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Abstract
Aims/hypothesis Emerging evidence suggests that in addition to hyperglycaemia, dyslipidaemia could represent a contributing
pathogenetic factor to diabetic neuropathy, while obesity and insulin resistance play a role in the development of diabetic cardiac
autonomic neuropathy (CAN) characterised by reduced heart rate variability (HRV), particularly in type 2 diabetes.We hypothesised
that distinct lipid metabolites are associated with diminished HRV in recent-onset type 2 diabetes rather than type 1 diabetes.
Methods We analysed 127 plasma lipid metabolites (11 acylcarnitines, 39 NEFA, 12 sphingomyelins (SMs), 56 phosphatidyl-
cholines and nine lysophosphatidylcholines) using MS in participants from the German Diabetes Study baseline cohort recently
diagnosed with type 1 (n = 100) and type 2 diabetes (n = 206). Four time-domain HRV indices (number of normal-to-normal
(NN) intervals >50 ms divided by the number of all NN intervals [pNN50]; root mean square of successive differences
[RMSSD]; SD of NN intervals [SDNN]; and SD of differences between adjacent NN intervals) and three frequency-domain
HRV indices (very-low-frequency [VLF], low-frequency [LF] and high-frequency [HF] power spectrum) were computed from
NN intervals recorded during a 3 h hyperinsulinaemic–euglycaemic clamp at baseline and in subsets of participants with type 1
(n = 60) and type 2 diabetes (n = 95) after 5 years.
Results In participants with type 2 diabetes, after Bonferroni correction and rigorous adjustment, SDNNwas inversely associated
with higher levels of diacyl-phosphatidylcholine (PCaa) C32:0, PCaa C34:1, acyl-alkyl-phosphatidylcholine (PCae) C36:0, SM
C16:0 and SM C16:1. SD of differences between NN intervals was inversely associated with PCaa C32:0, PCaa C34:1, PCaa
C34:2, PCae C36:0 and SM C16:1, and RMSSD with PCae C36:0. For VLF power, inverse associations were found with PCaa
C30:0, PCaa C32:0, PCaa C32:1, PCaa C34:2 and SM C16:1, and for LF power inverse associations were found with PCaa
C32:0 and SM C16:1 (r = −0.242 to r = −0.349; p ≤ 0.0005 for all correlations). In contrast, no associations of lipid metabolites
with measures of cardiac autonomic function were noted in participants recently diagnosed with type 1 diabetes. After 5 years,
HRV declined due to ageing rather than diabetes, whereby prediction analyses for lipid metabolites were hampered.
Conclusions/interpretation Higher plasma levels of specific lipid metabolites are closely linked to cardiac autonomic dysfunc-
tion in recent-onset type 2 diabetes but not type 1 diabetes, suggesting a role for perturbed lipid metabolism in the early
development of CAN in type 2 diabetes.
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Abbreviations
CAN Cardiac autonomic neuropathy
DGAT2 Diacylglycerol acyltransferase 2
GDS German Diabetes Study
HF High-frequency
HPFS Health Professionals Follow-up Study
HRV Heart rate variability
LOD Limit of detection
LF Low-frequency
NHS Nurses’ Health Study
NN Normal-to-normal
PCaa Diacyl-phosphatidylcholine
PCae Acyl-alkyl- phosphatidylcholine
pNN50 Number of pairs of adjacent normal-to-normal

intervals differing by >50 ms in the entire record-
ing divided by the total number of normal-to-
normal intervals

RMSSD Root mean square of successive differences
SDNN SD of all normal-to-normal intervals
SM Sphingomyelin
TMAO Trimethylamine-N-oxide
VLF Very-low-frequency

Introduction

Cardiovascular autonomic neuropathy (CAN), with its hall-
mark reduced heart rate variability (HRV), affects

approximately 20% of people with diabetes and predicts an
increased risk of major cardiac events and mortality [1]. We
recently demonstrated that lower HRV, indicating diminished
cardiovagal tone, in recent-onset type 2 diabetes is associated
with insulin resistance, hepatic steatosis and blunted cardiore-
spiratory fitness, suggesting that these components could play
an important role in the early development of CAN, apart from
well-known risk factors such as higher age, obesity, hyperten-
sion or poor glycaemic control [2]. Indeed, it has been
emphasised that hyperglycaemia cannot be considered as the
sole factor responsible for the development of diabetic
complications, particularly in patients with type 2 diabetes.
Instead, an interplay of the aforementioned factors that have
an impact on the adipose tissue fatty acid metabolism could
underlie the onset and progression of diabetic microvascular
complications including neuropathy [3].

