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The citrullinated/native index of
autoantibodies against hnRNP-DL predicts
an individual “window of treatment
success” in RA patients
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Abstract

Background: There is a need for biomarker to identify patients “at risk” for rheumatoid arthritis (risk-RA) and to
better predict the therapeutic response and in this study we tested the hypothesis that novel native and
citrullinated heterogeneous nuclear ribonucleoprotein (hnRNP)-DL autoantibodies could be possible biomarkers.

Methods: Using protein macroarray and ELISA, epitope recognition against hnRNP-DL was analysed in sera from
different developed RA disease and diagnosed SLE patients. Toll-like receptor (TLR) 7/9 and myeloid differentiation
primary response gene 88 (MyD88)-dependency were studied in sera from murine disease models. HnRNP-DL
expression in cultivated cells and synovial tissue was analysed by indirect immunofluorescence, immunoblot and
immunohistochemistry.
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Results: HnRNP-DL was highly expressed in stress granules, citrullinated in the rheumatoid joint and targeted by
autoantibodies either as native or citrullinated proteins in patient subsets with different developed RA disease.
Structural citrullination dependent epitopes (SCEs) of hnRNP-DL were detected in 58% of the SLE patients although
98% of these sera were α-CCP-2-negative. To obtain a specific citrullinated signal value, we subtracted the native
antibody value from the citrullinated signal. The citrullinated/native index of autoantibodies against hnRNP-DL
(CNDL-Index) was identified as a new value for an “individual window of treatment success” in early RA and for the
detection of RF IgM/α-CCP-2 seronegative RA patients (24–46%). Negative CNDL-index was found in SLE patients,
risk-RA and early RA cohorts such as EIRA where the majority of these patients are DAS28-responders to
methotrexate (MTX) treatment (87%). High positive CNDL-values were associated with more severe RA, shared
epitope and parenchymal changes in the lung. Specifically, native α-hnRNP-DL is TLR7/9-dependent, associated
with pain and ROC analysis revealed an association to initial MTX or etanercept treatment response, especially in
seronegative RA patients.

Conclusion: CNDL-index defines people at risk to develop RA and the “window of treatment success” thereby
closing the sensitivity gap in RA.

Keywords: Rheumatoid arthritis, ACPA, Anti-CCP, Rheumatoid factor, Shared epitope, Systemic lupus
erythematosus, Autoantigens, Treatment

Background
More than 20 years ago heterogeneous nuclear ribonu-
cleoprotein (hnRNP) complexes were first described as
autoimmune targets [1, 2]. These complexes associate
with DNA and RNA and can stimulate Toll-like receptor
(TLR) 7 and 9 [3–7]. Antibodies against these structures
are characteristic for autoimmune disorders, such as sys-
temic lupus erythematosus (SLE), progressive systemic
sclerosis (scleroderma), primary Sjögren’s syndrome,
HTLV-1-associated myelopathy/tropical spastic parapar-
esis (HAM/TSP), multiple sclerosis (MS) and rheumatoid
arthritis (RA) as well as for mouse models of lupus and
arthritis [8–10].
In RA, the most specific anti-nuclear reactivity is

directed against hnRNPs. Most prominent targets are
hnRNP-A1 and hnRNP-A2/B1 proteins, which with
hnRNP-A3 and hnRNP-A0 proteins form the sub-
group of hnRNP-A/B proteins [11–15]. Autoanti-
bodies against hnRNP-A2/B1 (RA33) occur in about
20–40% of RA, SLE and mixed connective tissue
disease (MCTD) patients [16]. Autoantibodies to
hnRNP-A1 can be found in RA, SLE and MCTD, but
probably are cross-reacting α-hnRNP-A2/B1 anti-
bodies [17]. Also, hnRNP-A2/B1 is citrullinated in the
rheumatoid joint, and it can be targeted either as a
citrullinated and or native protein in distinct subsets
of RA patients [18].
Previously, we have described autoantibodies directed to

the TNFα regulatory protein hnRNP-D (AUF1) to occur
in 33% of SLE, 20% of RA and 17% of MCTD patients
[19]. Although predominantly localized in the nucleus,
hnRNPs are exported additionally into the cytosol, where
they form new autoimmune target structures in stress
granules, P-bodies or RNA transport particles [19–21].

The hnRNP-D-like protein (hnRNP-DL) protein,
which is also known as JKTBP, is related to the autoanti-
gen hnRNP-D/AUF1. Due to its binding properties and
structural features [22], hnRNP-DL,-D and -AB- form
the D-subgroup of hnRNPs. These proteins exhibit a
modular structure and conserved residues, two adjacent
RNA binding domains (RBD) followed by a glycine-rich
C-terminal auxiliary domain. However, they are very dis-
tinct in each of the unique N-terminal regions [23, 24].
HnRNP-DL acts as a transcription factor [25], partici-

pates in metabolism and biogenesis of mRNA [3], is able
to shuttle between the nucleus and the cytoplasm and
binds both to nuclear and cytoplasmic mRNAs [24], espe-
cially when containing AU-rich elements (AREs) as found
within the 3′-UTR of many proto-oncogenes and cytokine
mRNAs [26, 27]. Up to now, three alternatively spliced
hnRNP-DL transcript variants have been described,
hnRNP-DL isoform 1–3, whereas proteins only were de-
scribed for isoform 1 and 2 [23]. Splenocytes from
pristane-primed rats restimulated with hnRNPs (-A1,-A2/
B1 and -A3) induce a highly inflammatory and erosive
arthritis in naïve recipient rats [6]. Furthermore, human
TNFα-transgenic mice, which develop a massive erosive
inflammatory polyarthritis, generate α-hnRNP autoanti-
bodies [28]. This supports the hypothesis of a pathogenic
role of native hnRNPs in erosive arthritis and suggests that
autoimmunity to nucleic acid-associated autoantigens has
the potential to contribute to RA development [18].
HnRNPs may also induce pro-inflammatory cytokines,
relevant for arthritis development in rats, which involve
TLR7 and TLR9 but not TLR4 [6].
For α-hnRNP-A2/B1, clinical associations have already

been shown for RA severity, with antibodies against the
citrullinated protein occurring more frequently in
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erosive RA and antibodies against the native protein in
milder disease [18, 29]. For citrullinated peptides, it has
already been shown that the formation of a delta value
with the corresponding arginine peptide increased diag-
nostic sensitivity and indicated association to shared epi-
tope (SE) [30].
In our study, the delta value of ELISA signals was evalu-

ated as a possible biomarker to obtain a new clinical value,
as the difference between the α-citrullinated and α-native
protein value. hnRNPs were further investigated in the
immunopathogenesis of RA, demonstrating the clinical
relevance of autoantibodies, for predicting therapeutic
success, early parenchymal changes in the lung, and SE in
RA. For the first time, structural epitopes resulting from
the citrullination process were investigated.

