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Abstract
The minimum detectable difference (MDD) is a measure of the difference between the means of a treatment and the control that
must exist to detect a statistically significant effect. It is a measure at a defined level of probability and a given variability of the
data. It provides an indication for the robustness of statistically derived effect thresholds such as the lowest observed effect
concentration (LOEC) and the no observed effect concentration (NOEC) when interpreting treatment-related effects on a
population exposed to chemicals in semi-field studies (e.g., micro-/mesocosm studies) or field studies. MDD has been proposed
in the guidance on tiered risk assessment for plant protection products in edge of field surface waters (EFSA Journal 11(7):3290,
2013), in order to better estimate the robustness of endpoints from such studies for taking regulatory decisions. However, the
MDD calculation method as suggested in this framework does not clearly specify the power which is represented by the beta-
value (i.e., the level of probability of type II error). This has implications for the interpretation of experimental results, i.e., the
derivation of robust effect values and their use in risk assessment of PPPs. In this paper, different methods of MDD calculations
are investigated, with an emphasis on their pre-defined levels of type II error-probability. Furthermore, a modification is
suggested for an optimal use of the MDD, which ensures a high degree of certainty for decision-makers.

Keywords Ecotoxicological effects . Power analysis . Type I and II errors . Micro-/mesocosm . Lowest observed effect
concentration (LOEC) . No observed effect concentration (NOEC) . Level of probability . Alpha and beta-values . Plant
protection products . Environmental risk assessment

Introduction

In (eco)toxicological testing, it is decisive to determine
whether a specific effect has a high probability to be detect-
ed, i.e., if a certain endpoint deviation from controls at a
certain concentration of a toxic substance can be identified
as statistically significant effect or not. More specifically, the
fact of falsely accepting or rejecting the null hypothesis (i.e.,
no difference between the mean of the control and the mean

of a treatment: H0: μ1 = μ2) for a given test depends on two
types of errors (the so-called type I or/and type II errors).
Type I error—“false positive”—is characterized by the pa-
rameter α, which is the probability to falsely reject the null
hypothesis (i.e., conclude on an effect, whereas the differ-
ence observed between the mean responses of control and
treatment are due to random variability). The alternative
hypothesis—the type II error, i.e., “false negative”—is char-
acterized by the parameter β, with 1-β being the statistical
power of a test (i.e., the probability of not falsely retaining
the null hypothesis concludes that differences observed are
due to random variability, while in reality, these are due to
the treatment, whose effect remains thus undetected). Each
type of errors has a different implication for the interpretation
of experimental results. Type II errors are of a high relevance
in ecotoxicology and particularly in the context of environ-
mental risk assessment of toxic substances such as plant pro-
tection products (PPP) since they may lead to undetected
unacceptable impacts on the ecosystems.
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Several types of analyses can be performed to determine
the statistical power of a test. A power analysis performed “a
priori” is especially valuable for predicting the sample size
needed in order to detect an effect of a given size when de-
signing a study (ISO 2004; Ryan 2013). For standardized
ecotoxicological tests, the power is defined “by design”, i.e.,
sample size/number of replicates (n) and alpha value (α).
Standard OECD test guidelines provide usually recommenda-
tions for a priori analyses in order to determine the probability
(i.e., degree of certainty) to detect a certain effect level in
ecotoxicological tests. These recommendations usually set
the statistical power of a test, defined as 1-β to a level of
80% (β-value of 0.2). For example, according to the OECD
GD 210, fish, early-life stage toxicity test (OECD 2013)
should be conducted with at least two replicates per concen-
tration and NOEC and LOEC levels should be reported. The
guideline states in section 32 that it “is recommended that the
design of the experiment and selection of statistical test permit
adequate power (80% or higher) to detect changes of biolog-
ical importance in endpoints where a NOEC is to be
reported.”