There is accumulating evidence suggesting that in addition
to hyperglycaemia, dyslipidaemia could represent a contribut-
ing pathogenetic factor to neuropathy, particularly for type 2
diabetes. Since both hyperglycaemia and dyslipidaemia affect
multiple cells in the peripheral nervous system, including
neuronal axons, Schwann cells and dorsal root ganglia,
deciphering the mechanisms by which perturbed glucose
and lipid metabolism converge to result in nerve damage
could foster the development of novel lipid-based disease-
modifying treatments for diabetic neuropathy [4]. Previous
studies assessing large cohorts of individuals with type 2
diabetes point to a link between plasma lipid levels and
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diabetic neuropathies. The Fremantle Diabetes Study reported
that the use of fibrates and statins was associated with lower
risks of developing polyneuropathy over 5 years [5].
Furthermore, the Anglo-Danish-Dutch Study of Intensive
Treatment in People With Screen-Detected Diabetes in
Primary Care (ADDITION)-Denmark study showed that
hypertriacylglycerolaemia was associated with prevalent
CAN [6], while low HDL-cholesterol levels were predictors
of incident polyneuropathy over 13 years [7].

The past decade has witnessed novel technologies such as
metabolomics aimed at the extensive characterisation and
quantification of global metabolites from both endogenous
and exogenous sources in the context of insulin resistance,
the metabolic syndrome and type 2 diabetes [8–11]. As a
subfield of metabolomics, lipidomics emerged to investigate
the relationship of dysregulation in lipid metabolism and path-
ogenesis of type 2 diabetes [12] and diabetic neuropathy [13].

To date, there are no studies that assess the relationship
between cardiac autonomic function and metabolomic profiles
including lipidomics in individuals with type 1 or type 2 diabetes.
Using targeted fasting plasma metabolomic analysis, we previ-
ously reported both similarities and diabetes type-specific differ-
ences in the metabolite patterns when comparing participants
with type 1 diabetes and type 2 diabetes from the German
Diabetes Study (GDS) baseline cohort [14]. Given the complex
interplay between hyperglycaemia, insulin resistance, obesity and
lipid metabolism as the putative factors contributing to diabetic
neuropathy, we hypothesised that a distinct link exists between
specific lipid metabolites and cardiac autonomic dysfunction in
recent-onset type 2 diabetes as opposed to type 1 diabetes.

Methods

Study participants Individuals recently diagnosed with diabe-
tes (known diabetes duration ≤1 year) and glucose-tolerant
control individuals were recruited consecutively from the
baseline cohort of the GDS. The GDS is a prospective obser-
vational study investigating the natural course of metabolic
alterations and the development of chronic diabetic complica-
tions (ClinicalTrial.gov registration no: NCT01055093). The
study was approved by the local ethics committee of Heinrich
Heine University, Düsseldorf, Germany, and informed written
consent was obtained from all participants prior to
participation. The study design and cohort profile of the
GDS have been described in detail previously [15]. The
present cross-sectional analysis of lipid metabolites and
HRV measures included 100 consecutive participants with
type 1 diabetes and 206 consecutive participants with type 2
diabetes. The prospective analysis of HRV indices included
60 individuals with type 1 diabetes and 95 individuals with
type 2 diabetes who reached the 5 year follow-up.

Hyperinsulinaemic–euglycaemic clamp All participants
underwent an IVGTT followed by a modified Botnia clamp
test with [6,6-2H2]glucose to measure whole-body insulin
sensitivity as previously described [15]. Whole-body insulin
sensitivity (M value; [μmol glucose] [body weight in
kg]−1 min−1) was calculated from the difference between
mean glucose infusion rates during steady state in the last
30 min of the clamp with glucose space correction [15].