Material and methods
Patient sera
A total of 1010 sera were evaluated, including patients
with early RA (EIRA cohort n = 404), early RA with lung
association (LURA cohort n = 106), established rheuma-
toid arthritis (predict cohort n = 127), systemic lupus er-
ythematosus (n = 89), multiple sclerosis (n = 20),
reactive arthritis (n = 7), scleroderma (n = 20), Sjögren’s
syndrome (n = 20), psoriasis arthritis (n = 20), ankylos-
ing spondylitis (n = 20), osteoarthritis (n = 20), people at
risk for developing RA (Risk-RA cohort from Sweden n
= 62; Risk-RA from Erlangen n = 9) and healthy control
subjects (n = 86). The sera were derived from the serum
bank of the 2nd Department of Medicine-Centre of
Rheumatic Diseases, Hiezing Hospital (Vienna, Austria),
and of the Department of Rheumatology at the Charité
Universitätsmedizin (Berlin, Germany). Early RA sera
from the Swedish EIRA [31] and LURA [32] cohort and
Risk-RA patients were provided by the early arthritis
clinic of Karolinska University Hospital in Stockholm,
Sweden. Further, we obtained sera from Risk-RA also
from the Institute of Rheumatology and Immunology of
the University of Erlangen, Germany.
All patients with RA fulfilled the 1987 revised criteria

of the American College of Rheumatology [33]. All pa-
tients with SLE met the 1982 criteria of the ACR [34],
and all patients with MCTD met the criteria described
by Alarcon-Segovia and Villarreal [35].

Mice sera
A total of 153 mice sera were evaluated. SKG Zymosan
model (n = 16; King’s College, London, England), MRL/
lpr (n = 20), MRL lpr MyD88−/− (n = 20), MRL/lpr
TLR7−/− (n = 7), MRL/lpr TLR9−/− (n = 4), MRL/lpr
TLR7/9−/− (n = 7, all 5 from Yale University School of
Medicine, New Haven), C57BL/6 lpr (n = 12), C57BL/6
lpr SIGIRR/TIR8−/− (n = 12, both from Medical Policli-
nics, University Munich), C57BL/6 (n = 10), C57BL/6

+R848 (n = 10, both from University Hospital of Zurich,
Zurich, Switzerland), and Balb/c IL-1Ra−/− (n = 35, Rad-
boud University Medical Center 272, Experimental
Rheumatology Nijmegen, The Netherlands).

Cell lines
HEp-2 cell slides were supplied by Generic Assays (ANA
HEp-2 plus Kit; Generic Assays, Dahlewitz, Germany),
IL1α-, TNFα- and non-stimulated HeLa whole cell ex-
tracts and IL6- and non-stimulated HepG2 whole cell
extract were obtained by Active Motif (Carlsbad, USA).
Ten microgrammes cell extract per lane were separated
on a SDS-gel and transferred to a nitrocellulose
membrane.

Protein macroarray
Screening for novel autoantigens in RA was performed
on hEX1 protein macroarrays derived from cDNA of hu-
man foetal brain [36] (available from engine GmbH,
Hennigsdorf, Germany). Screening was carried out as
described by the manufacturer. Briefly, protein macroar-
rays were incubated with blocking buffer (3% (w/v) milk
powder in TBST (500 mM NaCl, 20 mM Tris-HCl, pH
7.5, 0.05% Tween 20)) for 1 h at room temperature
followed by overnight incubation at 4 °C with patient
serum (1:50 dilution in blocking buffer). Subsequently,
arrays were washed three times for 20 min each, in
TBST-T (TBS with 0.05% Triton X-100) and incubated
2 h at room temperature with an alkaline phosphatase
(AP)-conjugated goat α-human IgG antibody (A9544,
Sigma-Aldrich, St. Louis, USA) in blocking buffer for 2
h. Following three washes for 20 min in TBST-T, the ar-
rays were incubated for 10 min in AP-buffer (1 mM
MgCl2, 100 mM Tris-Cl, pH 9.5) and finally 5 min in
0.125 mM Attophos (Roche, Basel, Switzerland) in AP-
buffer. Arrays were illuminated with an excitation wave-
length of 460 nm and images were taken using a CCD
camera (Fuji LAS 1000, Tokyo, Japan). Image analysis
was performed with AIDA software (Raytest, Berlin,
Germany). The manufacturer has defined the cutoff
values according to Aida program. Each filter has an in-
dividual cutoff level defined by signals of individual dots
without expression vector and dots without bacteria.
Positive positions on the arrays were scored and corre-

lated with clone data provided by the manufacturer.

Cloning, expression and purification of recombinant
fusion proteins
Recombinant hnRNP-DL (UniProt NP_112740.1) was
expressed in two bacterial clones with different variants
of hnRNP-DL (amino acid 81-420 or 120-420). The
hnRNP-D (AUF1) isoform p45, cloned in pTrcHis vector
(Life Technologies; Carlsbad, USA), was a kind gift by
Gary Brewer (School of Medicine, Wake Forest
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University, USA). The AUF1 p45 plasmid includes the
longest transcript variant of AUF1 (UniProt NP_
112738.1) and consists of 322 amino acids (45 kDa). For
expression, the AUF1p45 plasmid was transformed into
expression strain BL21 (DE3) pLysS cells (Merck Milli-
pore; Darmstadt, Germany, USA) according to the man-
ufacturer’s protocol.
The cDNA clone of hnRNP-DL was obtained from

(IRAUp969E0262D, Source BioScience, Nottingham, UK).
The polymerase chain reaction was performed, using the oli-
gonucleotides primer 1: GACGACGACAAGATGGAGGT
CCCGCCCAG and primer 2: GAGGAGAAGCCCGG
TTAGTATGGCTGGTAATTG as primers (Biolegio, Nijme-
gan, Netherlands). The hnRNP-DL sequence was cloned
using pET-30 Ek/LIC vector kit (Merck Millipore, Billerica,
USA). Insert sequences were checked by sequencing (LGC
Genomics, Berlin, Germany).
For protein expression, 1 L LB medium (containing

antibiotics corresponding to the carrying expression
vector) was inoculated with 5 mL overnight culture of
the expression strain (E. coli LysS or -SCS1) and in-
cubated at 37 °C with shaking until optical density of
the solution was within the range of OD600 0.4–0.6.
Fusion protein expression was induced by adding
IPTG to a final concentration of 1 mM. After 4 h,
the bacterial cells were pelleted at 20.000×g for 10
min and stored at − 20 °C.
All proteins were expressed as His-tag fusions proteins

and purified by HisPur Cobalt Resin (Thermo Fisher Sci-
entific, Rockford, USA) in a batch process corresponding
to the manufacturer’s protocol under denaturing condi-
tions (hnRNP-DL/ AUF1).

