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Abstract

Background: Go/no-go decisions after phase II and sample size chosen for phase III are usually based on phase II
results (e.g., the treatment effect estimate of phase II). Due to the decision rule (only promising phase II results lead
to phase III), treatment effect estimates from phase II that initiate a phase III trial commonly overestimate the true
treatment effect. Underpowered phase III trials are the consequence. Optimistic findings may then not be
reproduced, leading to the failure of potentially expensive drug development programs. For some disease areas
these failure rates are described to be quite high: 62.5%.

Methods: We integrate the ideas of multiplicative and additive adjustment of treatment effect estimates after go
decisions in a utility-based framework for optimizing drug development programs. The design of a phase II/III
program, i.e., the “right amount of adjustment”, the allocation of the resources to phase II and III in terms of sample
size, and the rule applied to decide whether to stop or to proceed with phase III influences its success considerably.
Given specific drug development program characteristics (e.g., fixed and variable per patient costs for phase II and
III, probable gain in case of market launch), optimal designs with respect to the maximal expected utility can be
identified by the proposed Bayesian-frequentist approach. The method will be illustrated by application to practical
examples characteristic for oncological studies.

Results: In general, our results show that the program set-ups with adjusted treatment effect estimate used for
phase III planning are superior to the “naïve” program set-ups with respect to the maximal expected utility.
Therefore, we recommend considering an adjusted phase II treatment effect estimate for the phase III sample size
calculation. However, there is no one-fits-all design.

Conclusion: Individual drug development planning for a specific program is necessary to find the optimal design.
The optimal choice of the design parameters for a specific drug development program at hand can be found by
our user friendly R Shiny application and package (both assessable open-source via [1]).

Keywords: Optimization, Drug development program, Bias adjustment, Assurance, Probability of success, Sample
size, Software
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Background
Exploratory studies are usually carried out to provide a
basis for deciding whether or not to proceed with a con-
firmatory trial and, if necessary, to provide information
for planning purposes. In drug development programs,
this strong link between exploratory (e.g., phase II) and
confirmatory (e.g., phase III) studies favors integrated
planning. In particular, the costs of phase III studies
have increased remarkably in recent years [2, 3], while
failure rates are quite high (approx. 45%, see [4] and the
reference mentioned therein). Therefore, the availability
and application of quantitative methods for decision
making, which should be data-driven and objective, is
desirable [5].
Already over 30 years ago, Hughes and Pocock [6]

pointed out that decision rules in clinical trials can lead
to a bias in the point estimate of the treatment effect, so
that the true underlying effect might be overestimated at
the time of an early positive decision. Twenty four years
and various attempts of authors to adjust for overesti-
mation of the treatment effect (in group sequential de-
signs) later (e.g., [7] and references mentioned therein),
Zhang et al. [8] still criticize that the cause and effect of
this phenomenon is generally not well-understood. Try-
ing to illustrate the problem, they provide a graphical ex-
planation for the occurrence of overestimation. They
argue that random variability (i.e., random highs and
lows) of the treatment effect estimate is always present,
but stabilizes around the true treatment effect as the
trial continues to its end. However, when implementing
a decision rule the variability favors the random highs:
in a phase II/III drug development program with a go/
no-go decision rule, it is only proceeded with phase III
when large treatment effects are observed, but stopped
when small effects occur. This selective handling of ran-
dom variability may lead to overestimation of the magni-
tude of the treatment effect after phase II.
Ellenberg et al. [9] as well as Nardini [10] emphasize

that the aim of treatment effect estimation is not to de-
cide whether or not one therapy is better than the other,
but to describe the size of therapeutic effects. Thus, we
are concerned with a problem of estimation, not a prob-
lem of testing. Nardini concludes that estimates arising
after a decision rule “should [consequently] not be taken
at face value as true estimates of the new treatment’s ef-
fect”. Ellenberg et al. point out that statistical methods
to adjust for this “random-high bias” exist, but criticize
that “they are not applied as often as they should be”.
Recently, the U.S. Food & Drug Administration reported
22 case studies since 1999 in which promising phase II
clinical trial results were not confirmed in phase III clin-
ical testing [11]. Such experiences are not rare: for some
disease areas, the failure rate for phase III trials is re-
ported to be as high as 62.5% [12] and about 50% for

approval [13]. Chuang-Stein and Kirby [14] give cause
for serious concern, as the severity of this may multiply,
considering that the bigger the estimated effect from,
e.g., a proof of concept trial, the greater the temptation
to invest heavily and conduct multiple studies in parallel.
They advise to use the concept of “assurance” for quan-
tification of success probabilities and, moreover, to apply
an adjustment for the overestimation of the treatment
effect (e.g., [15]) when planning the next phase of a drug
development program.
In our framework, we follow the concept of “assur-

ance” [16, 17], which had first been introduced by Spie-
gelhalter et al. in 1986 with the concept of Bayesian
predictive power (compare also “average power”) [18,
19]. This methodology was used later in various contexts
by O’Hagan et al. [16, 17] (“assurance”), Chuang-Stein
[20], Chuang-Stein and Yang [21] (“average success
probability”) and finally by Gasparini et al. and Saint-
Hilary et al. (“predictive probability of success”) [22, 23].
The idea is to use a prior distribution for the true
assumed treatment effect for trial planning. This is in
contrast to the “frequentist world”, where a fixed value is
assumed. The “assurance” is then the weighted (uncon-
ditional) probability of a successful trial for a given
effect, the weighting resulting from the likelihood that
the therapy will achieve this effect. Due to synthesizing
Bayesian principles in the planning phase and frequen-
tistic decision-making procedures in the analysis, the
above-mentioned approaches are described in the litera-
ture as “mixed Bayesian-frequentist”.
Kirby et al. [15] and Wang et al. [24] attempt to re-

duce the impact of overestimation by discounting the
phase II treatment effect estimate by applying a multi-
plicative or additive adjustment, respectively. However,
their suggestions are not universally applicable, and are
rather “rules of thumb”, e.g., Kirby et al. suggest to use a
retention factor of 0.9 times the assumed ratio of the
phase III effect to phase II effect.
De Martini [4, 25] reports that the phase II sample size

should be almost as large as the ideal phase III sample
size (at least 2/3 of the latter) in order to have a suffi-
ciently good information basis for phase III planning. He
criticizes that in practice this ratio is only 1/4 on average
and that an increase in sponsorship gains from drug de-
velopment through larger phase II studies has not yet
been well investigated. Larger phase II sample sizes
would reduce the level of overestimation but increase
the estimated phase III sample size [26] and could retro-
spectively be regarded as an unnecessary high invest-
ment in case of a no-go decision. Therefore, an optimal
balance is required.
In this article, we integrate the general concepts of

using a multiplicative or additive adjustment method to
correct for overestimation of the treatment effect in a
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framework of utility-based optimization of phase II/III
development programs [27]. That is, we want to critic-
ally examine adjustment methods from an economic
point of view. In addition to simultaneously optimizing
the phase II go/no-go decision rule and the sample size,
we also optimize over the adjustment parameter used
for the phase II treatment effect estimation to find “the
right level of adjustment” for the specific situation at
hand. Our approach can build the bridge between the
long existing gap of theory and practice: we provide a
Bayesian-frequentist hybrid framework, in which
methods proposed for addressing the problem of over-
estimation of the treatment effect after go decisions are
included in the optimization of drug development
programs.
In the second section of this paper, we will introduce

the basic setting and notation, explain the adjustment
methods and show how they are incorporated in our
optimization framework. After introducing the utility
function and explaining the optimization procedure, we
present optimal designs for exemplary settings of drug
development programs in Section 3. We finish with a
discussion in Section 4 and a conclusion in Section 5.