HRV R–R intervals were measured in the supine position
during a hyperinsulinaemic–euglycaemic clamp over 3 h
using a digital Spider View Holter recorder with seven elec-
trodes to record three-channel ECGs (Sorin Group, Munich,
Germany) as previously described [16]. Time-domain HRV
measures included the SD of differences between adjacent
normal-to-normal (NN) intervals, SD of all NN intervals
(SDNN), the number of pairs of adjacent NN intervals differ-
ing by >50 ms in the entire recording divided by the total
number of NN intervals (pNN50), and the root mean square
of successive differences (RMSSD). Frequency-domain HRV
indices included the very-low-frequency (VLF) band (0.003–
0.04 Hz), low-frequency (LF) band (0.04–0.15 Hz) and high-
frequency (HF) band (0.15–0.4 Hz) [17, 18].

Cardiovascular autonomic function tests were performed to
diagnose CAN, including seven HRV indices measured
during spontaneous breathing over 5 min (coefficient of R–
R interval variation, VLF and LF power), at deep breathing
(expiration-to-inspiration [E/I] ratio), after standing up (max/
min 30:15 ratio) and in response to a Valsalva manoeuvre
(Valsalva ratio) using VariaCardio TF5 (MIE Medical
Research, Leeds, UK), as previously described [19]. Age-
dependent lower limits of normal were defined at the fifth
percentile of healthy participants. The systolic BP response
to standing up was measured over 3 min using −27 mmHg
as an age-independent lower limit of normal. Borderline CAN
was assumed if two out of seven indices were abnormal, while
definite CAN was diagnosed if three or more out of seven
indices were abnormal [19]. Brief explanations for the physi-
ological basis of the various HRV indices are included into the
electronic supplementary material [ESM] Methods.

Lipid metabolites Fasting sodium heparinate plasma samples
were rapidly frozen and stored at −80°C. Targeted metabolic
profiling of 127 blood lipid metabolites (11 acylcarnitines, 39
NEFA, 12 sphingomyelins (SMs), 56 phosphatidylcholines
and nine lysophosphatidylcholines) was performed with the
X MetaDis/DQTM Kit at Biocrates Life Sciences (Innsbruck,
Austria) as previously described [14]. In brief, this targeted
IDQ metabolomics platform enables the investigation of vari-
ousmetabolites using GC–, LC–, flow injections analysis–MS
and mass spectrometric procedures for more specialised iden-
tifications. The limit of detection (LOD) was determined for
each metabolite from the signal-to-noise ratio. Metabolites
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were included in further analyses if values exceeded the
respective LOD and could be detected in >95% of the samples
examined. Preanalytical stability of metabolites was tested
during three different handling procedures with replicate
samples (n = 10 each). Metabolites were excluded due to
insufficient reliability (CV >30%). This cut-off value is
approximately three times the maximum variation per metab-
olite observed in independent comparative metabolome stud-
ies using the same technology [20].

Statistical analysis Data are presented as mean ± SD, median
(first quartile, third quartile) or percentages. Categorical vari-
ables were compared using χ2 test and expressed as percent-
ages of participants. Continuous data were assessed using the
parametric t test or non-parametric Mann–Whitney U test.
Metabolite concentrations were log transformed (loge)
because of their skewed distribution and adjusted for plate
effects. Correlations between two variables were determined
using Spearman rank correlation. For multiple linear regres-
sion analyses, dependent variables with skewed distribution
were log transformed (loge) before analyses. The analyses
were adjusted for age, sex, BMI, smoking and antihyperten-
sive and lipid-lowering drugs. All statistical tests were two-
sided and the level of significancewas set atα = 0.05. p values
obtained from univariate correlation analyses were adjusted
for multiple comparisons using Bonferroni correction consid-
ering seven HRV indices (pNN50, RMSSD, SDNN, SD of
differences between adjacent NN intervals, and VLF, LF and
HF bands) and the number ofmetabolites in the corresponding
lipid class (11 acylcarnitines, 39 NEFA, 12 SMs, 56 phospha-
tidylcholines and nine lysophosphatidylcholines).

To consider the physiological decline in HRV over the 5-
year follow-up period, age-dependent regressions of the corre-
sponding HRV variables were calculated in 167 glucose-
tolerant individuals from the GDS study (mean ± SD: age
45.5 ± 14.1 years; BMI 26.9 ± 4.8 kg/m2; HbA1c 33.2 ±
3.2 mmol/mol [5.2 ± 0.3%]), 108 (65%) of whom were male.
Using the resulting equations, we determined the magnitude
of the physiological HRV decline over the 5 years for each
HRV measure and added these values to the corresponding
individual HRV values for participants with type 1 and type 2
diabetes (ESM Table 7). Wilcoxon signed-rank test was used
to analyse the changes inHRV indices from baseline to 5 years
before and after adjustment for the 5 year follow-up period.
All analyses were performed using SPSS version 22.0 soft-
ware (IBM Corporation, Chicago, IL, USA).