Enzyme-linked immunosorbent assay (ELISA)
ELISA plates (Nunc 96-well Nunc Maxisorp; Nalgene
Nunc International, Rochester, NY, 1 μg protein/ well)
were coated with recombinant proteins in PBS by pas-
sive adsorption at 4 °C, overnight. For sample back-
ground control plates were incubated with coating
buffer only.
After washing three times with washing buffer (0.1%

Tween20 in PBS, pH 7.4, 300 μL/well) and blocking
with blocking buffer (5% non-fat dried milk in PBS,
pH 7.4, 200 μL/well) for 90 min while shaking, the
plates were then incubated with sera (1:200 dilution
in 1.5% BSA in PBS, pH 7.4, 100 μL/well) for 60 min,
shaking. On each plate a secondary antibody control
(only serum dilution buffer) was present. Plates were
washed four times with washing buffer and incubated
shaking with secondary antibody (P021402-02, Dako
Agilent Pathology Solutions, Santa Clara, USA, diluted
1:5000 in 5% non-fat dried milk in PBS, pH 7.4, 100
μL/well) for 45 min. Afterwards, the plates were
washed five times with washing buffer. Then, they

were incubated with 3.3′,5.5′-Tetramethylbenzidin
(TMB, Seramun, Heidesee, Germany) for 5 min (100
μL/well) and stopped with 0.5 M H2SO4 (100 μL/
well). The resulting colour reaction (from blue to yel-
low) was quantified with a SpectraFluor reader
(Tecan; Maennedorf, Switzerland) at 450 nm and 620
nm as reference.
Each sample was quantified as mean of triplicate mea-

surements. The difference between antigen mean value
and sample background mean value, each corrected
using mean value of the secondary antibody control, re-
sulted in the net values which were used for evaluation
according to the antigen-specific cutoff. The cutoff
values (dotted lines) were determined by ROC analysis
(GraphPad Software, version 8.0.0, San Diego, California
USA, www.graphpad.com) versus other diseases (except
SLE) or healthy controls with 98% specificity each. This
threshold served for qualitative (positive/ negative) as-
sessment of patient sera. These calculations were used
for all ELISA analyses in human and mice.
The “Ratio mean OD positive” (Table 2) reflects the

level of the positive signals in each mouse model and
was calculated as the quotient of the mean value of the
positive signals and the diagnostic cutoff.
To determine serum-reactivity against the citrullinated

forms of the antigens by ELISA, the coated antigens
were citrullinated in vitro by incubating for 3 h at 55 °C
with 60 mU per well rabbit PAD (Sigma; St. Louis, USA)
in 100 mM Tris, 5 mM DTT, and 10 mM CaCl2, while
the control wells were incubated only with citrullination
buffer. Afterwards, ELISA-experiments were carried out
as described above
For detection of rheumatoid factor and reactivity

against cyclic citrullinated peptides (α-CCP-2) commer-
cial ELISA kits (Euroimmun, Lübeck, Germany) were
applied according to the manufacturer’s protocol.
To ensure reproducibility between assays, all tests

were performed with the same lot of antigen, enzyme,
and TMB substrate. A cit-DL/DL-positive control serum
was diluted analogously to the samples and carried with
each assay. Furthermore, a secondary antibody control
was included with each test, where the serum dilution
buffer was incubated to allow detection of the non-
specific secondary antibody background signal. The posi-
tive control and the secondary antibody control had to
be within the valid range (± 10%) to assure that the
measurement is correct.

Statistical analysis
For statistical analysis Mann-Whitney test, Spearman
correlation test or ROC calculation were performed
(GraphPad Software, version 8.0.0, San Diego, CA, USA,
www.graphpad.com).
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Immunoaffinity purification of antibodies
Autoantibodies to hnRNP-DL (amino acid 81-420) and
hnRNP-D isoform p45 were affinity-purified from 10 RA
patients by ELISA-elution technique. Antigen prepar-
ation was performed as described in the section “En-
zyme-linked immunosorbent assay (ELISA)”. The
blocked plates were incubated overnight at 4 °C with
sera diluted 1:25 in PBS with 1.5% BSA, pH 7.4. Elution
of antigen-bound antibodies was performed by incuba-
tion and shaking in 0.2 M Glycin-HCl pH 2.4 for 10
min. The eluate was neutralized with 1:7 elution volume
1 M Tris, pH 8.8, and immediately dialyzed against PBS,
pH 7.4.

Indirect immunofluorescence microscopy
Commercial HEp-2 cell slides (ANA HEp-2 plus; Generic
Assays, Dahlewitz, Germany) were used for immunofluores-
cence analysis. Slides were incubated with affinity-purified α-
AUF1 p45 and α-hnRNP-DL antibodies (undiluted in PBS)
or rabbit α-RCK/p54 [37] antibodies (1:500; University of
Florida, Gainesville, Florida, USA) overnight at 4 °C in a
moist chamber. After washing, slides were incubated with α-
human IgG-FITC antibody (ANA HEp-2 plus; Generic As-
says, Dahlewitz, Germany) or polyclonal goat α-rabbit IgG
(H+L)-Cy3 (1:50, 111-165-144, Dianova; Hamburg,
Germany) antibodies.
HeLa cells were plated and exposed 1 h to 0.5 M so-

dium arsenite [38] and afterwards incubated with the re-
spective primary antibodies (affinity-purified α-hnRNP-
DL antibody, undiluted in PBS; rabbit α-human AUF1
peptide antibody [19], 1:1000; mouse α-ATXN2 antibody
[39], 1:200; mouse α-hnRNP-A2/B1, 1:500; Acris Anti-
bodies, San Diego, USA). For immunofluorescence ana-
lysis, corresponding FITC- and Cy3-coupled, secondary
antibodies were used as previously described [40].
Preparations were analysed at 400-fold magnification

with a LSM510 fluorescence microscope (Carl Zeiss;
Jena, Germany) fitted with the appropriate filter sets for
FITC and Cy3.

Immunohistochemical analysis
We analysed an α-hnRNP-DL antibody (ARP4085_T100;
Aviva Systems Biology; San Diego, USA) in 1:50 dilution
on a tissue microarray (TMA, Provitro, Berlin, Germany)
with paraffin sections of human synovial tissue from pa-
tients with rheumatoid arthritis (n = 10), osteoarthritis
(n = 12) and from healthy donors (n = 4). Immunostain-
ing of the antibody was performed according to the
manufacturer’s protocol. For visualization, the Novolink™
Polymer Detection System (RE-7140-CE; Leica Biosys-
tems, Nussloch, Germany) was used. Slides were ana-
lysed with a CX41 microscope (Olympus, Tokyo, Japan).

Preparation of synovial tissue
Synovial tissue was collected from a patient with
rheumatoid arthritis (joint biopsies, Department of
Rheumatology and Clinical Immunology, Charité,
Berlin). Lysis of synovial tissue was performed in M-PER
Mammalian Protein Extraction Reagent. (78501; Thermo
Fisher Scientific Inc., Rockford, IL, USA) with protease
inhibitor cocktail (P8340; Sigma, St. Luis, USA), 100 μM
Na3VO4, 150 mM NaCl, and 1 mM DTT, followed by
mechanical homogenization with an Ultra Turrax (T25;
IKA, Staufen, Germany) three times for 1 min. After
centrifugation (1 min, 17,000×g) the supernatant was
collected. To enhance solubility of proteins, the pellet
was homogenized three times for 1 min with ultrasound
(VibraCell; Sonics and Materials, Danbury, USA) in 8 M
urea. Ten microgrammes of each, the supernatant and
the pellet homogenate, were separated together in one
lane on a SDS-gel and transferred on a nitrocellulose
membrane.

