated mRNA splice vari-
ants are involved in regulating cytoskeleton
reorganization, cell adhesion, and DNA-repair processes
[5-7]. ESRP1 and ESRP2 share similar structural fea-
tures with well conserved RNA-recognition motifs and
exhibit at least some functional redundancy [2].

Overexpression of ESRP1 and/or ESRP2 has been de-
scribed in various malignant tumors, such as pancreatic
ductal adenocarcinoma, oral squamous carcinoma, ovar-
ian cancer, and luminal-type breast cancer [8-12]. In
prostate cancer, a meta-analysis reported significant up-
regulation of ESRP1 and ESRP2 mRNAs in 719 prostate
cancers from 11 previous studies including normal and
malignant prostate tissues [13]. There is conflicting data
on the prognostic significance of ESRP expression.
While some studies found a positive impact on progno-
sis as in pancreatic ductal adenocarcinoma and colorec-
tal carcinoma [12, 14], others linked elevated ESRP
expression to poor patient prognosis in breast cancer
[10] and prostate cancer [15]. Our group recently identi-
fied ESRP1 to be significantly overexpressed in prostate
cancer using an RNA expression screening approach
and found that high ESRP1 expression detected by im-
munohistochemistry (IHC) was an independent pre-
dictor of a shorter time to biochemical recurrence [16].
Other prostate cancer studies on ESRP1 or ESRP2 IHC
expression are so far lacking.

To determine whether ESRP2 has a similar prognostic
effect compared to ESRP1 and whether a combined ana-
lysis of multiple ESRP family members would result in
even better prognostic information, immunohistochemi-
cal analysis was performed on a tissue microarray
(TMA) containing more than 17,000 prostate cancers
with long-term follow-up data.
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Methods

Patients

Radical prostatectomies of 17,747 patients treated at the
Department of Urology and the Martini Clinic at the
University Medical Center Hamburg-Eppendorf between
1992 and 2014 were available. All prostatectomies were
processed according to a standardized procedure, in-
cluding a complete embedding of the entire prostate for
histological analysis [17]. Histopathological parameters
were available from the patients’ records, including Glea-
son grade, pathological tumor stage (pT), presents of
lymph node metastasis (pN), and presents of tumor cells
in the resection margin (R). In addition to the classical
Gleason score categories, “quantitative” Gleason grading
was done as described before [18]. In short, for every in-
dividual prostatectomy specimen, the percentage of
Gleason 4 patterns in neoplastic tissues were estimated
and the group of Gleason score 3 +4 and 4 + 3 cancers
were subdivided for practical use in 8 subgroups as fol-
lows: 3 + 4 with <5% Gleason 4, 3 + 4 with 6-10% Glea-
son 4, 3 +4 with 11-20% Gleason 4, 3 + 4 with 21-30%
Gleason 4, 3 + 4 with 31-49% Gleason 4, 4 + 3 with 50—
60% Gleason 4, 4 + 3 with 61-80% Gleason 4 and 4 + 3
with >80% Gleason 4. In addition, two subgroups were
defined by the presence of a tertiary Gleason 5 pattern
(3+4 Tert. 5 and 4 +3 Tert. 5). For 14,464 patients,
follow-up data were available (median: 48.0 months;
range: 1 to 276 months; Table 1). PSA recurrence was
defined as the time point at which the postoperative
PSA level rose to at least 0.2 ng/ml. The production of
TMAs has already been described in detail [19]. In brief,
from each individual patient a 0.6 mm core was removed
from a cancer containing tissue block. The molecular
database associated with the TMA include IHC results
on ERG expression in 13,089 [20] and ESRP1 in 12,140
tumors [16], and fluorescence in situ hybridization
(FISH) results on ERG breakage in 7225 (expanded from
[20]) as well as on deletion status of 3pl3 (FOXPI) in
7201 (expanded from [21]), 5q21 (CHDI) in 8074 (ex-
panded from [22]), 6q15 (MAP 3K7) in 6171 (expanded
from [23]), 8p21 (NKX3.1) in 7001 [24], PTEN (10q23)
in 6803 (expanded from [25]), 12p13 (CDKNIB) in 6187
[26], 12q24 (NCOR2) in 7435 [20], 13q14 (ENOXI) in
7499 [27], 16q23 (WWOX) in 3928 [28], 17p13 (TP53)
in 8307 [29], and 18924 in 7032 [30] cancers.