Results

Cross-sectional analysis The demographic, clinical and HRV
data for the participants with type 1 and type 2 diabetes are
listed in Table 1. Compared with type 1 diabetes individuals,

those with type 2 diabetes were older, had higher BMI, lower
M value and were more frequently taking glucose-lowering,
lipid-lowering, and antihypertensive drugs (all p < 0.05). No
differences between the groups were found for the remaining
demographic and clinical variables after adjustment for sex,
age, BMI and smoking status. Prior to adjustment, all seven
HRV indices were lower in participants with type 2 diabetes
than in those with type 1 diabetes but after adjustment for sex,
age, BMI, smoking status, HbA1c, fasting blood glucose, M
value, triacylglycerols, cholesterol, HDL-cholesterol, LDL-
cholesterol, creatinine, proteinuria, insulin therapy, oral
glucose-lowering drugs, antihypertensive drugs and lipid-
lowering drugs, no differences in any of the HRV measures
were found between the groups (Table 1).

The associations of higher levels of lipid metabolites with
lower HRV indices in participants with recent-onset type 2
diabetes are shown in Table 2. After Bonferroni correction
and following adjustment for sex, age, BMI, smoking status,
HbA1c, fasting blood glucose, M value, triacylglycerols,
cholesterol, HDL-cholesterol, LDL-cholesterol, creatinine,
proteinuria, insulin therapy, oral glucose-lowering drugs, anti-
hypertensive drugs and lipid-lowering drugs, the following
associations were noted among the time-domain HRV indices:
SDNN was inversely associated with higher levels of diacyl-
phosphatidylcholine (PCaa) C32:0 and PCaa C34:1, and acyl-
alkyl-phosphatidylcholine (PCae) C36:0, as well as SM C16:0
and SM C16:1; SD for differences between adjacent NN inter-
vals was inversely associated with PCaa C32:0, PCaa C34:1,
PCaa C34:2 and PCae C36:0, as well as SM C16:1 and
RMSSD was inversely associated with PCae C36:0 (all
p < 0.05). Following Bonferroni correction and the aforemen-
tioned adjustments, the following inverse associations were
noted among the frequency-domain HRV indices: VLF power
was associated with PCaa C30:0, PCaa C32:0, PCaa C32:1 and
PCaa C34:2, as well as SM C16:1; and LF power was associ-
ated with PCaa C32:0 and SM C16:1 (all p < 0.05). The
remaining relationships were either not statistically significant
or lost statistical significance after Bonferroni correction or
following adjustment. Representative examples for the inverse
correlations of lipid metabolites with SDNN in participants
recently diagnosed with type 2 diabetes are shown in Fig. 1a–d.

In the participants with recent-onset type 2 diabetes, multi-
ple associations were also observed between the seven HRV
indices and multiple other lipid metabolites from the five clas-
ses investigated. However, after Bonferroni correction or after
adjustment, these associations lost statistical significance. The
relationships between HRV measures and NEFA, phosphati-
dylcholines and lysophosphatidylcholines, SMs and
acylcarnitines are shown in ESM Table 1, ESM Table 2,
ESM Table 3 and ESM Table 4, respectively.

No associations between lipid metabolites and HRV indi-
ces were found either after Bonferroni correction or after
adjustment in the group with recent-onset type 1 diabetes.
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The relationship between lipid metabolites and HRV
measures in participants with recent-onset type 1 diabetes is
shown in ESM Table 5 (only bivariate correlations with
p < 0.005 for at least one HRV index before adjustment are
listed). After adjustment for sex, age, BMI, smoking status,
HbA1c, fasting blood glucose, M value, triacylglycerols,
cholesterol, HDL-cholesterol, LDL-cholesterol, creatinine,

proteinuria, insulin therapy, oral glucose-lowering drugs, anti-
hypertensive drugs and lipid-lowering drugs, statistical signif-
icance was lost (p > 0.05 for all correlations).