Power analysis can also be performed “a posteriori” (post
hoc power analysis, Thomas 1997). In this case, the sample
size is predetermined, and the power analysis informs us if
the given test design enables to detect significant effects and
with which magnitude for a specific level of certainty. In case
of ecotoxicological studies, this analysis is especially useful
in the case of higher tier testing methods, such as experimen-
tal ecosystems with diverse communities like micro-/
mesocosm studies. In such studies, thresholds of effects such
as no observed effect concentrations (NOEC) and lowest
observed effect concentrations (LOEC) rather than point ef-
fect estimates such as effect concentrations (ECx) are usually
derived. It is difficult to ensure a high probability of detect-
ing small effects for such higher tier studies, i.e., to ensure a
high statistical power “by design.” Indeed, field and semi-
field studies are usually characterized by diverse species
composition, high dynamic in population abundances over
time of the represented communities, and slightly different
physical and chemical boundary conditions in the replicates,
typically leading to a high degree of variability within treat-
ments in the observed data. This is also the case for long-
term monitoring studies (Sims et al. 2007). In addition,
micro- and mesocosm studies are usually designed with a
low number of replicates due to practical constraints (e.g.,
increasing the number of replicates would translate in even
higher cost for setup/maintenance and sample collection/pro-
cessing). All these characteristics consequently have an im-
pact on the power of the experimental study. The magnitude
of detectable effects may vary—also between time-points—
and can only be determined “a posteriori” and with a certain
level of probability. These implications are of high impor-
tance for risk assessors who determine the suitability of the

outcome of ecotoxicological studies for risk assessment
decisions.

In the authorization procedures of PPP in the European
Union (EU), the environmental risk assessment is performed
following a tiered approach. The rather simplistic lower tier
tests are performed under standardized conditions and accord-
ing to specific guidelines. If an unacceptable risk is indicated,
it can be then refined by conducting higher tier studies (e.g.,
micro-mesocosm studies). Such higher tier studies are per-
formed under more realistic conditions but often provide more
variable results than lower tier tests due to the study design
and practicability constraints (i.e., natural dynamics in species
assemblages usually observed over few months in only few
replicates). In tier 1 assessment, the limited ability to represent
field conditions and thus to describe the actual risk is ad-
dressed by associating effect values to standardized uncertain-
ty factors (e.g., typically 10 to 100 in aquatic testing). In con-
trast, the underlying studies in higher tier assessment are more
representative of field conditions than in tier 1, but effect
values are associated to lower uncertainty factors (e.g., typi-
cally 2 to 4 in aquatic testing). Hence in higher tier testing, the
statistical power should guarantee at least the same level of
certainty compared with tier 1 assessment. This implies that
the setting of statistical parameters such as the β-value should
not be less strict in higher tier testing (with a posteriori power
analysis) than in tier 1 testing (with a priori power analysis).

A specific method used in a posteriori power analyses of
higher tier studies is the so-called minimum detectable differ-
ence (MDD) (Williams 1971). MDD was originally intro-
duced as an extension of the least significant difference
(LSD) concept (Snedecor and Cochran 1967), and it has been
further discussed and developed in several publications after-
wards (e.g., Ward et al. 1990; Loftis et al. 2001; Sanderson
et al. 2009; Van der Hoeven 2008; Harcum and Dressing
2015). MDD is an important indicator that defines the differ-
ence between the means of a treatment and the control neces-
sary to detect a statistically significant effect at a defined level
of probability. The MDD analysis thus provides an indication
of the robustness of the derived ecotoxicological thresholds
(e.g., LOEC/NOEC) when analyzing an endpoint response at
given times after treatment. As an illustration, a MDD with a
β-value of 0.2 indicates the effect level that will not be
overlooked in 80% of cases, i.e., at a probability of 80%. At
the EU level for pesticide environmental risk assessment,
MDD is first proposed in the “guidance on tiered risk assess-
ment for plant protection products in edge of field surface
waters” (also called Aquatic Guidance Document, AGD)
(EFSA 2013) to provide support for interpreting outcomes
from complex community studies (micro-/mesocosm studies).
Although MDD informs on the sensitivity of the system to-
wards a toxic substance and thus on its suitability for studying
treatment-related effects, it is not meant to define the degree of
acceptability of such studies.
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Conclusions on acceptability of risks are for a large part
drawn from statistical analysis of complex ecotoxicological
study results. As these studies often have some shortcomings
(i.e., high variability and low replicate numbers), it is of high
importance to analyze and communicate the degree of certain-
ty on which regulatory decisions are based. In this context, the
regulatory decision should ensure that the probability of false-
ly concluding that a substance causes no effects (type II error)
is minimized.

In this paper, several methods for the calculation of MDD
are investigated, with an emphasis on the levels of probability
related to the type II error, namely the value given to the
parameter β. The implications of the β-value for the use of
endpoints and related MDD values for the environmental risk
assessment of PPPs are discussed. Finally, a suggestion for an
optimal use of MDD for the evaluation of field and semi-field
studies is proposed.