Gel electrophoresis, immunoblotting and immune
detection
Total protein was measured using the Bradford assay
(Roth, Karlsruhe, Germany). Equal amounts of protein
in sample buffer [41] were separated on 12.5% SDS
minigels with 4% stacking gel in SDS running buffer (25
mM Tris, 0.2 M Glycine, 0.1% (w/v) SDS) for 40–50 min
at 25 mA in a gel apparatus (Mighty Small II, Amersham
Pharmacia, Uppsala, Sweden). Afterwards, proteins were
transferred to nitrocellulose membranes (BA85; Schlei-
cher & Schuell, Dassel, Germany) using a tank blot sys-
tem (TE22; Hoefer, Holliston, USA) with tankblot buffer
(15 mM Tris, 0.1 mM glycine) for 1 h and 400 mA with
stirring and water cooling. After protein transfer, the
Western blot was blocked for 1 h in blocking solution
(3% w/v non-fat dried milk in PBS, pH 7.4) and incu-
bated with an α-hnRNP-DL antibody (ARP40586_P050;
1:500; Aviva Systems Biology, San Diego, USA), hnRNP-
DL-specific rabbit antibody serum (peptide motif
MEDMNEYSNIEEFAEGSK, contained in all hnRNP-DL
isoforms, 1:100, Thermo Fisher Scientific, Rockford,
USA) or an α-deiminated arginine antibody (ABAP Kit;
1:500; Modiquest, Oss, Netherlands) diluted in blocking
solution overnight at 4 °C. After washing three times for
10 min with washing buffer (PBS, pH 7.4, 0.05% Triton
X-100) the blot was incubated for 1 h with secondary
antibody (rabbit or mouse horse radish peroxidase con-
jugate, Dako Agilent Pathology Solutions, Santa Clara,
USA) 1:1000 diluted in 3% w/v non-fat dried milk in
washing buffer. After washing five times for 5 min with
washing buffer, chemiluminescence detection was per-
formed with Roti Lumin substrate (Roth, Karlsruhe,
Germany) according to the manufacturer’s instructions.
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Global sequence alignment
With the help of the program “Needle”, version 2019
[42], which can be accessed online via the EMBOSS
website [43] (http://www.ebi.ac.uk/Tools/psa/emboss_
needle/; retrieved on 04 April 2020), we performed a
global sequence alignment by Needleman-Wunsch algo-
rithm [44]. The amino acid sequences of the two hnRNP
proteins hnRNP-D (isoform A, 355 AA) and hnRNP-DL
(isoform 1, 420 AA) were analysed for homologous se-
quence regions.

Results
Protein macroarray screening identifies the hnRNP-DL
protein as a novel autoantigen targeted in rheumatoid
arthritis (RA)
Sera from 26 RA patients and 40 control subjects, in-
cluding osteoarthritis (OA) patients (n = 20) and self-
reported healthy blood donors (n = 20), were analysed
on protein macroarrays [36]. The 20 most sensitive auto-
antigens only found in the RA group are listed in the
Additional file 2.
We identified α-hnRNP-DL with second highest inten-

sity score. HnRNP-A2/B1 and hnRNP-D (AUF1) have
already been described as autoantibody targets in RA
[11, 19]. Structure of hnRNP-DL and sequence align-
ment with hnRNP-D is shown in Additional file 1: sup-
plementary Figure 1. One of two different hnRNP-DL
clones, expressing the protein fragment from amino acid
81 to 420, revealed autoantibody reactivity in 20% of RA
sera (Additional file 2). This hnRNP-DL fragment was
termed hnRNP-DLmir (major immunogenic region). Iso-
form hnRNP-DL2 (amino acid 120-420) could not be
detected by RA sera.

Autoantibodies against native and citrullinated hnRNP-DL
are predominantly present in sera of systemic lupus
erythematosus (SLE) and RA patients
To verify the results from protein macroarray screening,
hnRNP-DLmir was expressed in E. coli BL21(DE3)pLysS,
purified and tested for reactivity in ELISA as native (DL)
and citrullinated protein version (cit-DL), using 1010
sera obtained from Risk-RA cohort (n = 71), from early
RA cohorts (LURA n = 106; EIRA n = 404), from an
established RA cohort (predict n = 127), control cohorts

Fig. 1 Distribution of ELISA signals of α-hnRNP-DLmir autoantibodies.
Reactivities were predominantly found in SLE and RA. Prevalence of
citrullinated α-hnRNP-DLmir (cit-DL) (A), α-hnRNP-DLmir (DL) (B) and
the difference between cit-DL and DL signal (ΔDL) (C) in sera from
Risk-RA patients (n = 71), early RA patients (LURA n = 106; EIRA n =
404), established RA patients (predict n = 127), SLE patients (n = 89),
other diseases (n = 127) and healthy controls (n = 86) determined
by ELISA. The dotted lines mark the cutoff versus other diseases
(except SLE) or healthy controls with 98% specificity each. OD,
optical density; SLE, systemic lupus erythematosus
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of other autoimmune diseases (n = 216) and from
healthy controls (n = 86). Since citrullinated antigens,
among them hnRNP-A2/B1 [18], are the most specific
targets in RA, we analysed autoantibody responses
against cit-DL, with the highest signalling and positivity
found in the early and established RA cohorts (64–
100%). With special focus on the seropositive and sero-
negative RA patients only α-cit-DL signals differ signifi-
cantly within all investigated RA cohorts, not α-DL
values (Fig. 1A/B; Additional file 1: supplementary Table
1). Although α-cit-DL signals of seronegative patients
were lower than those of seropositive patients, they were
still significantly higher than in other diseases in EIRA
and predict cohort (Additional file 1: supplementary
Table 2).
The majority of α-DL was found in sera of patients

with SLE (34%) and RA (6–21%) and in patients with
psoriasis arthritis (15%), patients with MS (5%) and
scleroderma (5%) as well as healthy controls (2%) (Fig.
1B; Additional file 1: supplementary Figure 2). Interest-
ingly, we obtained very different sensitivities within the
four investigated RA cohorts whereby Risk-RA- (13%)
and EIRA cohort (21%) showed the highest sensitivities.
Cohorts under certain therapy or advanced disease dur-
ation showed lower values (LURA 8%/predict 6%).
Noticeable 58% of the SLE patients, using the cutoff

level versus other diseases, were α-cit-DL positive (α-DL
18%), although 98% of the tested SLE sera were α-CCP-
2-negative. We determined the difference between the
ELISA signals, to get a value that describes the relation-
ship between α-cit-DL and α-DL. This value we named