Prospective analysis The demographic and clinical character-
istics of the subsets of participants who completed the 5 year
HRV follow-up are shown in ESM Table 6. In both diabetes

Table 1 Demographic and clini-
cal characteristics at baseline Variable Type 1 diabetes Type 2 diabetes p valuea

n (% male) 100 (64) 206 (67) 0.609

Age, years 34.5 ± 13.0 53.5 ± 10.9 <0.0001

BMI, kg/m2 24.6 ± 4.2 31.8 ± 6.0 <0.0001

Current smoking status, % yes 24.0 21.4 0.661

Heart rate, beats/minb 69.4 ± 10.6 69.9 ± 10.2 0.445

Systolic BP, mmHgb 117 ± 12 132 ± 15 <0.0001

Diastolic BP, mmHgb 65.8 ± 8.5 73.6 ± 8.9 <0.0001

Triacylglycerols, mmol/lb 0.76 (0.56, 1.13) 1.48 (1.04, 2.20) <0.0001

Cholesterol, mmol/lb 4.65 ± 0.98 5.38 ± 1.13 <0.0001

HDL-cholesterol, mmol/lb 1.52 ± 0.45 1.21 ± 0.33 <0.0001

LDL-cholesterol, mmol/lb 2.69 ± 0.89 3.39 ± 0.98 <0.0001

Creatinine, nmol/l 80.2 ± 13.7 80.3 ± 15.3 0.928

HbA1c, mol/mmol 50.5 ± 14.8 47.2 ± 9.9 0.080

HbA1c, % 6.8 ± 1.4 6.5 ± 0.9 0.080

Fasting glucose, mmol/l 7.87 ± 3.00 7.16 ± 1.61 0.428

M value, μmol kg−1 min−1 b 43.8 (32.2, 56.6) 33.9 (23.3, 42.7) <0.0001*

Diabetes duration, days 204 ± 95 195 ± 88 0.405

Insulin treatment, % 89.0 7.8 <0.0001

Glucose-lowering drugs, % 16.0 55.8 <0.0001

Antihypertensive drugs, % 9.0 58.3 <0.0001

Lipid-lowering drugs (total/statins), % 1.0 (1.0) 22.8 (19.4) <0.0001

Albuminuria, mg/lb 14.8 ± 9.8 22.1 ± 43.8 0.038

Subclinical/borderline CAN, % 3.4 5.0 0.756

Definite CAN, % 2.2 3.3 1.000

Time-domain HRV indicesc

pNN50, % 12.4 (5.6, 25.2) 4.9 (1.4, 14.5) <0.0001

RMSSD, ms 37.2 (27.1, 50.8) 27.0 (19.9, 41.3) <0.0001

SDNN, ms 66.0 (51.2, 87.1) 50.2 (39.1, 64.4) <0.0001

SD of differences between adjacent NN intervals, ms 78.5 (59.6, 94.5) 59.8 (46.2, 74.5) <0.0001

Frequency-domain HRV indicesc

VLF power, ms2 2078 (1314, 3696) 1437 (846, 2381) <0.0001

LF power, ms2 1310 (753, 2115) 586 (329, 1057) <0.0001

HF power, ms2 402 (207, 701) 168 (88, 338) <0.0001

Data are presented as %, mean±SD, or median (first quartile, third quartile)
a p value prior to adjustment
b Group comparison adjusted for sex, age, BMI and smoking status; *p<0.05 vs type 1 diabetes after adjustment
for sex, age, BMI and smoking status
c Group comparison adjusted for sex, age, BMI, smoking status, HbA1c, fasting blood glucose,M value, triacyl-
glycerols, cholesterol, HDL-cholesterol, LDL-cholesterol, creatinine, proteinuria, insulin therapy, oral glucose-
lowering drugs, antihypertensive drugs and lipid-lowering drugs. There were no differences between the groups
for the HRV indices after adjustment

hsCRP, high-sensitivity C-reactive protein
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groups, triacylglycerols, HDL-cholesterol, LDL-cholesterol
and HbA1c increased, while albuminuria decreased from base-
line to 5 years (all p < 0.05). In participants with type 1 diabe-
tes, BMI and total cholesterol increased and M value
decreased, while in those with type 2 diabetes, fasting glucose
and the percentage of antihypertensive drug users increased
and creatinine decreased from baseline to 5 years (all
p < 0.05).