Methods
Basic setting
The considered drug development program consists of
one exploratory phase II and one confirmatory phase III
trial. Both are randomized trials with two arms (each
with 1:1 sample size allocation), performed independ-
ently, investigating the same time-to-event primary end-
point and the same population. The true treatment
effect is given by the negative logarithm of the true haz-
ard ratio (θ = − log(HR)), which is the ratio of the hazard
functions of the treatment and the control group. In
order to reflect the uncertainty in the true treatment ef-
fect, θ can be modelled by a prior distribution f(θ). In
phase II, the total number of events is denoted by d2 and

the maximum likelihood estimate of θ is given by θ̂2. We

assume that the estimator θ̂2 is asymptotically normally

distributed with θ̂2 j θ � Nðθ; 4=d2Þ (Note that the no-
tation used will not differentiate between the treatment
effect estimator (i.e., rule applied to estimate the quan-
tity of interest, which is a random variable) and the
treatment effect estimate (i.e., particular realization,
fixed value), but by context it will be clear which quan-
tity is meant.). Furthermore, we require that only phase
II trials with promising results lead to a phase III trial.
This is quantified by a go/no-go criterion with a go-

decision in case of θ̂2≥κ , where κ is a predefined thresh-
old value. In case of a go decision, the number of events
for the phase III trial is calculated based on the observed
treatment effect of phase II. If the confirmatory analysis

in phase III reveals a significant result, program success
is declared (compare Fig. 1).
Due to the decision rule after phase II, the treatment

effect estimate of phase II is biased. The bias is positive
with κ > 0 as probability mass is shifted towards higher
values:

E θ̂2jθ̂2≥κ
h i

¼
Z∞

− ∞

Z∞

− ∞

1 θ̂2 ≥κf g � θ̂2 �
f θ̂2jθ
� �

P θ̂2≥κjθ
� � dθ̂2 � f θð Þdθ

þ
Z∞

− ∞

Z∞

− ∞

1 θ̂2 ≥κf g � θ̂2 � 0dθ̂2 � f θð Þdθ

>

Z∞

− ∞

Z∞

− ∞

1 θ̂2 ≥κf g � θ̂2 � f θ̂2jθ
� �

dθ̂2 � f θð Þdθ

þ
Z∞

− ∞

Z∞

− ∞

1 θ̂2 ≥κf g � θ̂2 � f θ̂2jθ
� �

dθ̂2 � f θð Þdθ

¼
Z∞

− ∞

Z∞

− ∞

θ̂2 � f θ̂2jθ
� �

� f θð Þdθ̂2dθ ¼ E θ̂2
h i

;

where here and in the following 1A denotes the indicator
function of event A and the density of the distribution of
the respective argument is indicated by f(.). The inequa-
tion holds as 1

Pðθ̂2 ≥ κjθÞ
> 1 and

R∞
− ∞ 1

fθ̂2 ≥κg
f ðθ̂2jθÞ

Pðθ̂2 ≥κjθÞ
dθ̂2 ¼ 1 and, there-

fore, the probability mass assigned to values less than κ

in the unconditional expectation E½θ̂2� is distributed be-

tween values greater than κ in E½θ̂2jθ̂2≥κ�.
Note that the representation of the bias cannot be fur-

ther simplified, neither by calculating E½θ̂2� − E½θ̂2jθ̂2≥κ�
nor E½θ̂2�=E½θ̂2jθ̂2≥κ�.
Therefore, in the following, multiplicative and additive

adjustment methods for the treatment effect estimate
obtained in phase II will be investigated. Afterwards,
dependent on the respective adjustment method, launch
criteria and approaches to calculate the number of
events for phase III will be presented.

Additive and multiplicative adjustment methods
In this section, we introduce two methods (an additive
and a multiplicative adjustment method) to adjust for
the overestimation of the phase II treatment effect esti-
mate. It should be mentioned that the terms “multiplica-
tive” and “additive” relate to the specific type of scale
and endpoint considered here.
Wang et al. [24] advise to apply an additive adjustment

to the phase II treatment effect estimate if it is used for
planning the sample size of phase III. They discuss using
the lower limit of the one and two standard deviation
confidence interval (CI) from the phase II trial (i.e., the

lower limit of the CI for θ̂2, corresponding to one or two
standard deviations below the point estimate), respect-
ively. We denote the significance level of the lower
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bound for the one-sided CI related to the phase II treat-
ment effect estimate as αCI ∈ [0.025, 0.5] and define
the additive adjusted treatment effect estimate by

θ̂
aCI
2 ¼ θ̂2 − z1 − aCI �

ffiffiffiffiffiffiffiffiffiffi
4=d2

p
, with z1 − γ =Φ−1(1 − γ),

where Φ(.) denotes the distribution function of the
standard normal distribution. Note that our version
of the additive adjusted treatment effect estimate is a
generalization of that of Wang et al., as they use the lower
limit of the one and two standard deviation two-sided CI
(i.e., in our notation αCI = 0.32/2 and αCI = 0.05/2) and we
allow αCI ranging from 0.025 to 0.5. For αCI = 0.5, the
additive adjusted treatment effect estimate is not dis-

counted as θ̂2 − z1 − 0:5 �
ffiffiffiffiffiffiffiffiffiffi
4=d2

p ¼ θ̂2.
Kirby et al. [15] propose a multiplicative adjustment

approach. They multiply the observed treatment effect
estimate with a factor λ, which can be understood as
a retention factor, that is, the fraction of the treat-
ment effect retained. Integrated in our setting, we de-

fine θ̂
λ
2 ¼ λ � θ̂2 , where the multiplicative adjustment

parameter λ ∈ [0.2, 1] can be viewed as the result of
discounting the observed treatment effect of phase II
by 1 − λ. Note that for λ = 1 the multiplicative ad-
justed treatment effect estimate is not discounted.

Go/no-go criteria, calculation of expected number of
events for phase III and related program characteristics
When designing the phase II/III program, the observed
treatment effect estimate of phase II plays a key role in
two ways: 1. when making the go/no-go decision (selec-
tion s1); 2. when calculating the phase III sample size
(selection s2; compare Fig. 1). At both instances, one has
to decide whether or not to use an adjusted or un-
adjusted treatment effect estimate. To ease notation, the
naïve (unadjusted) treatment effect estimate of phase II

is denoted by θ̂
u
2 ¼ θ̂2.