Fig. 2 Anti-citrullinated hnRNP-DLmir autoantibodies are detectable
even before the onset and in early status of disease. A–C Anti-
citrullinated hnRNP-DLmir (cit-DL), α-hnRNP-DLmir (DL) and Δ OD
between cit-DL and DL (ΔDL) were measured by ELISA. A In Risk-
patients of arthritis the OD levels of cit-DL and ΔDL before onset are
significantly specific in the patient group where the arthritis has
already been diagnosed compared to the group without diagnosis
(n = 71; non-arthritis n = 34/arthritis n = 37; Mann-Whitney U; cit-DL
mediannon Arthritis = 0.19/medianArthritis = 0.46; p = 0.0006; NC-index
mediannon Arthritis = 0.10/medianArthritis = 0.38; p = 0.0003). B, C Cit-
DL and ΔDL are significantly associated with parenchymal changes
in the lung of early RA patients of the LURA cohort (B; n = 106; no n
= 48/PC n = 58; Mann-Whitney U; cit-DL medianno = 0.23/medianPC
= 0.53; p = 0.0340; NC-index medianno = 0.16/medianPC = 0.44; p =
0.0332) and with and shared epitopes of the early RA patients of the
EIRA cohort (C; n = 404; no n = 112/SE n = 213/double SE n = 79;
Mann-Whitney U; cit-DL medianno = 0.27/medianSE = 0.36; p =
0.0003, medianno = 0.27/mediandouble SE = 0.54; p < 0.0001,
medianSE = 0.36/mediandouble SE = 0.54; p = 0.0453; NC-index
medianno = 0.11/medianSE = 0.21; p < 0.0001, medianno = 0.11/
mediandouble SE = 0.34; p < 0.0001, medianSE = 0.21/mediandouble SE

= 0.34; p = 0.0061). Mann-Whitney U test was performed for
analysing significance of indicated groups (*p < 0.05, **p < 0.01, ***p
< 0.001 ****p < 0.0001). OD, optical density; ns, not significant; PC,
parenchymal changes in lung; SE, shared epitope
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CNDL-Index (ΔDL), shown in Fig. 1C, with the highest
values detected in the RA cohorts. In established RA
(predict), the highest CNDL-Index (sensitivity, 100%/72%
versus healthy controls/other diseases) and exclusively
positive values were detected. In contrast, 11–20% of
early RA patients (Risk-RA/EIRA/ LURA) had a negative
CNDL-index, where α-DL was higher than α-cit-DL. Be-
sides, only SLE patients and single exceptions in other
diseases had a negative CNDL-index below − 0.1. In the
early RA cohort EIRA, the CNDL-Index correlated posi-
tively to α-cit-DL and there, exclusively in the seronega-
tive EIRA negatively to α-DL response (Additional file 1:
supplementary Figure 3).

Anti-cit-DL and CNDL-Index correlated with parenchymal
changes in lung/shared epitope and identified people at
risk to develop RA
Anti-DL autoantibodies were detectable in early RA.
Therefore, we investigated α-CCP2-positive healthy sub-
jects with musculoskeletal symptoms, classified as Risk-
RA cohort, differentiating between subjects developing
arthritis during follow-up and those remaining healthy
without arthritis diagnosis. Further, we analysed α-DL
autoantibody association with certain risk factors for RA.
We plotted respectively α-cit-DL, α-DL and the CNDL-
index in the LURA cohort with the parenchymal
changes in the lung and in the EIRA cohort with the
genetic risk factor shared epitope.
In the Risk-RA cohort, α-cit-DL and CNDL-Index were

significantly elevated in progressors (Fig. 2A), in the
LURA cohort in patients with parenchymal lung changes
(Fig. 2B) and in the EIRA in patients with shared epi-
tope, particularly in those carrying two copies (Fig. 2C).
No significant differences were found for α-DL
antibodies.

High α-DL autoantibody levels found in 6-month EULAR
responders for methotrexate (MTX) or Enbrel® treatment
We examined our biomarkers (α-cit-DL, α-DL and
CNDL-index) with therapy data of the EIRA and predict
cohort. One hundred and ninety-two MTX-treated EIRA
patients were analysed (Fig. 3A–C; Additional file 1: sup-
plementary Figure 4A/B). The ROC analysis of α-DL sig-
nals reached 12% sensitivity with 90% specificity, using
the RA-specific cutoff level (OD 0.371) for detecting
MTX response. ROC results got more significance for
detecting MTX responses in the seronegative group
(cutoff 0.371; 16% sensitivity, 94% specificity; Additional
file 1: supplementary Table 6).
Because α-DL correlated negatively to the CNDL-Index

in the seronegative group (Additional file 1: supplemen-
tary Figure 3), we analysed MTX-treated EIRA patients
with negative CNDL-index. Eighty-seven percent of these
patients were responders. We reached sensitivities in a

range of 15–33% (100/75% specificity) to detect MTX
response (Additional file 1: supplementary Table 7).
In the predict cohort (Enbrel®-treatment) no CNDL-

index/response association were found since all patients
had equally high positive CNDL-index and none of them
negative values. ROC analysis of α-cit-DL or CNDL-
index showed no specific response cutoff. But with α-
DL, we identified 23% of the EIRA patients as MTX re-
sponder and in the seronegative group 25% (90% specifi-
city). Among the established RA cohort (predict), α-DL
reached 13% sensitivity and even 25% within the sero-
negative group for the detection of Enbrel® response
(100% specificity; Fig. 3D–F; Additional file 1: supple-
mentary Table 8).

Anti-cit-DL and α-DL increase the serodiagnostic
sensitivity in early RA
All RA cohorts were analysed to determine diagnostic
sensitivities of α-cit-DL and α-DL, in RF IgM/α-CCP-2-
seropositive and -negative patients.
The calculated cutoff level versus healthy controls

(96% specificity), identified 80% of the subjects in the
Risk-RA cohort, which are exclusively α-CCP-2-positive.
In the LURA/EIRA cohort 32/73% of the seronegative
patients were identified. In the predict cohort, all pa-
tients could be identified with one of our biomarkers
and α-DL response was on average the lowest (6%). In
SLE patients, 84% in total were detected (α-DL, 34%; α-
cit-DL, 80%). In other autoimmune diseases, about half
(48%) of the patients were detected in total with our bio-
marker set.
Using the cutoff level versus other diseases (96% specifi-

city), we detected 51% of the seronegative established RA pa-
tients and 8–17% of the early RA patients (Table 1).

Localization and expression of hnRNP-DL in different cell
lines and synovial tissue
Affinity-purified α-DL autoantibodies from RA patient
sera were used for localization of hnRNP-DL in HeLa-
and HEp-2 cells. Sparing the nucleoli in interphase cells,
staining with the α-DL autoantibodies showed a nucleo-
plasmic staining with large speckles (Fig. 4A; a, b). How-
ever, the nucleoplasmic staining produced by α-hnRNP-
D (α-AUF-1) and α-hnRNP-A2/B1 antibodies was more
homogeneous (Fig. 4A; e, f) and stained as well as α-DL
autoantibodies discrete cytoplasmic foci when cells were
stressed by arsenite (Fig. 4A; c, e, f). Notably, the co-
localization experiment showed α-DL antibodies stained
a subset of cytoplasmic stress granules (Fig. 4A; c), inde-
pendent of size and localization. HnRNP-D could be de-
tected in nearly all granules (Fig. 4A; g, yellow), like the
controls Ataxin2 and RCK/p54 (Fig. 4A; d/h).
Since previous studies demonstrated hnRNP-A2/B1

and hnRNP-D to be highly expressed in synovial tissue
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of RA patients and arthritic mice [19, 28, 45, 46], we
analysed the expression of hnRNP-DL in the human
joint. Specific rabbit antibodies recognizing hnRNP-
DL 1 and 2 expression were tested by immunohisto-
chemistry in synovial tissue of RA and OA patients
and from healthy controls (Fig. 4B). These analyses
revealed hnRNP-DL to be highly expressed in RA tis-
sue. Nuclear and cytoplasmic expression was seen in
cells of RA synovial tissue, in contrast to the exclu-
sive nuclear staining observed in OA and normal tis-
sue (Fig. 4B, arrows).
We further investigated the expression of hnRNP-

DL under inflammatory conditions in IL1α- and
TNFα-stimulated HepG2-, as well as in IL6-
stimulated HeLa cells by immunoblotting (supplemen-
tary Fig. 5 A/B). TNFα and particularly IL1α upregu-
late, whereas IL6 downregulates the expression of
hnRNP-DL and furthermore induces its degradation.