Table 3 shows the HRV indices in subsets of individuals
who completed the 5 year HRV follow-up. In unadjusted
analyses in both diabetes groups LF and HF power decreased,
while in addition in participants with type 1 diabetes pNN50

decreased (all p < 0.05). After adjustment for the 5 year
follow-up period, SD for differences between adjacent NN
intervals increased in both diabetes groups, while VLF power
increased only in the group with type 1 diabetes (all p < 0.05).
The sum of the original values and the added age-dependent
5 year physiological changes in the HRV indices at 5 years are
shown in ESM Table 7 together with the corresponding equa-
tions and syntaxes obtained from the regressions computed in
167 glucose-tolerant control individuals from the GDS study.
There were no associations between the baseline levels of
lipid metabolites and the changes in HRV indices over 5 years
(data not shown).

Fig. 1 (a–d) Representative
examples for inverse correlations
of lipid metabolites with SDNN
in participants recently diagnosed
with type 2 diabetes

Table 2 Inverse associations of lipid metabolites with HRV measures in participants with recent-onset type 2 diabetes

Metabolite Time domain HRV indices Frequency domain HRV indices

pNN50 RMSSD SDNN SD VLF LF HF

r p r p r p r p r p r p r p

PCaa C30:0 −0.225 0.001 −0.217 0.002 −0.285 <0.0001* −0.266 0.0001* −0.289 0.0001*† −0.244 0.001 −0.185 0.009
PCaa C32:0 −0.263 0.0001* −0.260 0.0002† −0.345 <0.0001*† −0.340 <0.0001*† −0.349 <0.0001*† −0.295 <0.0001*† −0.249 0.0004†

PCaa C32:1 −0.189 0.007 −0.166 0.017 −0.260 0.0002† −0.258 0.0002 −0.268 0.0001*† −0.192 0.006 −0.109 0.124
PCaa C34:1 −0.213 0.002† −0.197 0.005† −0.266 0.0001*† −0.265 0.0001*† −0.259 0.0002† −0.202 0.004† −0.148 0.037
PCaa C34:2 −0.198 0.005† −0.183 0.009† −0.259 0.0002† −0.265 0.0001*† −0.275 <0.0001*† −0.218 0.002† −0.168 0.018†

PCae C36:0 −0.256 0.0002† −0.263 0.0001*† −0.286 <0.0001*† −0.271 <0.0001*† −0.237 0.001† −0.254 0.0003† −0.260 0.0002†

SM C16:0 −0.208 0.003† −0.174 0.012† −0.242 0.0005*† −0.233 0.001† −0.201 0.004† −0.203 0.004† −0.173 0.015†

SM C16:1 −0.197 0.015† −0.169 0.015† −0.302 <0.0001*† −0.292 <0.0001*† −0.254 0.0003*† −0.260 0.0002*† −0.140 0.049†

Metabolite nomenclature indicates Cx:y,whereby x is the number of carbons in the fatty acid side chain, y is the number of double bonds in the fatty acid
side chain

*p<0.05 after Bonferroni correction for multiple testing (each group of metabolites was tested separately)
† p<0.05 after adjustment for sex, age, BMI, smoking status, HbA1c, fasting blood glucose, M value, triacylglycerols, cholesterol, HDL-cholesterol,
LDL-cholesterol, creatinine, proteinuria, insulin therapy, oral glucose-lowering drugs, antihypertensive drugs and lipid-lowering drugs
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Discussion

The results of this study demonstrate that higher plasma levels
of distinct lipid metabolites, namely phosphatidylcholines
(five diacyl and one acyl-alkyl) and SMs (C16:0 and C16:1)
are linked to cardiac autonomic dysfunction, particularly to
lower cardiovagal tone, in individuals recently diagnosed with
type 2 diabetes. In contrast, no associations of lipid metabo-
lites with cardiac autonomic function were found in partici-
pants with recent-onset type 1 diabetes, suggesting a role for
perturbed lipid metabolism in the early development of CAN
specifically in type 2 diabetes. However, the 5 year follow-up
period was too short to detect clinically relevant deterioration
in HRV in excess of the physiological effect of ageing and
thereby to allow for analyses of the predictive value of lipid
metabolites in the development or progression of CAN.