1.: If the treatment effect estimate θ̂
s1
2 , where s1 = λ, αCI

or u (i.e., the multiplicatively adjusted, additively ad-
justed or unadjusted treatment effect estimate is selected
for the decision rule), exceeds a predefined threshold
value κ, it is decided to go to phase III and otherwise to

stop the program. Hence, the expected probability to go
to phase III can be determined by

pgo θ̂
s1
2

� �
¼

Z ∞

− ∞
P θ̂

s1
2 ≥κjθ

� �
� f θð Þdθ;

s1 = λ, αCI or u (compare Table A0 in the Additional
file 1).
2.: In case of a go decision, the number of events for

phase III is calculated based on the treatment effect

estimate of phase II θ̂
s2
2 , s2 = λ, αCI or u, a desired power

1 − β, and a one-sided significance level α. For a bal-
anced allocation ratio, it can be calculated by

D3 ¼ D3 θ̂
s2
2

� �
¼ 4 � z1 − α þ z1 − β

� �2
θ̂
s2
2

� �2 ;

by assuming proportional hazards and asymptotic prop-
erties of the log-rank test statistic [28]. When going to
phase III, the expected number of events (in phase II/III
programs with decision rule θ̂

s1
2 ≥κ and θ̂

s2
2 used to calcu-

late the number of events for phase III) can be deter-
mined by

d3ðθ̂s12 ; θ̂
s2
2 Þ ¼ E D3 θ̂

s2
2

� �
� 1 θ̂

s1
2 ≥κf g

h i

¼
Z ∞

− ∞

Z ∞

− ∞
1 θ̂

s1
2 ≥κf g � 4 � z1 − α þ z1 − β

� �2
ðθ̂s22 Þ

2

� f ðθ̂2jθÞdθ̂2 � f ðθÞdθ;

(compare Table A0). The expectation of the estimate (of
phase II) used for the sample size calculation can be cal-
culated by

e2 ¼ e2 θ̂
s1
2 ; θ̂

s2
2

� �
¼ E θ̂

s2
2 jθ̂

s1
2 ≥κ

h i

¼
Z ∞

− ∞

1

P θ̂
s1
2 ≥κjθ

� �
Z ∞

− ∞
1 θ̂

s1
2 ≥κf g

� θ̂s22 � f ðθ̂2jθÞdθ̂2 � f ðθÞdθ;

for s1, s2 = λ, αCI or u (compare Table A0) in order to
calculate the bias E½θ̂s22 jθ̂

s1
2 ≥κ� − E½θ̂2� . As proposed by

Fig. 1 Graphical illustration of basic phase II/III drug development program. The drug development program consists of one exploratory phase II

trial, which is, in case of a go decision (i.e., treatment effect estimate of phase II θ̂2 exceeds predefined threshold value κ = − log(HRgo)), followed

by one confirmatory phase III trial, where the sample size planning is based on θ̂2. The program is considered successful if phase III has a positive
(significant) result (i.e., normalized log rank test statistic of phase III T3 is above the 1 − α quantile of the standard normal distribution z1 − α)
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De Martini [4, 25], the ratio of the number of events in
phase II and III will also be calculated.
The program is considered to be successful, if the one-

sided null hypothesis H0 : θ ≤ 0 is rejected in favour of H1 :
θ > 0 at a one-sided significance level α. This is the case if
T3 > z1 − α, where T3 is the normalized log-rank test statis-
tic in phase III, which is assumed to be asymptotically

normally distributed, i.e., T 3 ¼ T 3 j θ̂2; θ � Nðθ= ffiffiffiffiffiffiffiffiffiffiffi
4=D3

p
;

1Þ. Note that significance testing is performed on phase III
data only. Therefore, the expected probability of a success-

ful program PsPðθ̂s12 ; θ̂
s2
2 Þ (with decision rule θ̂

s1
2 ≥κ , and

θ̂
s2
2 used to calculate the number of events for phase III),

which is defined as the expected probability of the joint
event of going to phase III and achieving a significant re-
sult [25, 27], can be calculated by

PsP θ̂
s1
2 ; θ̂

s2
2

� �
¼

Z ∞

− ∞

Z ∞

− ∞
1 θ̂

s1
2 ≥κf g

�
Z ∞

z1 − αf g
f t3jθ̂2; θ
� �

dt3 � f θ̂2jθ
� �

dθ̂2

� f θð Þdθ;

where t3 is a realization of T3 j θ̂2; θ (compare Table
A0). One reviewer pointed out that this definition of a
successful program records a false positive result (i.e.
T3 > z1 − α under H0) as program success. We discuss this
aspect in detail in Section A1 of Additional file 1. In
reality, regulatory approval and with that a monetary
gain, which is the core driver for our utility function, is
achieved when a significant result is observed in phase
III, acknowledging that there is a probability of α that it
is a false positive decision. Thus, we keep the commonly
used term “success” and PsP which should be regarded
as probability of market access and not a probability of a
correct decision.

Considered program set-ups
We investigate the impact of using adjusted treatment

effect estimates (i.e., θ̂
λ
2 or θ̂

αCI
2 ) for the go/no-go deci-

sion and/or for the calculation of the number of events
for phase III on the drug development program charac-
teristics and compare the results to those where the

unadjusted (naïve) treatment effect estimate θ̂
u
2 was

used. Therefore, we investigate different program set-

ups Sðθ̂s12 ; θ̂
s2
2 Þ which are defined by the selection of the

treatment effect estimate used for the decision rule (se-
lection s1) and, in case of a go decision, by the choice of
the treatment effect estimate used for the calculation of
the number of events for phase III (selection s2).
Table 1 gives an overview of the considered program

set-ups. We compare the “unadjusted” set-up ðθ̂u2 ; θ̂
u
2Þ ,

where θ̂
u
2 ¼ θ̂2 (i.e., s1, s2 = u), with two “multiplicatively

adjusted” set-ups Sðθ̂s12 ; θ̂
λ
2Þ (s1 ∈ {u, λ}, s2 = λ), and two

“additively adjusted” set-ups Sðθ̂s12 ; θ̂
αCI
2 Þ (s1 ∈ {u, αCI},

s2 = αCI). Note that if s1 ≠ u, we define s2 = s1, which
means that if an adjustment parameter is used for the
decision rule, the same adjustment parameter is used for
the calculation of the expected number of events for
phase III (for reasons which will be given later).

Utility function
The aim is to optimize a phase II/III drug development
program in terms of the adjustment parameters λ or αCI,
the number of events in phase II d2, and the go/no-go
decision threshold value κ. Therefore, we set up a utility
function, which utilizes the difference between program
costs and potential gains after successful market launch
(compare Fig. 2 for a graphical illustration). For the
costs, fixed (c02, c03) and variable per-patient (c2, c3)
costs are included for the phase II and III trial, respect-
ively. By dividing the number of events by the event rate
ξi, the total number of patients can be calculated for the
respective phase i = 2, 3. Obviously, only in case of a go
decision the costs of the phase III trial apply. In case of
program success, a benefit b is obtained, and we assume
that the level of benefit depends on the observed treat-
ment effect in the phase III trial as suggested by a report
of the German Institute for Quality and Efficiency in
Health Care [29]. As proposed by them, three effect size
categories (small, medium and large) are used, whereby
each category is defined by a threshold value (1, 0.95,
0.85) for the upper boundary of the 95% confidence inter-
val for the HR (for details on the derivation of these
threshold values, the interested reader may be referred to
the “Anhang A”of [29]). The corresponding amount of
benefit is denoted by b1, b2 and b3, respectively. Based on
this, costs c(d2, κ, s2) and gain g(d2, κ, s2) for a phase II/III

program with program set-up Sðθ̂s12 ; θ̂
s2
2 Þ are given by

c d2; κ; s2ð Þ ¼ c02 þ d2

ξ2
� c2 þ 1 θ̂

s1
2 ≥κf g � c03 þ D3

ξ3
� c3

� �

gðd2; κ; s2Þ ¼ 1 θ̂
s1
2 ≥κf g � b1 � 1fT3∈I1g þ b2 � 1fT3∈I2g þ b3 � 1 T3∈I3f g

� �
;