We further detected citrullinated proteins of the same
molecular weight as of hnRNP-DL (supplementary Fig. 5
B) in the synovial tissue. The molecular weights of the
detected DL bands in supplementary Figure 5 B do not
correspond to the isoforms in supplementary Figure 5A;
they may be other DL isoforms that have not been stud-
ied in detail.

Anti-DL in animal models of RA and SLE with association
to TLR7/9 and MyD88 — supports reference to clinical
pain
Anti-cit-DL/α-DL autoantibodies, in baseline samples,
are associated with pain VAS after 6 months of various
treatments of EIRA patients (Additional file 1: supple-
mentary Table 3-5).
Therefore, we wanted to study the production of α-DL

autoantibodies in the context of TLR and MyD88-
knock-out mice, known to be involved in pain pathway

Fig. 3 Diagnostic performance of α-hnRNP-DLmir (DL) for the detection of therapy response. High baseline titre against α-hnRNP-DLmir (DL) is
rather present in 6-month EULAR Responder RA patients who had received MTX or α-TNF inhibitor therapy (Enbrel®). A–C α-DL were measured
by ELISA in patient sera from the EIRA cohort treated with MTX (n = 192) with 161 EULAR responder and 31 EULAR non-responder among 6
months. Above these values, ROC analyses were performed for detecting DAS28 therapy response. D–F α-DL were measured by ELISA in patient
sera from the predict cohort treated with Enbrel® therapy with 6-month EULAR response data (n = 94, responder n = 63, non-responder n = 31).
Based on the signals, ROC analysis was performed for detecting DAS28 therapy response. OD, optical density; vs., versus; RA, rheumatoid arthritis;
MTX, methotrexate; seropos., rheumatoid factor IgM and/or α-CCP-2 positive patients; seroneg., rheumatoid factor IgM and α-CCP-2
negative patients
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[47, 48]. Because hnRNP-DL is highly conserved in hu-
man and mouse (similarity 98.5% [44]), we analysed α-
DL in sera of mouse models of RA and SLE (Table 2).
In zymosan-treated SKG-mice [49], α-DL autoanti-

bodies were twice as frequent (50%) compared to the less
severe arthritis model without zymosan induction (25%).
Interestingly, in the interleukin-1 receptor antagonist-

deficient (IL-1Ra−/−)-mouse arthritis model we found
high signals of α-DL autoantibodies in all mice tested.
MRL/lpr-mice produce antibodies against hnRNPs

[50] and snRNPs [51] α-DL autoantibodies were detect-
able in 85%, while none of them were positive for the
citrullinated protein version.
We analysed sera from TLR7-, TLR9-, and TLR7/TLR9-

double deficient lupus-prone MRL/lpr-mice. This investi-
gation revealed that α-DL autoantibodies were TLR7/-9
dependent and only completely absent in the double defi-
cient mice, while they remained detectable in about 50%
of the single TLR7- or TLR9-knock-out MRL/lpr-mice.
MyD88 plays a central role in TLR-pathway [52]. We
tested MyD88-deficient mice, which did not produce α-
DL autoantibodies except two mice with very low titre.
Further, we tested knock-out mice of Toll interleukin-1
receptor 8 (TIR8, SIGIRR, IL1R8), a negative regulator of
TLR-IL1-receptor family signalling. Genetic inactivation
of this protein, which is associated with severe auto-
immunity and high autoantibody production [53], in-
creased prevalence of α-DL autoantibodies by 50%, with a

three times higher mean level of ELISA signal intensity
(Table 2).

Discussion
RA antibody systems are remarkably diverse, character-
ized by the presence of those against native proteins as
well as those containing posttranslational modifications
(PTMs) [54, 55]. While current models of RA have em-
braced PTMs as core principles of pathogenesis [54, 56],
α-native protein antibodies are not adequately explained
by the PTM-centric paradigm of autoantigen selection.
The direct α-citrullinated protein-antibody response
may depend on the presence of permissive factors, i.e., a
genetic predisposition, as has been shown for α-cit-DL
with its shared epitope (SE)-dependency and the contin-
ued production of modified antigen. Chronic bacterial
infection, such caused by Aggregatibacter actinomyce-
temcomitans [57] or Porphyromonas gingivalis, which
can citrullinate hnRNPs [58] or smoking [59, 60], leading
to overexpression of hnRNPs, as shown by our results
with overexpression and citrullination of hnRNP-DL in
RA joint.
In early RA, a serodiagnostic gap of 50–60% [61–64]

left by using RF IgM/ α-CCP-2 assays. This is of particu-
lar importance as patients considered to be autoantibody
negative may erroneously not be diagnosed as having
RA due to inappropriate therapeutic measures. In recent
years, novel biomarkers have been described with

Table 1 Sensitivity of α-citrullinated hnRNP-DLmir (cit-DL), α-hnRNP-DLmir (DL) autoantibodies and Δ OD between cit-DL and DL
(ΔDL) in sera from Risk-RA patients, early RA patients (LURA/ EIRA), established RA patients (predict), SLE patients (n = 89), other
diseases and healthy controls determined by ELISA. Sensitivities are expressed as percentages, with a 98% specificity, and were
calculated using two cutoffs in each case, first, against healthy controls (to the left of the slash) and second, against other diseases
except SLE (to the right of the slash). Total DL is the combined antibody reactivity and describes the proportion of patients that one
detects positive overall with the combination of all three biomarkers α-cit-DL, α-DL and/or ΔDL

cit-DL DL ΔDL total
DL

RF and/or CCP positive RF and CCP negative

cit-DL DL ΔDL total DL cit-DL DL ΔDL total DL

Risk-RA n = 71 n = 71 n = 0

% pos. 70/28 13/6 68/34 80/39 70/28 13/6 68/34 80/39 - - - -

LURA n = 106 n = 81 n = 25

% pos. 64/38 8/4 64/40 69/42 77/48 7/2 77/52 80/53 24/4 12/8 24/0 32/8

EIRA n = 404 n = 202 n = 202

% pos. 80/33 21/9 68/31 84/40 94/59 17/5 89/59 96/63 65/7 25/14 46/2 73/17

Predict n = 127 n = 86 n = 41

% pos. 100/67 6/0 100/72 100/72 100/77 6/0 100/83 100/83 100/46 5/0 100/51 100/51

SLE n = 89

% pos. 80/58 34/18 72/57 84/73

other n = 127

% pos. 45/2 4/2 41/2 48/4

HC n = 86

% pos. 2/0 2/0 2/0 5/0

HC healthy controls, RA rheumatoid arthritis, SLE systemic lupus erythematosus
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sensitivities between 16 and 67% in α-CCP-2-negative
RA cohorts [65]. However, the clinical utility of these
biomarkers is questionable because diagnostic specific-
ities are largely unknown and will have to be shown in
further studies. RF IgM/ α-CCP-2-seronegative RA pa-
tients became seropositive by a combination of our

biomarker set (α-cit-DL, α-DL, CNDL-index). In the clin-
ical autoantibody testing, the new biomarker can be used
for detecting people “at risk” for RA, and for early and
established RA, reducing the sensitivity gap of RF IgM/ α-
CCP-2-seronegative patients (sensitivity RF IgM/α-CCP-2
negative LURA/EIRA/predict 32%/73%/100%; Table 1).