Immunohistochemistry

Freshly cut TMA sections were processed in a single run
in 1 day. TMAs were deparaffinized and exposed to
heat-induced antigen retrieval for 5 min in an autoclave
in pH7.8 Tris-EDTA buffer at 121°C. Primary anti-
bodies specific against ESRP2 protein (rabbit polyclonal
antibody, Sigma-Aldrich, St. Louis, Missouri, USA,
HPA0485597; dilution 1:450) and ESRP1 protein (rabbit
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Table 1 Study cohort (n=17,747)
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No. of patients (%)

Study cohort on TMA

Biochemical relapse among categories

(n=17,747)

Follow-up (mo)
n 14,464 (81.5%) 3612 (25%)
Mean 56.3 -
Median 48 -

Age (y)
<50 433 (24%) 66 (15.2%)
51-59 4341 (24.5%) 839 (19.3%)
60-69 9977 (56.4%) 2073 (20.8%)
270 2936 (16.6%) 634 (21.6%)

Pretreatment PSA (ng/ml)
<4 2225 (12.6%)

4-10 10,520 (59.6%)
10-20 3662 (20.8%)
>20 1231 (7%)
pT stage (AJCC 2002)

pT2 11,518 (65.2%)
pT3a 3842 (21.7%)
pT3b 2233 (12.6%)
pT4 85 (0.5%)

Gleason grade

<3+3 3570 (20.3%)
3+4 9336 (53%)
3+4 Tert5 798 (4.5%)
4+3 1733 (9.8%)
4+ 3 Tert5 1187 (6.7%)

24+4 999 (5.7%)

pN stage

pNO 10,636 (89.4%)

PN+ 1255 (10.6%)

Surgical margin
14,297 (80.8%)
3388 (19.2%)

Negative

Positive

313 (14.1%)
1696 (16.1%)
1043 (28.5%)
545 (44.3%)

1212 (10.5%)
1121 (29.2%)
1213 (54.3%)
63 (74.1%)

264 (7.4%)
1436 (15.4%)
165 (20.7%)
683 (39.4%)
487 (41%)
531 (53.2%)

2243 (21.1%)
700 (55.8%)

2307 (16.1%)
1304 (38.5%)

NOTE: Percent in the column “Study cohort on TMA” refers to the fraction of samples across each category. Percent in colum “Biochemical relaps among
categories” refers to the fraction of samples with biochemical relaps within each parameter in the different categories. Numbers do not always add up to 17,747
in the different categories because of cases with missing data. Abbreviation: AJCC American Joint Committee on Cancer

polyclonal antibody, Sigma  Aldrich Germany,
cat#HPA023720; dilution 1:450) were incubated for 60
min at 37 °C. The EnVision Kit (Agilent, CA, USA) was
used to visualize bound antibody according to the manu-
facturer’s instructions. ESRP2 staining was seen in the
nuclei of prostate epithelial cells and was sometimes ac-
companied by cytoplasmic staining. Since splicing occurs
in the nucleus, we assumed nuclear expression to be bio-
logically relevant and only scored nuclear staining.

ESRP2 positive staining was usually seen in all tumor
cells (100%). Therefore, the staining intensity was esti-
mated in three categories, i.e. negative (not detectable),
low (1-2+) and high (3+) staining. Immunohistochemi-
cal ESRP1 data were available from a previous study
[16]. To test the combined impact of ESRP1 and ESRP2
expression on prostate cancer prognosis an ESRP1/
ESRP2 score was generated as follows: score 0: ESRP1
and ESRP2 negative, score 1: ESRP1 low and ESRP2
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negative or ESRP1 negative and ESRP2 low, score 2:
ESRP1 and ESRP2 low, score 3: ESRP1 high and ESRP2
negative or ESRP1 negative and ESRP2 high, score 4:
ESRP1 high and ESRP2 low or ESRP1 low and ESRP2
high, and score 5: ESRP1 high and ESRP2 high.