MDD calculations for experimental studies

MDD allows reporting the difference between the means of a
treatment and the control that must exist to detect a statistically
significant effect in an experiment for a given endpoint at a
given time and at a defined degree of certainty (probability).
Thus, the concentration below the lowest concentration show-
ing statistically significant effects (i.e., NOEC) is to be report-
ed with the type of endpoints, e.g., NOECs for populations
which are present in, e.g., micro-/mesocosm systems.

MDD Eq. 1 in AGD (EFSA 2013) was adapted from Lee
and Gurland (1975):

MDD ¼ x1−x2ð Þ ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s
ð1Þ

where x1 is the arithmetic mean of controls, x2 is the arithmetic
mean of the treatment, s21,s

2
2 are the variance of control and

treatment, n1, n2 are the numbers of control and treatment
samples, t is the tabulated t value for t test.

It is usually expressed as percentage of control means:

%MDD¼MDD�100
x1

ð2Þ

The general formula of the student’s t value, which is used
in several literatures withminor changes (e.g., Conquest 1983;
Zar 1984; Oris and Bailer 1993; Sanderson et al. 2009), can be
expressed as follows:

t ¼ tα;n0þn−2 þ tβ;n0þn−2 ð3Þ
where tα;n0þn−2 is the student’s t value with (n0 + n − 2) de-
grees of freedom corresponding to α, tβ;n0þn−2 is the student’s

t value with (n0+ n − 2) degrees of freedom corresponding to
β, n0 is the number of replicates for control, and n is the
number of replicates for treatment.

The t-formula above (Eq. 3) could also be expressed as in
Eq. 4:

t ¼ t1−α;df þ t1−β;df ð4Þ

where df is the degree of freedom for α and ß, respectively.
Based on Eqs. 1 and 4, the MDD can be expressed as in

Eq. 5:

MDD¼ x1−x2ð Þ¼ t1−α;dfþt1−β;df
� �

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s
ð5Þ

Equation 5 allows to control the parameters α and β. The
exact derivation of this equation is presented in Ryan (2013).
In practice, it allows to detect minimal changes between the
control and treatment within defined levels for both type I and
II errors.

TheMDD equation and the use ofMDD in ecotoxicological
studies have been discussed in several studies. For example,
Wang et al. (2000) proposed a three-step process called the
minimum significant difference-based criterion testing
(MSDBCT). It was suggested in that paper that when applying
the MSDBCT, the values of the different parameters including
α and β must be chosen by the regulators. Wang et al. (2000)
further recommended to apply a β-value of 0.05 which guar-
antees 95% statistical power for the test to detect a difference,
and consequently a high degree of certainty of not overlooking
significant effects.

MDD was then further discussed, and a new approach was
proposed to apply MDD to the evaluation of aquatic micro-/
mesocosm studies (EFSA 2013). The MDD equation was
introduced with a different variant of t-formula. According
to Brock et al. (2015), the MDD is calculated as follows:

MDD ¼ x1−x2ð Þ ¼ t1−α;df ;kS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r
ð6Þ

where t1 −α, df, k is the quantile of the t distribution, df is the
degrees of freedom for α, k is the number of comparisons, S is
the residual standard error, and n1, n2 are the numbers of con-
trol and treatment samples.

The t-formula used in the MDD calculation according to
Eq. 6 is similar to the t-formula (Eq. 3) used for the calculation
ofMDD in Eq. 1, but notably without theβ-value. The t value
would thus depend on the selected method (i.e., taken either
from the general table of t distribution or from the table of
Williams).

In Eq. (7) used in Supplemental document of Brock et al.
(2015) and cited in Green et al. (2018), t is defined as two
sided and seems to be based on the value of α and the degree
of freedom (df).
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t ¼ t1−α;df ;k ¼ t1−α=2;df −βWilliams � 1−
1

W

� �
=100 ð7Þ

whereW s the n0/nTreatment, βWilliams is the weighted param-
eter depending on the number of treatment levels (k) and α,
and tabulated in Williams (1972) for a multiple t test.