Fig. 4 Localisation and expression of cytokine-regulated, stress granule protein hnRNP-DLmir in cells, and synovial tissue. Anti-human hnRNP-DLmir

antibodies detect stress granules in immunofluorescence microscopy. Staining with an affinity-purified α-human hnRNP-DLmir antibody was
performed in HEp-2 (a) and HeLa cells (b). HeLa cells were treated with 0.5 mM sodium arsenite to induce stress granules and stained with
affinity-purified α-human hnRNP-DLmir antibodies (c), mouse α-human ATXN2 antibodies 63 (d), mouse α-human hnRNP-A2/B1 antibodies (e) and
α-human AUF1 peptide-specific rabbit serum 19 (f). Co-localization of AUF1 and stress granules/P-bodies. Staining of HEp-2 cells with α-RCK/p54
64 antibodies (g) and double staining of HEp-2 cells with affinity-purified α-human AUF1 (green) and α-RCK/p54 64 antibodies (red) (h). Merged
sections are visible in yellow. B Expression of hnRNP-DL in synovial tissue from a patient with rheumatoid arthritis, a patient with osteoarthritis
and a healthy subject, each in 20-fold and detail in 40-fold magnification
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It has already been published that it is important to
study the citrullinated signal adjusted from the unmodi-
fied protein/peptide signal, to obtain the specific signal,
which is added or reduced by the modification. It has
been shown that these autoantibodies occur specifically
in RA, but without clinical associations such as therapy
response [30, 58].
Therefore, we have introduced and tested a new bio-

marker CNDL-index which measures the difference of α-
cit-DL and α-DL ELISA OD levels, covering both anti-
bodies against citrullinated epitopes and structural
citrullinated epitopes (SCEs). Negative CNDL-index was
detectable at an early timepoint of arthritis and even be-
fore arthritis starts. Moreover, RA patients with such
negative CNDL-index tended to respond positively to
MTX/Enbrel® therapy. As RA progresses, the CNDL-
index became increasingly positive and was associated
with SE, parenchymal changes in lung and lower the re-
sponse to MTX therapy.
Citrullination is a hydrolytic reaction, the target pro-

tein mobility in SDS-PAGE will shift, yielding a non-
charged citrulline amino acid and neutral urea through
the hydrolysis of the strongly basic positively charged
side chain of arginine by water. This charge shift affects
protein structure, protein-protein interactions, and
hydrogen bond formation, and it may cause protein de-
naturation [66, 67]. This study suggests an alternative
model to the PTM-centric model in which the antigen is
initially targeted independent of citrullin itself, but may
be depend on a structural change induced by cryptic
PTM that causes the autoantibody binding. Demon-
strably, the sensitivity of α-cit-DL within the tested SLE
patients was 58%, almost three times higher than the
sensitivity of α-DL (18%), calculated with the cutoff ver-
sus other diseases, although 98% of the tested SLE sera

were α-CCP-2-negative. Citrullination leads to formation
of a new SCE, whose recognition is independent of dir-
ectly targeting the citrulline site. This new form of α-
SCE autoantibodies may explain the shift from an initial
native autoantibody response against PTMs. DNA, RNA
and TLR7/9 activation are required to generate α-
hnRNP-specific B cells and this complex induced RA in
a pristane-induced arthritis model of RA [68]. Interest-
ingly, MyD88 deficiency leads to reduction of pain [47],
which may explain the correlation of α-DL with pain
VAS after 6 months in the EIRA cohort. Autoantibodies
against DL did not correlate to RF IgM or α-CCP-2 or
SE. These antibodies can be used specifically in the sero-
negative group to predict the therapeutic outcome and
pain level after 6 months of treatment.
The α-DL autoantibody level disappeared in the course

of RA, inversely the α-cit-DL autoantibody level in-
creased, independently from the therapeutic regime.
Therefore, future therapies utilizing tolerance induction
may use native RA autoantigens in “high risk” individ-
uals. Epitope spreading to PTM autoantigens can be
blocked in the major mouse models of SLE and RA that
we have tested, and this could be analysed experimen-
tally with hnRNP-DL in future studies. Native antigens
as part of stress granules are used in existing models of
experimental arthritis to induce arthritis, but not the
citrullinated antigens [68]. SE and specific exogenous
factors are missing in the studied animal models of RA
and SLE, explaining the lack of ACPAs and SCE auto-
antibodies. Anti-native protein antibodies may represent
markers for the detection of risk people in the earliest
pre disease of RA, preceding the development of the
ACPA response, predicting a mild disease. For α-
hnRNP-A2/B1 autoantibodies, an association to less ero-
sive disease, exclusively in early RA, has already been

Table 2 Frequency of autoantibodies against recombinant hnRNP-DLmir in sera from different RA and SLE mouse models

Mouse model Model Autoantigen(s) assayed No. of sera tested % Positive Ratio, Mean OD positiveb

SKG (-/+ Zymosan) RA hnRNP-DLmir 8/8 25/50 2.48/1.23

Balb/c (IL-1Ra−/−) RA hnRNP-DLmir 36 100 7.89

MRL-lpr SLE hnRNP-DLmir
a 20 85 4.22

MRL-lpr (MyD88−/−) SLE hnRNP-DLmir
a 20 10 1.3

MRL-lpr (TLR9−/−) SLE hnRNP-DLmir 4 50 2.42

MRL-lpr (TLR7−/−) SLE hnRNP-DLmir 7 43 2.55

MRL-lpr (TLR7/9−/−) SLE hnRNP-DLmir 7 0 -

C57BL/6 lpr SLE hnRNP-DLmir
a 12 33 2.46

C57BL/6 lpr (SIGIRR/TIR8−/−) SLE hnRNP-DLmir
a 12 83 6.83

C57BL/6 (-/+ R848) TLR7/8 agonist hnRNP-DLmir 10/10 0/10 -/1.39

RA rheumatoid arthritis, SLE systemic lupus erythematosus, SIGIRR/TIR8 Single Ig IL-1-related receptor/Toll/interleukin-1 receptor 8, R848 SIGIRR TLR7/8 agonist,
MyD88 myeloid differentiation primary response gene 88, TLR Toll-like receptor
aAdditionally citrullinated hnRNP-DLmir were tested. In no case, citrullination of hnRNP-DLmir resulted in a higher signal compared to the native hnRNP-DLmir form
(no additional reactivity)
bRatio mean OD positive reflects the level of the positive signals in each mouse model and was calculated as the quotient of the mean value of the positive
signals and the diagnostic cutoff
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published [18, 29]. Recently, several more reactivities
against native proteins in RA have been published [55].
Therefore, it is important to measure other hnRNP auto-
antibodies and in combination in future studies to evalu-
ate them for personalized medicine.