Antibody validation

ESRP1 and ESRP2 antibody specificity was validated in
control cell lines with ectopic ESRP1 and ESRP2 protein
overexpression (Supplementary Fig. 2). To produce these
cells, cDNAs encoding ESRP1/RBM35A (# HG13708-
UT, Sino Biological Inc., Wayne PA, USA) and ESRP2
(#HG23639-UT, Sino Biological Inc., Wayne PA, USA)
were transformed in competent Escherichia coli cells
(One ShotTM Top10, TermoFisher Scientifc, Germany),
the plasmid DNA was isolated (NucleoBond BAC 100
Kit, #740579, Macherey-Nagel, Diiren, Germany) and
transfected to cultivated HeLa cells (15 pg/70% conflu-
ence/1500 mm dish) using JetPEI DNA Transfection Re-
agent (Polyplus-transfection, #101-10NS.A., Illkirch,
France). Transfected cells were harvested after 24 h, cen-
trifuged at 1000xg for 5 min, stabilized in agarose, fixed
in 4% buffered formalin overnight and embedded in par-
affin (FFPE fixation). Non-transfected HeLa cells were
cultivated (37 °C and 5% CO,) in Dulbecco’s Modified
Eagles Medium (DMEM), supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin-streptomycin (P/
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S), harvested and FFPE fixed and served as negative con-
trol. For immunohistochemistry, freshly cut section of
negative and positive control cell lines were stained as
described above.

Statistics

For statistical calculations the JMP°® 14 software (SAS In-
stitute Inc., NC, USA) was used. Chi>-tests and contin-
gency tables were used to find associations between
ESRP1/ESRP2 and molecular or histopathological pa-
rameters. Survival curves were calculated according to
Kaplan-Meier. Significant differences between groups
were detected by the Log-Rank test. The statistical inde-
pendence and significance between pathological, mo-
lecular and clinical variables was tested by different Cox
proportional hazards regression analyses.

Results

Technical issues

In our TMA analyses, 12,140 (68.4%) were interpretable
for ESRP1 and 12,962 (73.0%) for ESRP2 (out of a total
of 17,747 tumor samples). Reasons for non-informative
cases (1 = 5607; 31.6% for ESRP1 and # = 4785; 27.0% for
ESRP2) included lack of tissue samples or absence of un-
equivocal cancer tissue in the TMA spot.

ESRP1 negative

ESRP1 low

spot. Right side: Selected parts of a TMA spot

Fig. 1 Examples of ESRP1 and ESRP2 cytoplasmic and nuclear immunostaining in prostate cancer. Left side: Immunostaining on the whole TMA

ESRP1 high ESRP1 low ESRP1 high
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ESRPs expression in normal and cancerous prostate
tissues

In normal prostate glands, both ESRP1 and ESRP2 stain-
ing in the nucleus was rare and, if present, faint. In pros-
tate cancers, nuclear ESRP1 and ESRP2 staining was
more common and also more intense (Fig. 1). For
ESRP1, positive nuclear staining was recorded in 4689
(38.6%) of 12,140 interpretable tumors, including 36.0%
with low and 2.6% with high staining intensity. For
ESRP2, positive nuclear staining was seen in 5393
(41.6%) of 12,962 interpretable cancers. Of these cancers,
36.4% showed low and 5.2% showed high staining inten-
sity. A combined staining for ESRP1 and ESRP2, was de-
tectable in 2503 (21.6%) of 11,597 for ESRP1 and ESRP2
interpretable cancers.

ESRPs expression and TMPRSS2:ERG fusion status

The TMPRSS2:ERG fusion status of the prostate cancers
on the TMA has been determined previously by FISH
and IHC [20]. The combined data revealed 5100 (ERG
status by FISH)/9786 (ERG status by IHC) tumors with
evaluable ESRP1 immunostaining and 5416 (ERG status
by FISH)/10,380 (ERG status by IHC) tumors with eva-
luable ESRP2 immunostaining. Data on ERG status
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determined by FISH as well as IHC were available for
4236 tumors with ESRP1 and 4484 tumors with ESRP2
immunostaining. Identical results for ERG status deter-
mined by FISH or IHC were shown in 3850 (90.9%;
ESRP1) and in 4073 (90.8%; ESRP2) of these cases. Nu-
clear staining of both ESRP1 and ESRP2 was linked to
TMPRSS2:ERG fusion and ERG expression. For example,
the fraction of tumors with detectable ESRP1 expression
increased from 35.1% in ERG-negative cancers to 42.8%
in ERG-positive cancers and with detectable ESRP2 ex-
pression from 36.7% in ERG-negative cancers to 51.6%
in ERG-positive cancers (Fig. 2).