Hence, it is not clear which statistical power is used for the
t-formula in MDD equation. Equation 6 indicates that either
the parameterβ of the t-formula is not specified or a defaultβ-
value of 0.5 is applied. In both cases, the probability for which
a certain effect level is reported as being “detectable” is not
satisfying. Indeed the equation allows to detect significant
effects with only 50% certainty (50% probability of not find-
ing significant effects which however exist), which is in

conflict with the fundamental regulatory aim of avoiding to
overlook considerable effects and resulting risks.

Illustration based on aquatic mesocosm data

In order to illustrate the significance of the parameter β-value
for MDD calculation and its implication for the interpretation
of test results and risk assessment, respectively, data from two
distinct real aquatic micro-/mesocosm studies (A and B) are
presented. Both studies describe the trends observed in species
assemblages after exposure to various concentrations of a tox-
ic substance. In these studies, two insecticides “A” and “B”
were used, and the most sensitive species tested were the
midges Chironomus sp. and Chaoborus sp., respectively.

Fig. 1 a Mean abundance of the
adult population of Chironomus
sp. (emergence) exposed twice
(day 0 and day 21) to an
insecticide “A” at five
concentrations; range of the
controls are represented in gray
(individuals (trap*week), log-Y
scale, as given in original report).
b Mean abundance data of the
sum of Chaoborus sp. (larvae and
pupae) exposed twice (day 0 and
day 8) to insecticide “B” at six
concentrations; range of the
controls are represented in gray
(individuals/sample, linear Y
scale, as given in original report)
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MDD calculationswere based on (i) Eq. 6 without considering
the parameter β, which equals using β of 0.5, and (ii) on Eqs.
(4) and (5) includingWilliams correcting methodology withβ
of 0.2.

In study (A), the species assemblage was treated twice with
the insecticide “A” (on day 0 and day 21) at five concentra-
tions of 0.6 to 23.5 μg/L. The study was performed with 3
replicates for the control and 2 replicates per treatment.
Figure 1a represents the dynamics of the abundance of adult
population of Chironomus sp. (emergence data). In the con-
trols, the abundances were relatively high in the first part of
the experiment, enabling a good detection of effects in treat-
ments, but with an overall trend towards a slight decrease over
time later in the post-treatment period. The treatments induced
some declines in abundances of Chironomus sp. adults
throughout the test at concentrations varying between 0.6
and 3.8 μg/L. The NOEC values varied thus from a value
below 0.6 μg/L up to 1.5 μg/L, during the period of interest
for deriving the effect threshold of the study (i.e., first part of
the study following the 2 applications, i.e., ca day 14 to 42)
and the final agreed NOEC value for risk assessment is
0.6 μg/L.

In study (B), the species assemblage was treated twice with
the insecticide “B” (on day 0 and day 8) at six concentrations
of 0.00012 to 0.090 μg/L. The study was performed with 4
replicates for the control and 2 replicates per treatment.
Figure 1b represents the abundance dynamics of the popula-
tion of Chaoborus sp. (sum of larvae and pupae). In the

controls, the abundances were relatively low at the start of
the experiment, and the overall trend was towards a clear
increase over time, enabling then a good detection of effects
in treatments. The treatments induced some decline in abun-
dances of Chaoborus sp. at concentrations of 0.003 μg/L and
0.015 μg/L in the most relevant period after treatment, i.e.,
from day 14 to day 43. The NOEC values varied thus from
0.0006 to 0.003 μg/L, during the period of interest for deriv-
ing the effect threshold of the study (first part of the study
following the 2 applications, i.e., ca day 14 to 43) and the final
agreed NOEC value for risk assessment is 0.003 μg/L.

For statistical analysis of micro-/mesocosm results, abun-
dance data as presented on Fig. 1a and b are usually log-
transformed to approximate normal distribution and homoge-
neity of variance. As mentioned in Brock et al. (2015), if
requirements of parametric tests are not met and rank-based
tests are appropriate (e.g., the Mann–Whitney U test), other
approaches such as non-parametric tests should be used.
Approach such as CP-CAT which is especially suitable for
Poisson distributed data such as abundances could also be
considered (Lehmann et al. 2016, 2018).

For this dataset, Table 1 illustrates how the MDD values
vary with the change of the parameter β-value used in t-for-
mula. As MDD based on log-transformed data of abundance
and represented as percentage, i.e., %MDDlog are difficult to
interpret, it is recommended to calculate the MDD based on
back-transformed abundance data, e.g., %MDDabu (Brock
et al. 2015).