Conclusions
These new data suggest that hnRNP-DL is a novel TLR7/
9-dependent autoantigen found predominantly in RA and
SLE and in mouse models of inflammatory rheumatic dis-
eases. Our studies on hnRNP-DL have shown that citrulli-
nation can lead to structural epitopes (SCE) that can be
recognized by α-CCP-2-negative SLE patients. By using
the combined assay consisting of citrullinated hnRNP-DL
and native hnRNP-DL, we increase the serodiagnostic sen-
sitivity in RA patients who are negative for RF and α-
CCP-2 autoantibodies. We demonstrated that autoanti-
bodies against hnRNP-DL have prognostic value for the
differential diagnosis of RA, especially in early disease. Im-
munofluorescence analyses revealed that hnRNP-DL is
part of stress granules that can trigger inflammatory pro-
cesses in RA. Our results indicate that truncated, possibly
citrullinated, immunogenic hnRNP-DL can be detected in
synovial tissue.
We hypothesize that hnRNP autoantibodies generated

by patients with systemic autoimmune diseases are di-
rected against mRNA decay complexes that are part of
the stress granules. We hypothesize that increased for-
mation and structural modification of such protein com-
plexes by bacterial or human enzymes (e.g., in
inflammatory processes with overexpression of IL1α
and/or TNFα) may lead to a pathogenic autoimmune re-
sponse against a structurally altered form of native
hnRNP-DL and that SCE epitopes may arise before the
temporal increase in PTM-specific targets. In conclu-
sion, the introduction of a CN-index biomarker that
measures specific anti-citrulline signalling in autoanti-
gens will help to objectively facilitate early RA treatment
decisions that are not measurable with current commer-
cial ACPA assays.
Further autoantibody studies with additional hnRNP

family proteins in native and citrullinated form should
follow to identify new subsets of reactivities in RA pa-
tients. In addition, the clinical significance of the struc-
tural epitopes should be investigated in detail.
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Additional file 1: Figure 1. Sequence, structure and major
immunogenic region (mir) of hnRNP-D and hnRNP-DL. A, Schematic rep-
resentation of hnRNP-D (isoform p45), hnRNP-DL and the different re-
combinant hnRNP-DL variants studied. The main structural features are
highlighted. Mir-region is the major immunogenic region, RBD1 and
RBD2 are RNA-binding domains 1 and 2, Gly-rich is the C-terminal
glycine-rich region of the proteins. B, Global amino acid sequence align-
ment of hnRNP-D and hnRNP-DL1 (isoform 1). HnRNP-D and -DL share
89.1% similarity by sequenc e[1]. Regions “mir”, “RBD1”, “RBD2” and “Gly-
rich” are highlighted. Figure 2. Characterisation of autoantibodies
against, A, citrullinated α-hnRNP-DLmir (cit-DL), B, α-hnRNP-DLmir (DL) and
C, ΔOD between cit-DL and DL (ΔDL) determed by ELISA in sera of other
diseases (n=127; MS n=20, reA n=7, Sclero n=20, Sjö n=20, PsA n=20, MB
n=20, OA n=20). The dotted lines markes the cutoff vs. other diseases (ex-
cept systemic lupus erythematosus) or healthy controls with 98% specifi-
city each. OD, optical density; nm, nano meter; vs., versus; MS, multiple
sclerosis; reA, reactive arthritis; Sclero, scleroderma; Sjö, Sjögren´s syn-
drome; PsA, psoriasis arthritis; MB, ankylosing spondylitis; OA. Osteoarth-
ritis. Table 1. Mann Whitney U-test of (cit) α-hnRNP-DLmir-OD signals of
seropositive and seronegative data sets of RA-cohorts. Table 2. Mann
Whitney U-test of cit α-hnRNP-DLmir-OD signals of seronegative data sets
of RA-cohorts and data sets of other inflammatory diseases. Figure 3.
XY-Plot and Spearman Correlation of citrullinated or native α-hnRNP-
DLmir versus ΔhnRNP-DLmir for the early RA cohort EIRA (A/D; n=404), the
seropositive EIRA sera (B/E; n=202) and the seronegative EIRA sera (C/F;
n=202). Table 3. Spearman correlation of the early RA sera of the EIRA
cohort (n=404). The results are given as R value (left of slash) with the
corresponding p-value (right of slash). Table 4. Spearman correlation of
the 242 EIRA sera treated with MTX (α-CCP2 positive n=133, α-CCP2
negative n=109). The results are given as R value (left of slash) with the
corresponding p-value (right of slash). Table 5. Spearman correlation of
the established RA sera of the Predict cohort (n=94; RF IgM and/or α-
CCP2 positive n=64, RF IgM and α-CCP2 negative n=30). The results are
given as R value (left of slash) with the corresponding p-value (right of
slash). Table 6. ROC analysis of native hnRNP-DLmir of MTX-treated EIRA
patients (n=192; seropositive n=93, seronegative n=99). Table 7. Nega-
tive CNDL-index of MTX-treated EIRA patients n=192 (Resp. n=161, non-
Resp. n=31). Table 8. ROC analysis of native hnRNP-DLmir of Enbrel®-
treated Predict patients (n=94; seropositive n=63, seronegative n=31).
Figure 4. High baseline titer against α-hnRNP-DLmir (DL) is rather present
in 6-month EULAR Responder RA patients who had received MTX or α-
TNF inhibitor therapy (Enbrel®). A-C, Citrullinated α-hnRNP-DLmir (citDL)
(A), α-hnRNP-DLmir (DL) (B) and Δ OD between citDL and DL (ΔDL) (C)
were measured by ELISA in patient sera from the EIRA cohort treated
with MTX (n=192) with 161 EULAR Responder and 31 EULAR non-
Responder among 6 months. The evaluation was done according to the
cutoff versus other diseases. D, α-DL were measured by ELISA in patient
sera from the Predict cohort treated with α-TNF inhibitor therapy with 6-
month EULAR response data (n=94, responder n=63, non-Responder n=
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31). Based on the signals, a response-cutoff (dotted line, OD 0.174) was
determined, from which only responders are recognized as positive. OD,
optical density; nm, nano meter; RA, rheumatoid arthritis; SLE, systemic
lupus erythematosus; MTX, Methotrexate; Resp., 6-month EULAR Re-
sponder. Figure 5. A, Influence of cytokines on hnRNP-DL expression de-
termined by immunoblotting. Cellular extracts from unstimulated, IL1α-
or TNFα-stimulated HeLa cells and from unstimulated and IL6-stimulated
HepG2 cells were probed with α-hnRNP-DL1/2-peptide specific rabbit
serum. B, Citrullination of hnRNP-DL in synovial tissue from a patient with
rheumatoid arthritis was investigated with an α-deiminated arginine anti-
body and an α-hnRNP-DL antibody. Both positive bands were labled with
hnRNP-DL, which isoforms were not analysed.

Additional file 2: Tab. 1. Antigens.
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