where I1 ¼ ðz1 − α; − logð0:95Þ= ffiffiffiffiffiffiffiffiffiffiffi
4=D3

p þ z1 − α� , I2 ¼
ð − logð0:95Þ= ffiffiffiffiffiffiffiffiffiffiffi

4=D3

p þ z1 − α; − logð0:85Þ= ffiffiffiffiffiffiffiffiffiffiffi
4=D3

p
þz1 − α� and I3 ¼ ð − logð0:85Þ= ffiffiffiffiffiffiffiffiffiffiffi

4=D3

p þ z1 − α;∞Þ are
transformations of the effect size intervals to intervals
on the test statistic scale of T3. Thus, the costs depend
on the observed treatment effect in phase II and the gain
depends on the observed treatment effect in phase II
and III.
The utility is defined as the difference between costs

and gain and expressed as a function of d2 and κ over
which it is simultaneously optimized. In the adjusted
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program set-ups, the optimization is also over λ in the
multiplicatively, and over αCI in the additively adjusted
set-ups, respectively. Thus, we define the utility for pro-

gram set-up Sðθ̂s12 ; θ̂
s2
2 Þ by

u d2; κ; s2ð Þ ¼ g d2; κ; s2ð Þ − c d2; κ; s2ð Þ;

where for the unadjusted program set-up Sðθ̂u2 ; θ̂
u
2Þ

u(d2, κ, s2) = u(d2, κ). To incorporate the development
risk in terms of success probabilities, we consider the

expected utility with respect to θ, θ̂2 and T3 E[u(d2, κ, s2)] =
E[g(d2, κ, s2)] − E[c(d2, κ, s2)], where the expected costs and

gain with respect to θ, θ̂2 and T3 are given by

E c d2; κ; s2ð Þ½ � ¼ c02 þ d2=ξ2 � c2 þ c03 �
Z ∞

− ∞

Z ∞

− ∞
1 θ̂

s1
2 ≥κf g

� f θ̂2jθ
� �

� f θð Þdθ̂2dθ þ c3=ξ3 �
Z ∞

− ∞

Z ∞

− ∞
1 θ̂

s1
2 ≥κf g

� D3 θ̂
s2
2

� �
� f θ̂2jθ

� �
� f θð Þdθ̂2dθ; E g d2; κ; s2ð Þ½ �

¼
X3
j¼1

bj

Z ∞

− ∞

Z ∞

− ∞

Z ∞

− ∞
1 θ̂

s1
2 ≥κf g � 1 T3∈I jf g

� f t3jθ̂2; θ
� �

� f θ̂2jθ
� �

� f θð Þdt3dθ̂2dθ:

The aim is to find a design δ = (d2, κ, s2) that maxi-
mizes the expected utility E[u(d2, κ, s2)] for programs

with program set-up Sðθ̂s12 ; θ̂
s2
2 Þ: The optimization is car-

ried out over d2, κ, and λ in the multiplicatively or αCI in

Fig. 2 Graphical illustration of (adjusted) utility-based optimization. The treatment effect estimate of phase II may be adjusted for the decision
rule (selection s1 ∈ {u, s2} and/or for the calculation of the number of events for phase III (selection s2 ∈ {λ, αCI, u}). The utility (including the costs
and the gain) is optimized over the number of events for phase II d2, the threshold value for the decision rule HRgo, and the adjustment
parameter s2 = λ or αCI (see Section 2.5 for details), ξi event rate in phase i = 2, 3, bj = bj(T3) benefit categories j = 1, 2, 3

Table 1 Overview of program set-ups Sðθ̂s12 ; θ̂
s2
2 Þ

Program set-
up Sðθ̂s12 ; θ̂

s2
2 Þ

Adjustment of the estimate
used for decision rule

Estimate used for
decision rule

Adjustment of the estimate used for
calculating the number of events for phase III

Estimate used for calculating the
number of events for phase III

Sðθ̂u2; θ̂
u

2Þ
(unadjusted)

none (s1 = u) θ̂
u

2
none (s2 = u) θ̂

u

2

Sðθ̂u2; θ̂
λ
2Þ

(multiplicative)

multiplicative (s2 = λ) θ̂
λ
2

Sðθ̂u2; θ̂
αCI
2 Þ

(additive)

additive (s2 = αCI) θ̂
αCI
2

Sðθ̂λ2; θ̂
λ
2Þ

(multiplicative)

multiplicative (s1 = λ) θ̂
λ
2

multiplicative (s2 = λ) θ̂
λ
2

Sðθ̂αCI2 ; θ̂
αCI
2 Þ

(additive)

additive
(s1 = αCI)

θ̂
αCI
2

additive (s2 = αCI) θ̂
αCI
2

Program set-ups are defined by the estimate used for the go/no-go decision (selection s1: “go if θ̂
s1
2 ≥κ ”) and by the calculation of the number of events for phase

III (selection s2: D3ðθ̂s22 Þ; s2∈fλ; αCI ; ug, where θ̂
λ
2 ¼ θ̂2 ∙λ, θ̂

αCI
2 ¼ θ̂2 − z1 − αCI ∙

ffiffiffiffiffiffiffiffiffiffi
4=d2

p
, and θ̂

u

2 ¼ θ̂2 are the multiplicatively adjusted, additively adjusted, and unadjusted
treatment effect estimates of phase II).
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the additively adjusted set-ups, respectively. The optimal

design δ∗ for each program set-up Sðθ̂s12 ; θ̂
s2
2 Þ is defined

to be the design for which the expected utility is maxi-
mized, that is, E½uðδ�Þ� ¼ max

δ∈D
E½uðδÞ� , where D = {δ =

(d2, κ, s2)} is the optimization set.
The optimization is solved by using numerical integra-

tion procedures written in the programming language R
[30]. In order to facilitate the application of the approach,
an user friendly R Shiny App (bias) and an R package
(drugdevelopR including the R function optimal_bias) are
provided open-source (both assessable via [1]).

Illustration of the framework by application to oncology
trial example and practical extensions
In this paper, the parameters in the oncology trial example
are chosen as in Kirchner et al. [27] to allow comparison
of results. It should be noted that the example is primarily
given to illustrate the framework and the chosen parame-
ters should not be taken as face values. We tried to elicit
the design parameters as realistic as possible to mimic an
oncology drug development program by means of infor-
mation from relevant literature and consultation with ex-
perts from the pharmaceutical industry in the field of
oncology. However, it should be noted, that these parame-
ters must be chosen carefully and specifically for each
drug development scenario at hand.
The event rates for phase II and III are set to ξi = 0.7

for i = 2, 3. Therefore, the total sample size can be calcu-
lated by di/0.7, i = 2, 3. In practice, estimates on the
event rates could be obtained by taking recruitment
rates and duration as well as drop-out rates and treat-
ment group specific hazards into account. However,
using those parameters often leads to event rates around
ξi = 0.7 as it is a compromise between data maturity and
avoidance of long follow-up times if drop-out rates are
higher than expected. If ξi < 0.5 the median event time
might not be observed while if ξi is too high, the planned
number of events might not be reached at all with sub-
stantial drop-out rates.
For phase III oncology trials, per-patient costs between

75,000 and 125,000 US $ are reported [31]. Therefore,
per-patient costs for phase III of $105 are considered
and c3 is set to 1 (in $105). Furthermore, the per-patient
costs for phase II are set to c2 = 0.75 (in $105). Due to,
for example, additional biomarker measurements made
in phase III, or because regulatory agencies may require
more extensive data collection in phase III [32], higher
per-patient costs in phase III compared with phase II are
reasonable. In this example, the fixed costs for phase II
and III are set to c02 = 100 and c03 = 150 (in $105), re-
spectively. To investigate different scenarios, the benefit
parameters b1, b2 and b3 are chosen to embody a low
(b1, b2, b3) 1 : (1000, 2000, 3000), 2 : (1000, 2000, 4000), 3 :