Table 1 Summary of information forChironomus sp. treated in studyA
as represented in Fig. 1a. NOEC values expressed as nominal treatment
rates (in μg/L) and calculations for MDDln% and MDDabu%, each

considering 2 different beta-values (i.e., 0.5 and 0.2, respectively) and
based on n = 3 and n = 2 replicates for control and treatment,
respectively*

Day 0 7 14 21 28 35 42 49 56 63 70 77

Control

Mean value of abundance 49.0 40.6 93.3 78.0 38.3 24.7 24.0 47.7 25.0 16.0 9.0 13.7

%CV 58.4 39.4 31.5 74.6 17.7 80.5 92.8 94.1 82.7 88.2 100 173

NOEC value – – 1.5 0.6 < 0.6 0.6 0.6 1.5 0.6 1.5 – –

Mean value of abundance 37.5 29.5 NA 24.0 43.5 1.5 22.0 0.5

%CV 50.9 31.2 NA 106.7 37.4 141.4 0.0 141.4

LOEC value – – 3.8 1.5 0.6 1.5 1.5 3.8 1.5 3.8 – –

Mean value of abundance 11.5 8.0 16.0 0.0 0.0 0.0 0.0 0.0

%CV 55.3 88.4 61.9 0.0 0.0 0.0 0.0 0.0

MDDlog%
Beta 0.5

– – 20.1 31.3 17.2 51.9 85.2 90.8 37.9 91.9 – –

MDDlog%
Beta 0.2

– – 29.0 45.3 25.4 75.2 123 131 54.8 132 – –

MDDabu%
Beta 0.5

– – 65.3 77.3 53.4 85.7 96.7 98.6 75.6 98.5 – –

MDDabu%
Beta 0.2

– – 78.4 88.7 67.7 95.4 103 102 87.9 103 – –

*These data were analyzed assuming that normal distribution and homogeneity of variance were approximated as claimed in the original dataset
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Figure 2a and b (and Table 1) shows that during the
post-treatment periods, the values of %MDDabu are higher
when the parameter β is set to a value of 0.2 (i.e., prob-
ability of 80%) than when set to a value of 0.5 (i.e.,
probability of 50% or not defined probability). In other
words, when the probability of making a type II error is
decreased to 20%, the value of %MDDabu is increased.
This is illustrated in study A, which shows that setting
the parameter β to a value of 0.2 produced %MDDabu

values varying between 67.6 and 95.4% in the period of
14 to 35 days. These values were higher than the

%MDDabu values calculated when setting β to a value
of 0.5 (i.e., between 53.4 and 85.7%; see Table 1). For
instance, at day 21 of the study A (Fig. 2a and Table 1),
the %MDDabu is 77.3% when β is set to a value of 0.5
indicating that (i) only effects between control and LOEC
treatment larger than 77.3% are detectable, and (ii) the
probability of being correct—i.e., that these effects are
not overlooked—is only of 50%. When β is set to a value
of 0.2, the %MDDabu increases to 88.6% (i.e., only effects
larger than 88.6% are reported as being detectable), but

Fig. 2 Study A. Percentage MDD values of abundance data (back
transformed) of the adult population of Chironomus sp. for all
treatments based on the mean abundance values of the control data by
taking a type II error β of 0.2 and 0.5 into account. Study B. Percentage
MDD values of abundance data (back transformed) for the sum of
Chaoborus sp. for all treatments based on the mean abundance values
of the control by taking a type II error β of 0.2 and 0.5 into account

Fig. 3 Relationship between statistical power and the minimum
detectable difference (MDD in %) for three different scenarios of the
type I error α (0.025, 0.05, and 0.10), calculated with the dataset of
Chironomus sp. as given in Fig. 1a

Fig. 4 Relationship between statistical power and the minimum
detectable difference (MDD in %) for five different sample size
scenarios (observed N, 2/3 and 3/4 of observed N, double and triple N),
calculated with the dataset of Chironomus sp. as given in Fig. 1a
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the certainty of detecting existing effects is increased to
80%. These trends are also shown in study B (Fig. 2b).
The principal relationship between power and MDD is
given in Fig. 3 which indicates that in order to detect a
minimum difference (MDD) of 47% for the species
Chironomus riparius, the conclusions might be incorrect
with a probability of 50% (under the conditions of study
A, as shown in Table 1). In order to reach a more certain
outcome (i.e., increasing the probability from 50 to 80%),
the MDD value is then increased to 60%.