ESRPs expression and chromosomal deletions

For most of 11 analyzed chromosomal regions, ESRP1
and ESRP2 expression was significantly more common
in deleted than in non-deleted cancers in all analyzed
cancers (11/11 for ESRP1 and 9/11 for ESRP2, p <0.03
each, data not shown). In ERG-negative cancers these
statistically significant associations were retained for
ESRP1 in 8 and for ESRP2 in 9 chromosomal regions. In
ERG-positive cancers, a statistically significant difference
was found for ESRP1 in 5 and for ESRP2 in 1 of the ana-
lyzed loci (Fig. 3 and Supplementary Fig. 1).
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Fig. 2 ESRP1 / ESRP2 and TMPRSS2:ERG fusion. Contingency tables and the chi*test were performed for ESRP1 on 9786 (immunohistochemistry,
IHO) and 5100 (fluorescence in situ hybridization, FISH) analyzable cancers and for ESRP2 on 10,380 (IHC) and 5416 (FISH) analyzable cancers
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ESRPs expression and prostate cancer phenotype and
prognosis

Both, high ESRP1 and high ESRP2 staining were signifi-
cantly associated with adverse tumor features, including
advanced tumor stage, high Gleason grade, presence of
lymph node metastasis (p <0.0001 each, Table 2), and
high early PSA recurrence (p <0.0001 each; Fig. 4a-b).
Most of these associations were also seen in the subsets
of ERG-negative and ERG-positive cancers (Fig. 4c-f,
Supplementary Tables 1 and 2). The ESRP1/ESRP2

score analysis showed a striking combined impact of
combined ESRP1 and ESRP2 expression on prostate
cancer prognosis. The higher the score (score 5= both
markers high), the more likely was an early PSA re-
currence (Fig. 4g).

Multivariate analysis

Four different multivariate analyses were applied to
evaluate whether ESRP1 or ESRP2 expression as well as
our ESRP1/ESRP2 score is a statistically independent
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Table 2 ESRP1 and ESRP2 and prostate cancer phenotype. Contingency tables and the chi’test were performed on 12,140 (ESRP1)

and 12,962 (ESRP2) analyzable cancers

ESRP1 immunostaining

ESRP2 immunostaining

Parameter n evaluable negative (%) low (%) high (%) pvalue n evaluable negative (%) low (%) high (%) p value
All cancers 12,140 614 36 26 12,962 584 364 52
Tumor stage
pT2 7634 64.32 33.84 1.85 <0.0001 8163 61.67 3461 3.72 < 0.0001
pT3a 2759 58.54 3802 344 2950 5444 38.68 6.88
pT3b-pT4 1698 5247 43.05 448 1798 50.28 4049 9.23
Gleason grade
<3+3 2097 7048 2847 1.05 <0.0001 2299 67.33 30.23 244 <0.0001
3+4 6529 63.06 352 1.75 6906 59.98 36.1 3.92
3+4Tert5 592 63.01 33.95 3.04 618 54.85 39.97 5.18
4+3 1214 51.65 42.92 544 1291 51.98 39.74 8.29
4+3Tert5 895 52.29 43.69 4.02 948 49.05 41.56 9.39
2444 725 4538 469 7.72 793 4351 42.24 14.25
Lymph node metastasis
NO 7343 59.14 37.98 2.87 <0.0001 7767 5643 37.96 561 < 0.0001
N+ 931 51.34 4393 4.73 1004 4791 4143 10.66
prognostic marker in all prostate cancers and the subset  Discussion