(1000, 3000, 4000) and a medium to large (b1, b2, b3) = 4 :
(1000, 3000, 5000), 5 : (1000, 4000, 5000), 6 : (1000, 3000,
6000), 7 : (1000, 4000, 6000) over-all benefit (in $105),
where we assume a 5-year income period and profit
margin of 0.2. Thus, seven different benefit scenarios
(bs 1–7) will be considered. A mixture distribution con-
sisting of the weighted sum of two normal distributions

θ∼w � N − log 0:69ð Þ; 4=210ð Þð Þ þ
1 − wð Þ � N − log 0:88ð Þ; 4=420ð Þð Þ;

as proposed by Götte et al. [26] can be used to model
the true treatment effect. The two normal distributions
each depict a distribution for θ, whereby the means rep-
resent values of the assumed true treatment effect and
the denominators of the associated variances can be
viewed as “amount of certainty” about the treatment ef-
fect size in terms of numbers of events. The parameters
of the distributions (i.e., means and variances) are
elected such that a realistic range for the HR is covered
(compare Fig. A2 in Additional file 1 and/or investigate
the prior distribution with the help of our R shiny App
prior [33]). The mean of the first of the two normal dis-
tributions characterizes a strong, the second one a mod-
erate to low treatment effect, so that by ranging w from,
e.g., 0.3 to 0.9 we can mirror pessimistic to more opti-
mistic opinions about the true treatment effect. In prac-
tice, the choice of w can be guided by formal expert
elicitation methods. Dallow et al. [34] presented an over-
view of such methods including elicitation of Gaussian
mixture distributions. Note that the approach is general
and allows for implementation of any alternative prior
distribution. Again, elicitation methods (compare also,
e.g., [35]) are a useful tool that may help (a group of) ex-
perts to quantify their opinions about the treatment ef-
fect as a probability distribution. Various software
packages enable their practical application (compare,
e.g., [36]).
In our framework it is also possible to account for,

e.g., different population structures in phase II and phase
III (due to different countries, centers, in-/exclusion
criteria, …) by assuming different distributions for the
assumed true treatment effect in phase II and III (i.e.,

θ2 ≁ θ3), so that θ̂2 j θ2 � Nðθ2; 4=d2Þ and T 3 j θ̂2; θ2;
θ3 � Nðθ3=

ffiffiffiffiffiffiffiffiffiffiffi
4=D3

p
; 1Þ . For ease of interpretation, all

formulas and results presented in the main part are
for the special case, where the true treatment effect is
modelled by the same distribution for phase II and III
(e.g., θ~θ2~θ3), and a brief investigation of this aspect
can be found in Section A2 of Additional file 1.
In this example, we chose a wide range for κ (and d2, as

well as λ or αCI, respectively) such that the optimization is
not influenced by that choice. Therefore, the optimization
set is D ={δ = (d2, κ, s2), d2 ∈ {50, 52,…, 350}, κ ∈ {− log(0.9),
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− log(0.89),…, − log(0.7)}, s2 = λ ∈ {0.2, 0.225,…, 1} or s2 =
αCI ∈ {0.025, 0.075,…, 0.5}}. However, the lower bound of
the decision rule set for κ can also be seen as representing
a predefined clinically relevant effect size: phase III trials
are then only conducted if the treatment effect observed
in phase II is at least of that size. In Section A3 of
Additional file 1, we present results of the procedure,
where we chose min(κ) = − log(0.8). Furthermore, it might
be interesting to see how the optimal program design is
influenced by the sponsor’s real life budget constraint.
Therefore, we also consider optimizing the drug develop-
ment program with a constraint K on the expected costs
of the program, i.e., E[c(d2, κ, s2)] ≤K (see Section A4
of Additional file 1 for more details). In pharmaceutical in-
dustry there are often discussions about skipping the
phase II trial. For example, if competitors have already ap-
proved a drug with a similar mode of action one might
see no need for further learning about the drug and go
directly to a confirmatory trial. Our framework allows to
systematically assess this aspect by setting d2 = 0, c02 =
c2 = 0 and pgo = 1 (see Section A5 of Additional file 1 for
more details). In addition, different definitions of the cost
and benefit functions are possible. As mentioned above,
the choice of three effect size categories (and therefore the
benefit function) is based on a report of the German Insti-
tute for Quality and Efficiency in Health Care [29]. How-
ever, the presented framework could also be applied to an
alternative set-up as, for example, the one proposed by
Ding et al. [32]. Here, a proportional relationship between
benefit and effect size is considered. In Section A6 of Add-
itional file 1 we investigate this possibility in more detail.

Results
This section is organized as follows. It starts with general

observations across all program set-ups Sðθ̂s12 ; θ̂
s2
2 Þ . Then,

we compare multiplicative Sðθ̂s12 ; θ̂
λ
2Þ vs. additive Sðθ̂

s1
2 ; θ̂

αCI
2 Þ

vs. no adjustment Sðθ̂u2 ; θ̂
u
2Þ , where s1 = u or s1 = s2. The

impact of adjusting the go/no go decision making, i.e., the

differences between both multiplicative ( Sðθ̂u2 ; θ̂
λ
2Þ vs.

Sðθ̂λ2; θ̂
λ
2Þ) and both additive adjustment methods (Sðθ̂u2 ; θ̂

αCI
2 Þ

vs. Sðθ̂αCI2 ; θ̂
αCI
2 Þ) are also presented. A discussion of the results

is given in the next section.
The optimization results are presented in Table 2

(naïve setting, multiplicative adjustment), Table 3 (addi-
tive adjustment) and Figure 3, which show the optimal
design parameters δ� ¼ ðd�

2; κ
�; s�2Þ:

� optimal total number of events for phase II d�
2

(given by the optimal value of d2∈D),
� optimal go/no-go decision rule threshold value HR�

go
(given by the optimal value of κ∈D in “HR-scale”,
i.e., HR�

go ¼ expð − κ�Þ) and

� optimal adjustment parameter s�2∈fλ�; a�CIg (given by
the optimal value of s2∈D) for the multiplicative
and additive adjustment method, respectively,

with corresponding program characteristics for the op-
timal design:

� maximal expected utility u∗ = E[u(δ∗)],
� expected number of events for phase III d�

3 ¼ d3ðθ̂s12 ;
θ̂
s�2
2 Þ, where we chose a desired power of 1 − β = 0.9

and a one-sided significance level α = 0.025,
� total number of expected events in the program

d� ¼ d�
3 þ d�

2,
� expected probability to go to phase III p�go ¼ pgoðθ̂

s1
2 Þ,

� expected probability of a successful program

sP� ¼ PsPðθ̂s12 ; θ̂
s�2
2 Þ and

� expected estimate of phase II used for sample size
calculation ε�2 ¼ expð − e2ðθ̂s12 ; θ̂

s�2
2 ÞÞ in “HR-scale”,

for program set-ups Sðθ̂s12 ; θ̂
s2
2 Þ, where s1 = u or s1 ¼ s�2∈

fλ�; a�CIg , benefit scenarios (bs 1-7) and weights for the
prior distribution of the true underlying effect (w = 0.3,

0.6, 0.9), where E½θ̂2� ¼
R∞
− ∞

R∞
− ∞ θ̂2 � f ðθ̂2jθÞ � f ðθÞdθ̂2dθ.