Since the statistical power (1-β) depends on the parameters
alpha (α), sample size (n), and standard deviation (σ), chang-
ing the value of one of those parameters will result in changing
the statistical power (Hanson et al. 2003; Quinn and Keough
2002). Figures 3, 4, 5 illustrate the relationships between sta-
tistical power and MDD according to those parameters; these
examples are based on the dataset of Chironomus sp. as given
in Fig. 1a. They show that (i) for fixed n and σ, a smaller α-
value is related to a lower statistical power (at fixed MDD
values) or to higher MDD values (if 1-β is fixed; Fig. 3), (ii)
for fixed α and σ values, a larger sample size (i.e., n = number
of replicates) is related to a higher statistical power (at fixed
MDD values) or to smaller MDD values (if 1-β is fixed;
Fig. 4), and (iii) for fixed α and n values, a larger σ-value is
related to a lower statistical power (at fixedMDD values) or to
higher MDD values (if 1-β is fixed; Fig. 5).

Depending on the size of effects that should be detectable
and on the required degree of certainty, a high statistical power
will not necessarily require an impractically large sample size
(Ryan 2013), as the values of α and β could be chosen

independently and regardless of n. Thus, the low statistical
power proposed in some t-formulas should be avoidable,
and the %MDD value could no longer imply a high degree
of uncertainty (Spooner et al. 2011).

Implications for risk assessment
and recommendations

The analysis of available information and the presented case
studies indicate that the method for the calculation of mini-
mum detectable differences (MDD) could differ consider-
ably depending on the chosen statistical parameters. The dif-
ferences are linked to the formula used and the value of its
parameters, especially the parameter for the type II error (i.e.
β-value). Hence, the used t-formula should be scrutinized in
order to avoid inconsistencies in the interpretation of the
calculated MDD values as they eventually would have con-
sequences in regulatory decision-making. Indeed a type I
error could lead to an overly conservative regulatory deci-
sion, e.g., an unjustified refusal of authorization of the prod-
uct. A type II error, however, could lead to under-protective
regulatory decisions, e.g., authorizing a pesticide that has
potentially severe consequences for the environment or
missing to set specific conditions of use for risk mitigation.
The precautionary principle in the EU chemical policy and
legislation stipulates such false negative conclusions should
be avoided in the environmental risk assessment (EC 2009).
This implies that a suitable high level of statistical power in
the a posteriori power analysis should be demanded; these
analyses should be parameterized in order to report the min-
imum level of effect that can be actually statistically detected
with a high probability.

Power analysis for lower tier standard tests and higher tier
complex studies in principle address the same regulatory ques-
tions. They should thus share as much as possible similar
criteria (e.g., same values of α and same values of β), in order
to guarantee a similar level of certainty. We suggest therefore
to align the parameter values to those used in established a
priori methods (i.e., setting type II error/β to 0.2). This would
ensure that the MDD analysis used as a posteriori analysis of
data from higher tier studies enables regulators to avoid
overlooking actual effects and taking deficient regulatory
decisions.

An increase in the statistical power (1-β) can then be relat-
ed to an increase of the MDD values, as illustrated in this
paper. Such an increase of MDD values can have implications
in the interpretation of the study outcomes. For example,
higher MDD values are attributed to lower MDD classes in
the classification proposed in the AGD (EFSA 2013). The
MDD of most relevant endpoints should ideally exceed class
II, i.e., MDD values should ideally be lower than 70%, al-
though endpoints with lower MDD classes (I–II) (i.e., MDD

Fig. 5 Relationship between statistical power and the minimum
detectable difference (MDD in %) for three different statistical
dispersion scenarios (half, estimated, and double) of the standard
deviation (SD) (based on the dataset of Chironomus sp. as given in the
Fig. 1a)
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values between 70 and 100%) may, however, be considered
relevant. However, it should be pointed out that there is no
scientifically derivable general limit for the MDD which
would consider ecotoxicological tests as unsuitable
(Environment Canada 2005; Brock et al. 2015; Wang et al.
2000).

It should be also noted that other methods than MDD have
been proposed as statistical evaluation of higher tier studies
(e.g., Lehmann et al. 2016, 2018). If appropriate statistical
analysis indicates that data are not complying with established
demands, the suitability of the study will be limited. But by
means of an expert knowledge-based ecological evaluation of
the results, the study may however contribute to a scientifical-
ly sound regulatory decision.
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