of ERG-negative and ERG-positive cancers (Table 3).
Scenario 1 evaluated all parameters available after sur-
gery, including pathological tumor stage (pT), patho-
logical nodal stage (pN), surgical margin status,
preoperative PSA value and Gleason grade obtained after
evaluation of the entire prostate. In scenario 2, all post-
operatively available parameters with exception of nodal
status were included. This was because the indication
and extent of lymph node dissection is not standard-
ized in the surgical therapy of prostate cancer and
more often executed if aggressive cancer is expected
based on biopsy results. This may introduce a bias to-
wards high grade cancers in the cohort with available
lymph nodes. Two additional scenarios had the pur-
pose to model the preoperative situation to the best
possible extent. Scenario 3 included preoperative PSA,
clinical tumor stage, and Gleason grade obtained on
the prostatectomy specimen. Since a postoperative de-
termination of the Gleason grade is “better” than the
preoperatively determined Gleason grade (subjected to
sampling errors and consequently under-grading in
more than one third of cases), this parameter was re-
placed by the original preoperative biopsy Gleason
grade in Scenario 4. These analyses identified ESRP1
expression, ESRP2 expression as well as our ESRP1/
ESRP2 score as independent prognostic parameters in
all cancers as well as the subset of ERG-negative and
ERG-positive cancers in all four scenarios (p<0.05,
Table 3).

Our study identifies high expression of ESRP1 and
ESRP2 as strong and statistically independent prognostic
markers in prostate cancer.

Both antibodies used in this study often resulted in some
additional cytoplasmatic staining in cells of all types in a
TMA spot. Considering, that splicing is confined to the nu-
cleus, we scored only the nuclear staining in this study. Nu-
clear staining of both ESRPs in normal glands was
uncommon and - if present - faint in normal prostatic
glands. Positive nuclear ESRP1 and ESRP2 staining was
more common in cancers and was recorded in 39 and 42%,
respectively, of all analyzable cancers. This is in line with
one meta-analysis describing significant upregulation of
ESRP1 and ESRP2 mRNA in 719 analyzed prostate cancers
from 11 previous studies compared to normal prostate tis-
sue [13]. Increased nuclear ESRP1 and ESRP2 staining in
comparison to normal tissues was also found in several
other tumor entities, including pancreatic ductal adenocar-
cinomas [12], oral squamous cell carcinomas [10], ovarian
carcinomas [11], and colorectal carcinomas [31]. Overall,
these data suggest that transition from normal to neoplastic
epithelium may often involve ESRP activation.

The fact that nuclear ESRP1 and ESRP2 overexpres-
sion were strongly associated with unfavorable prostate
cancer phenotype and poor patient outcome is in line
with previous studies describing a link of high ESRPs ex-
pression and an unfavorable phenotype in breast [10, 15]
and ovarian cancer [11]. In contrast, previous studies
have also reported a high ERSP expression to be linked
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ESRP1 in all cancers
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with favorable tumor parameters in pancreatic [12] and
colorectal adenocarcinoma [14]. Several functional stud-
ies on cell line models have also supported a tumor sup-
pressive rather than an oncogenic role of ESRPs. ESRPs
were found to be downregulated after crossing multiple
barriers in a PC-3 cell line model for metastasis-building

[32]. Breast cancer cell lines with a luminal phenotype
(more likely to be associated with a good prognosis)
showed higher ESRP expression than cell lines with a
basal phenotype (more likely to be associated with a
worse prognosis) [9]. ESRP1 knockdown promoted mi-
gration and invasion of tumor cells in a model for
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pancreatic adenocarcinoma [12]. Both ESRP1 and ESRP2
are believed to be responsible for retaining epithelial
phenotypes in cancer cells and thus inhibiting EMT [3,
5, 33]. However, other effects of ESRPs may promote
tumor progression that outweigh the effect on EMT in
certain cell types. Taken together the available data are
consistent with variable functional roles of ESRPs de-
pending on the tumor type.