Overall, larger assumed benefits (i.e., larger values for
(b1, b2, b3)) lead to more liberal optimal decision rules
(i.e., larger values for HR�

go ) and higher investment in

phase II (i.e., larger number of events for phase II d�
2 ).

This leads to a larger investment (in phase III), i.e., a
higher expected probability to go to phase III p�go and a

larger expected number of events in phase III d�
3 , re-

spectively. This results in a larger expected probability of
a successful program sP∗ and thus in a larger maximal
expected utility u∗.
In the multiplicatively adjusted program set-ups

Sðθ̂s12 ; θ̂
λ
2Þ , the maximal expected utility is always

higher than the maximal expected utility in the ad-

ditively adjusted program set-ups Sðθ̂s12 ; θ̂
αCI
2 Þ , which

in turn is always higher than the maximal expected

utility in the unadjusted program set-up Sðθ̂u2 ; θ̂
u
2Þ. It

stands out that the investment in terms of numbers
of events (i.e., d�

2; d
�
3; d

� ) tends to be higher in the
adjusted program set-ups compared to the un-
adjusted program set-up, especially for scenarios
with higher benefits and more optimistic prior. The
expected probability to go to phase III p�go is notably

lower in the adjusted program set-ups compared to
the unadjusted program set-up, whereas the ex-
pected probability of a successful program sP∗ is
higher.
Dividing the optimal number of events in phase II

by the expected number of events in phase III (i.e.,
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d�
2 / d�

3 ), leads to values of 0.55–0.64, 0.55–0.64,
0.58–0.67, 0.43–0.54 and 0.42–0.54 in program

set-up Sðθ̂u2 ; θ̂
u
2Þ, Sðθ̂

u
2 ; θ̂

αCI
2 Þ, Sðθ̂αCI2 ; θ̂

αCI
2 Þ, Sðθ̂u2 ; θ̂

λ
2Þ and

Sðθ̂λ2; θ̂
λ
2Þ , respectively. Furthermore, it can be observed

that the treatment effect estimate of phase II used for
sample size calculation in the optimal design is overesti-

mated in the unadjusted setting (ε�2 < expð − E½θ̂2�Þ as in-
dicated by the black circles and yellow line in Figure 3).
This overestimation is lower in the adjusted settings and
can even result in an underestimation (compare multi-
plicative settings for w = 0.9).
The operating characteristics for the optimal designs

(e.g., u∗, sP∗) compared between the two multiplicatively
and the two additively adjusted program set-ups do not
vary (much) for each benefit scenario bs and choice of

weight for the prior distribution w, respectively. However,
there are differences in the optimal choice of the threshold
value for the decision rule HR�

go : in the program set-ups

with adjusted phase II treatment effect estimate used for

decision making ( Sðθ̂λ2; θ̂
λ
2Þ and Sðθ̂αCI2 ; θ̂

αCI
2 Þ ), HR�

go is

always larger (by 0.04 to 0.06 and by 0.01 to 0.07, respect-
ively) than in the program set-ups with unadjusted treat-

ment effect used for decision making ( Sðθ̂u2 ; θ̂
λ
2Þ and

Sðθ̂u2 ; θ̂
αCI
2 Þ).

Discussion
To find optimal drug development designs, the costs of
the program (fixed/variable costs for phase II/III), the
assumed benefit, and the development risk (i.e., the

Table 2 Optimal design parameters for unadjusted and multiplicatively adjusted program set-ups

Unadjusted Multiplicatively adjusted

Program set-up Sðθ̂u2; θ̂
u

2Þ Program set-up Sðθ̂u2; θ̂
λ
2Þ Program set-up Sðθ̂λ2; θ̂

λ
2Þ

bs HR�go d�2 ε�2 d�3 d∗ p�go sP∗ u∗ λ∗ HR�go d�2 ε�2 d�3 d∗ p�go sP∗ u∗ λ∗ HR�go d�2 ε�2 d�3 d∗ p�go sP∗ u∗

w= .3, i.e., expð − E½θ̂2�Þ¼:82

1 .80 82 .65 146 228 .46 .24 76 .750 .76 81 .70 170 251 .38 .25 99 .750 .81 84 .70 161 245 .37 .25 100

2 .82 109 .67 189 298 .49 .28 188 .700 .77 116 .73 222 338 .39 .29 235 .725 .83 112 .73 214 326 .40 .29 235

3 .83 133 .68 218 351 .51 .31 299 .750 .80 133 .74 275 408 .45 .33 343 .750 .84 133 .73 252 385 .43 .32 343

4 .84 144 .69 248 392 .53 .33 432 .700 .80 158 .75 320 478 .44 .35 509 .725 .85 161 .75 296 457 .44 .34 508

5 .85 161 .70 284 445 .55 .35 569 .700 .81 196 .76 366 562 .46 .38 690 .700 .86 182 .76 348 530 .45 .37 690

6 .85 172 .70 287 459 .55 .35 567 .750 .82 179 .75 357 536 .48 .38 640 .750 .86 175 .75 347 522 .48 .37 640

7 .86 193 .71 331 524 .57 .38 712 .700 .82 196 .77 413 609 .48 .40 828 .700 .87 200 .77 412 612 .48 .40 828

w= .6, i.e., expð − E½θ̂2�Þ¼:76

1 .82 133 .65 213 346 .61 .43 370 .775 .79 126 .71 265 391 .55 .45 412 .775 .83 140 .71 259 399 .55 .45 411

2 .84 147 .66 262 409 .65 .46 598 .725 .80 175 .73 348 523 .58 .50 696 .725 .85 168 .73 343 511 .58 .50 696

3 .85 182 .67 299 481 .68 .50 764 .775 .82 196 .73 374 570 .62 .53 849 .750 .86 189 .73 390 579 .62 .53 849

4 .86 196 .68 333 529 .70 .52 1012 .700 .82 210 .75 462 672 .62 .56 1172 .700 .87 217 .75 462 679 .62 .56 1172

5 .86 210 .68 336 546 .70 .52 1267 .675 .82 245 .76 505 750 .62 .57 1523 .675 .88 238 .76 542 780 .64 .58 1521

6 .86 217 .68 338 555 .70 .53 1200 .750 .83 235 .74 450 685 .64 .57 1342 .750 .87 238 .74 453 691 .65 .57 1343

7 .87 217 .69 374 591 .72 .54 1460 .700 .83 259 .76 521 780 .65 .59 1693 .700 .88 249 .76 535 784 .65 .59 1693

w= .9, i.e., expð − E½θ̂2�Þ¼:71

1 .84 154 .65 278 432 .78 .60 693 .800 .81 161 .70 346 507 .73 .64 753 .775 .85 158 .71 370 528 .73 .65 753

2 .86 182 .66 332 514 .82 .65 1039 .725 .82 203 .73 472 675 .76 .70 1193 .725 .86 210 .73 447 657 .75 .69 1193

3 .86 207 .66 338 545 .83 .66 1255 .750 .83 217 .73 480 697 .78 .72 1384 .750 .87 231 .73 486 717 .79 .73 1384

4 .87 221 .67 367 588 .84 .68 1623 .700 .83 252 .75 562 814 .79 .75 1871 .700 .88 245 .75 573 818 .79 .75 1871

5 .88 235 .67 399 634 .86 .70 1996 .650 .83 287 .76 661 948 .80 .77 2394 .675 .89 280 .76 665 945 .81 .78 2394

6 .88 245 .67 401 646 .86 .70 1855 .725 .84 277 .74 570 847 .81 .76 2072 .750 .88 266 .73 544 810 .81 .76 2072