The molecular data that were previously reported for
the tumors of this prostate cancer TMA enabled us to in-
vestigate the relationship of ESRPs expression with other
parameters of interest. For this study, we selected TMPR
SS2:ERG fusion as it represents the most common gen-
omic alteration in prostate cancer as well as the next most
prevalent genomic alterations in prostate cancer which in-
cluded deletion of 3p, 5q, 6q, 8p, 10q23, 12p, 13q, 16q,
17p, and 18q. TMPRSS2:ERG fusions occur in about 50%
of prostate cancers, preferably in younger patients [20,
34]. TMPRSS2:ERG fusions result in androgen receptor
(AR) dependent overexpression of the ETS transcription
factor ERG [20, 35]. While the overexpression of ERG it-
self does not influence prognosis, ERG modulates more
than 1600 genes in prostate epithelial cells [34, 36]. In our
study, both ESRP1 and ESRP2 were more frequently
expressed in ERG-positive than in ERG-negative cancers.
This fits well to a recent report demonstrating that
ESRP1/2 are AR responsive genes like ERG [13, 37]. Of
note, the AR dependency of ESRP1/2 expression connects
androgen signaling to alterative splicing. It has been
shown that ESRP1/2 activation leads to oncogenic activa-
tion of several ESRP1/2 target genes such as MAP 3 K7,
mTOR, GSK38, RB1, CTNND1, E-Cadherin, and CD44,
which drive tumor cell proliferation and EMT, key fea-
tures of advanced and aggressive cancers [5, 13, 37, 38].
Accordingly, it has been suggested that potential future
anti-ESRP1/2 drugs might be particularly effective in com-
bination with androgen deprivation therapy [13, 37].

Elevated expression of ESRP1 and ESRP2 was signifi-
cantly associated with the vast majority of analyzed
chromosomal deletions. This either links ESRPs overex-
pression to chromosomal instability induced by an in-
creased propensity to undergo DNA double strand
breaks or to other mechanisms that are generally con-
nected to cellular dedifferentiation and genetic instabil-
ity. Since ESRPs are not known to play a direct role in
DNA damage response or repair, the second hypothesis
might be more likely. This is supported by the broad
range of ESRP splicing targets, including many genes
with impact on cell cycle control (e.g. RB1), cell adhe-
sion (E-Cadherin, CD44), growth signaling (e.g. FGFR2,
EGEFR) or chromatin remodeling (CUL4A) [5, 6, 39, 40].

The striking association of ESRP expression with pros-
tate cancer prognosis represents the most notable find-
ing of this study. The fact that the prognostic role of
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ESRP1, ESRP2 and of the combined ESRP1/ESRP2 score
was independent of all established prognostic parameters
is suggestive for a possible clinical application of ESRP
measurement. Of note, the Gleason score, the strongest
preoperatively prognostic parameter suffers from clinic-
ally relevant interobserver variability reaching up to 40%,
even between experts [41, 42]. Biomarkers are thus
needed, that are not only independent of the Gleason
score and other established prognostic markers but also
show a higher reproducibility. For the future, we expect,
that panels of antibodies will assist in the evaluation of
prostate cancer aggressiveness. Multicolor immunofluor-
escence enables the parallel analysis of multiple anti-
bodies and also offers improved quantification. ESRP
IHC could become part of a multiparametric prognostic
test in the future. The similar prognostic role of ESRP
overexpression in ERG-positive and ERG-negative can-
cers is a distinct advantage for using these proteins in
routine diagnostics. Several other prognostic molecular
features exert their prognostic role either in ERG-
positive [43—45] or in ERG-negative cancers [46—48].

The availability of a large prostate cancer tissue micro-
array with attached clinical and molecular database is the
strength of this study. It allows for highly standardized ana-
lysis of multiple markers. However, a drawback of this par-
ticular study was that ESRP1 and ESRP2 were not analyzed
on consecutive TMA sections so that the results may be af-
fected by possible intratumoral heterogeneity. Analysis of
only a single 0.6 mm tissue spot per patient is another limi-
tation of our study. In case of tumor heterogeneity, it can-
not be excluded that more tumors are positive for ESRP1/2
than reported in our study. However, studies have shown
that large TMAs with a single tissue core are optimally
suited to find relevant associations between tumor pheno-
type and molecular alterations [49-51].

Conclusions

These results of our study suggest a pivotal role of
ESRPs in prostate cancer biology and demonstrate a
strong and independent prognostic role of ESRP1 and
ESRP2 overexpression.
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