7 .88 256 .67 402 658 .86 .70 2233 .700 .85 301 .75 664 965 .83 .79 2589 .700 .89 298 .75 647 945 .82 .78 2590

Optimal design parameters λ∗, d�2 and HR�go , corresponding value of maximal expected utility u∗, expected estimate used for sample size calculation ε�2, expected
number of events in phase III when going to phase III d�3, expected total number of events of program d∗, expected probability to go to phase III p�go , and
expected probability of a successful program sP∗ for the optimal design, for c2 = 0.75, c3 = 1, c02 = 100, c03 = 150 in $ 105, ξ2 = ξ3 = 0.7, 1 − β = 0.9, α = 0.025 (one

sided), benefit scenarios bs 1–7, weights for the prior distribution w = 0.3, 0.6, 0.9, for the unadjusted program set-up Sðθ̂u2; θ̂
u

2Þ and multiplicatively adjusted

program set-ups Sðθ̂s12 ; θ̂
λ
2Þ, respectively
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expected probability of a successful program) are taken
into account. By maximizing the expected utility with
respect to the design parameters (adjustment parameter,
number of events for phase II and threshold value for the
go/no-go decision rule), optimal phase II/III drug develop-
ment program designs can be found. Therefore, it enables
quantitative reasoning for the design (i.e., the optimal
“amount of adjustment”, sample size and decision rule)
for specific drug development programs at hand.
We investigated two adjustment methods (additive

and multiplicative adjustment), several benefit scenarios
(e.g., low, medium, large overall benefit), different distri-
butions for the true treatment effect (with the same and
different distributions in phase II and III), scenarios with
a real life budget constraint, scenarios with a predefined
clinically relevant effect, and scenarios where phase II
could be skipped, hence presented a method for the

implementation of a variety of possible oncology drug
development program scenarios, and an opportunity for
assessing associated changes of the optimal design pa-
rameters. Of course, the implementation of alternative
(e.g., proportional relationship between benefit and ef-
fect size) or more complex planning situations and
broader application to other research areas are possible
by choosing relevant (e.g., cost and benefit) parameters
appropriately [37–39]. As the framework has been
shown to be very flexible, frequent scenarios in oncology
drug development are adequately mapped with our ap-
proach. However, certain situations may be simplified.
For example, in our framework the development pro-
gram consists entirely of just one phase II trial and one
phase III trial, which is, however, not unusual in oncol-
ogy. For situations that two or more phase III trials are
performed, the framework of optimal planning of

Table 3 Optimal design parameters for additively adjusted program set-ups

Additively adjusted

Program set-up Sðθ̂u2; θ̂
αCI
2 Þ Program set-up Sðθ̂αCI2 ; θ̂

αCI
2 Þ

bs αCI
∗ HR�go d�2 ε�2 d�3 d∗ p�go sP∗ u∗ αCI

∗ HR�go d�2 ε�2 d�3 d∗ p�go sP∗ u∗

w= .3, i.e., expð − E½θ̂2�Þ¼:82

1 .450 .78 88 .66 140 228 .42 .24 78 .450 .80 84 .65 138 222 .42 .23 78

2 .400 .79 113 .68 188 301 .43 .27 194 .400 .83 116 .69 192 308 .43 .28 194

3 .425 .81 140 .69 220 360 .47 .31 302 .425 .84 133 .69 229 362 .47 .31 302

4 .375 .81 155 .71 261 416 .46 .32 442 .400 .85 161 .71 261 422 .48 .33 442

5 .350 .81 189 .72 278 467 .46 .34 593 .350 .86 182 .72 289 471 .47 .34 593

6 .400 .83 190 .72 310 500 .50 .36 573 .425 .86 186 .71 311 497 .52 .36 573

7 .375 .83 204 .72 336 540 .50 .37 729 .375 .87 203 .73 346 549 .51 .37 729

w= .6, i.e., expð − E½θ̂2�Þ¼:76

1 .450 .81 140 .66 226 366 .60 .43 372 .425 .83 130 .67 226 356 .58 .43 372

2 .350 .80 168 .69 278 446 .58 .46 614 .350 .85 172 .69 282 454 .58 .46 614

3 .425 .83 175 .68 304 479 .64 .49 772 .425 .85 193 .68 296 489 .64 .49 772

4 .350 .82 224 .70 341 565 .62 .51 1045 .325 .87 228 .71 366 594 .62 .52 1045

5 .250 .81 273 .72 406 679 .60 .53 1338 .275 .88 249 .72 411 660 .62 .53 1338

6 .375 .84 252 .70 395 647 .67 .54 1221 .375 .87 252 .70 376 628 .66 .54 1222

7 .300 .83 287 .72 437 724 .65 .56 1515 .300 .88 273 .72 419 692 .64 .55 1515

w= .9, i.e., expð − E½θ̂2�Þ¼:71

1 .425 .82 168 .66 296 464 .75 .61 695 .450 .84 168 .66 284 452 .76 .61 695

2 .350 .82 203 .69 371 574 .76 .65 1068 .350 .86 210 .68 355 565 .76 .65 1068

3 .400 .84 224 .68 381 605 .80 .68 1272 .400 .87 228 .68 385 613 .80 .68 1272

4 .325 .83 252 .70 433 685 .79 .69 1681 .300 .88 280 .70 446 726 .79 .70 1682

5 .250 .82 308 .71 482 790 .78 .71 2122 .225 .89 315 .72 510 825 .78 .71 2122

6 .350 .84 287 .69 434 721 .81 .71 1898 .350 .88 294 .69 438 732 .82 .71 1898

7 .275 .83 315 .71 489 804 .80 .72 2333 .275 .89 326 .71 500 826 .81 .73 2334

Optimal design parameters αCI
∗, d�2 and HR�go , corresponding value of expected utility u∗, expected estimate used for sample size calculation ε�2, expected number

of events in phase III when going to phase III d�3, expected total number of events of program d∗, expected probability to go to phase III p�go , and expected
probability of a successful program sP∗ for the optimal design, for c2 = 0.75,c3 = 1, c02 = 100,c03 = 150 in $ 105, ξ2 = ξ3 = 0.7, 1 − β = 0.9, α = 0.025 (one sided), benefit

scenarios bs 1–7, weights for the prior distribution w = 0.3, 0.6, 0.9 for the additively adjusted program set-ups Sðθ̂s12 ; θ̂
αCI
2 Þ
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development programs was presented in a recent article
by Preussler et al. [40]. Furthermore, we assumed the
phase II trial to be two-armed. In the field of oncology
dose investigations are often performed before and not
as a part of phase II. However, in other indications dose-
finding is performed in phase II. Methods for optimizing
phase II/III programs with multi-armed phase II/III
studies are presented in Preussler et al. [41]. Futility in-
vestigations in the phase III trial and/or considering a
“seamless design” for the final analysis may be a worth-
while option, and it will be a topic of future research to
investigate their impact on the optimal design. We as-
sumed that the endpoint used in phase II and phase III
is the same. We are currently exploring the situation
that a surrogate (like progression-free or disease-free
survival) is captured in phase II and overall survival is
the primary endpoint in phase III. Another important
point is that time-effects are not considered in this art-
icle. The program is unaccounted for the duration of de-
velopment which is amongst others discussed in
Preussler et al. [41]. That work presents in detail how to

incorporate the impact of trial duration into the frame-
work (compare Supplementary Material A2 [41]). How-
ever, when trying to incorporate “time” into the utility
function, many aspects have to be considered. For ex-
ample, one could take into account the “life cycle” of a
drug as proposed by Patel & Ankolekar [42] who de-
scribe a typical life cycle by an early growth phase
followed by a plateau, after which the sales decline as
the patent expires. Furthermore, if there are several
competitors investigating a similar drug then the com-
pany, who is the first to bring the drug to the market,
usually gets the higher market share, i.e., higher gain.
However, including these aspects requires competitor in-
formation and assumptions about their unknown future
observed treatment effects. Any such assumptions are
usually associated with very high uncertainty. Instead of
trying to include too many (unknown) aspects into the
utility function a rather simplified approach, as pre-
sented here, is advisable. If after observing phase II data
further information about the potential of the drug,
dose, target population or (time-dependent) benefits are

Fig. 3 Optimization results. Maximal expected utility u∗, corresponding optimal design parameters δ� ¼ ðd�2;HR�goÞ, δ� ¼ ðd�2;HR�go; λ�Þ or
δ� ¼ ðd�2;HR�go; α�CIÞ, expected probability to go to phase III p�go , expected probability of a successful program sP∗, expected estimate used

for sample size calculation ε�2 , expected number of events in phase III when going to phase III d�3 and expected total number of events
of program d∗ in the optimal design, for c2 = 0.75, c3 = 1, c02 = 100, c03 = 150 in $ 105, ξ2 = ξ3 = 0.7, 1 − β = 0.9, α = 0.025 (one sided), for

program set-ups Sðθ̂s12 ; θ̂
s2
2 Þ, s1, s2 = λ, αCI or u (that is Sðθ̂u2; θ̂

u

2Þ: black circle; Sðθ̂u2; θ̂
λ
2Þ, Sðθ̂

λ
2; θ̂

λ
2Þ: green cross; Sðθ̂u2; θ̂

αCI
2 Þ, Sðθ̂αCI2 ; θ̂

αCI
2 Þ: violet

triangle), benefit scenarios bs 1–7, and weights for the prior distribution w = 0.3, 0.6, 0.9, where the yellow line indicates expð − E½θ̂2�Þ.
Note that the symbols used to show the program characteristics of both multiplicatively and additively adjusted program set-ups, i.e.,
green crosses and violet triangles, appear as stars when plotted on top of each other
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available the probability of success (compare [43]) and
the utility function could be updated to support go/no-
go decisions as well as the design of the phase III trial.
In general, our results show that the adjusted program

set-ups are superior to the unadjusted program set-up
with respect to the maximal expected utility. This is as-
sociated with higher investments in terms of number of
events and lower expected probabilities to go to phase
III in the adjusted program set-ups compared to the un-
adjusted approach. Thus, in the adjusted program set-
ups it is less often decided to go to phase III, but in case
of a go decision, the investment in terms of sample size
is higher. These aspects are particularly true for the mul-
tiplicatively adjusted program set-ups, which have also
higher expected probabilities of a successful program
compared to the additively adjusted and unadjusted pro-
gram set-ups. Simply said, the money is spent more
wisely when adjustment methods are used.
Values for the adjustment parameters that do not lead

to an adjustment (i.e., αCI = 0.5 and λ = 1 in the additively
and multiplicatively adjusted program set-ups, respect-
ively) were included but never selected in the
optimization. Thus, the results suggest that adjustment
should always be considered, which is in line with
Chuang-Stein and Kirby [14]. Furthermore, we see that in
the unadjusted case there is an overestimation of the treat-
ment effect after phase II, which is mitigated by the ad-
justments. In the multiplicative setting it is even shown
that an overcorrection and thus an even larger investment
in terms of sample size can be worthwhile with respect to
the expected utility. Note that the focus is on maximal ex-
pected utility and the expected estimate of phase II is only
a supporting variable, i.e., obtaining a “perfectly” unbiased
estimator is not the goal in this application. With regard
to the optimal number of events in phase II compared to
phase III (d�

2 / d
�
3), it can be seen that with the framework

in the unadjusted and additive case one ends up in the
“desirable” (according to De Martini [4, 25]) range of 2/3
and also in the multiplicative case with lower d�

2 / d�
3, one

still exceeds the often used 1/4. However, it should be
noted that the total optimal sample size is highest for the
multiplicative case.

Both multiplicatively adjusted (i.e., Sðθ̂s12 ; θ̂
λ
2Þ) and addi-

tively adjusted (i.e., Sðθ̂s12 ; θ̂
αCI
2 Þ ) program set-ups do not

differ in their maximal expected utility, whereas the
program set-ups with adjusted estimate used for decision

making (i.e., Sðθ̂λ2; θ̂
λ
2Þ and Sðθ̂αCI2 ; θ̂

αCI
2 Þ) have larger optimal

threshold values for the decision rule than program set-ups
where only the estimate used for calculating the expected

number of events for phase III is adjusted (i.e., Sðθ̂u2 ; θ̂
λ
2Þ

and Sðθ̂u2 ; θ̂
αCI
2 Þ ). Considering only these two aspects, ad-

justment of the treatment effect estimate used for the

decision rule may be omitted when also optimizing the
threshold value for the decision rule: this only leads to
larger values for HR�

go (i.e., more liberal decision rules)

which compensate the adjusted (more conservative) treat-
ment effect estimates. For the same reason, program set-

ups Sðθ̂λ2; θ̂
u
2Þ and Sðθ̂αCI2 ; θ̂

u
2Þ (i.e., multiplicative or additive

adjustment used for the decision rule and no adjustment
applied for the calculation of the number of events for
phase III) are not considered. Furthermore, as adjust-
ment of the treatment effect estimate used for the de-
cision rule may be omitted when also optimizing over
the threshold value for the decision rule, we did not
consider program set-ups where different adjustment
parameters used for the decision rule and the calcula-
tion of the expected number of events are optimized

(in our notation Sðθ̂λ12 ; θ̂
λ2
2 Þ and Sðθ̂αCI 12 ; θ̂

αCI 2
2 Þ).

Conclusions
Based on our results, we highly recommend using (mul-
tiplicatively) adjusted phase II treatment effect estimates
for calculation of the phase III number of events in a
phase II/III drug development program with go/no-go
decision rule (compare Chuang-Stein & Kirby [14], Kirby
et al. [15] and De Martini [4, 25]). However, as our re-
sults also show that the optimal design parameters of
each method depend on the cost and benefit parameters
as well as on the applied prior distribution, no general
rule exists. In contrast, the design parameters should be
determined by applying our proposed optimization
procedure for specific values of the parameters in the
respective drug development program. Therefore, we
provide an user friendly R Shiny App (bias) and an R
package (drugdevelopR including the R function
optimal_bias) open-source (both assessable via [1]).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-020-01093-w.

Additional file 1. In the Additional file 1, an overview of formulas in program
set-ups Sðθ̂s12 ; θ̂

s2
2 Þ,s1, s2 = λ, aCI, u (A0) and investigation of an alternative

definition of program success is given (A1). Furthermore, more details and results
of the application example when modelling different population structures in
phase II and III (A2), when using a predefined minimal clinically relevant effect for
phase III planning (A3), when using a budget constraint (A4), when skipping
phase II (A5) and when using a linear function for modelling the gain (A6) are
presented. The file Code.R includes the main function calls for generating the
datasets and tables, using the R package drugdevelopR.

Abbreviations
αCI,λ: Adjustment parameter for additive and multiplicative adjustment
method, respectively; bs: Benefit scenario; CI: Confidence interval;
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