There are no published studies available with which our find-
ings could be directly compared. Previous cohort studies focused
on the predictive value of various lipid metabolites, in particular
phosphatidylcholine consumption, on incident type 2 diabetes as
well as CVD andmortality risk. Phosphatidylcholines are a class
of phospholipids that incorporate choline as a headgroup. They
are a major component of biological membranes and can be
easily obtained from a variety of readily available sources, such
as egg yolk or soybeans, from which they are mechanically or
chemically extracted using hexane. In the Nurses’ Health Study
(NHS), NHS II and the Health Professionals Follow-up Study
(HPFS), dietary intake of phosphatidylcholine was associated
with an increased risk of incident type 2 diabetes [21].
Moreover, in the NHS and HPFS, higher phosphatidylcholine
consumption was associated with increased all-cause and cardio-
vascular mortality risk, especially in patients with diabetes, inde-
pendent of traditional risk factors [22]. Recent animal studies

point to a mechanistic link between intestinal microbial metabo-
lism of the choline moiety in dietary phosphatidylcholine and
CVD through the production of a proatherosclerotic metabolite,
trimethylamine-N-oxide (TMAO), which is associated with an
increased risk of incident major adverse cardiovascular events
[23]. However, the way in which TMAO could also play a role
in the context of type 2 diabetes and CAN remains unknown.

The present study also shows associations between higher
concentrations of SMs C16:0 and C16:1 and lower HRV indi-
ces, largely indicating diminished cardiovagal tone.
Sphingolipids are complex lipids that are particularly abundant
in nervous tissue and are implicated not only in a number of
neurological diseases but also in insulin-resistant conditions such
as diabetes or non-alcoholic steatohepatitis [24, 25]. Higher
concentrations of specific SMs have recently been found to
predict incident type 2 diabetes in prospective sphingolipidomics
studies over 6 and 11 years, respectively [26, 27]. The formation
of atypical neurotoxic deoxysphingolipids has been identified to
play a causative role in the development of hereditary sensory
and autonomic neuropathy type 1 (HSAN1) [12]. Of note, 1-
deoxysphingolipids have also been found to be elevated in indi-
viduals with type 2 diabetes and in non-diabetic individuals with
the metabolic syndrome [28]. Moreover, 1-deoxysphingolipid
levels were also increased in individuals with type 2 diabetes
who had polyneuropathy, when compared with healthy individ-
uals, but there were no correlations between these levels and
peripheral nerve function tests or the clinical neuropathy stages
[12]. In an open-label clinical trial in individuals with primary
hypercholesterolemia or mixed dyslipidaemia, treatment with
fenofibrate for 6 weeks resulted in lowering of plasma 1-
deoxysphingolipid levels [29]. An open-label trial in individuals
with type 1 diabetes showed that supplementation with seal oil
ω-3 polyunsaturated fatty acids over 12 years was associated

Table 3 Follow-up of HRV indi-
ces after 5 years HRV variable Type 1 diabetes (n=60) Type 2 diabetes (n=95)

Baseline 5 years Baseline 5 years

Time-domain HRV indices

pNN50, % 12.6 (6.4, 25.5) 7.8 (2.5, 23.6)* 5.3 (2.0, 18.3) 4.5 (1.3, 12.1)

RMSSD, ms 37.8 (28.7, 52.0) 31.0 (23.1, 50.5) 28.8 (21.4, 43.4) 27.3 (20.2, 39.1)

SDNN, ms 66.7 (52.5, 86.7) 66.0 (47.0, 85.6) 51.9 (41.1, 67.5) 48.9 (39.3, 66.4)

SD of differences
between adjacent
NN intervals, ms

72.8 (58.9, 90.5) 76.5 (61.2, 93.6)† 62.8 (48.7, 79.9) 65.1 (51.7, 83.2)†

Frequency-domain HRV indices

VLF power, ms2 2015 (1437, 3263) 2377 (1501, 3428)† 1466 (871, 2601) 1421 (830, 2408)

LF power, ms2 1209 (748, 2143) 1118 (542, 1813)* 659 (391, 1170) 503 (249, 940)*

HF power, ms2 351 (188, 743) 251 (119, 681)* 170 (98, 354) 146 (80, 352)*

Data are shown as median (first, third quartile)

*p<0.05 vs baseline before adjustment; † p<0.05 vs baseline after adjustment for the 5 year follow-up period
(Wilcoxon signed-rank test)
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with an increase in corneal nerve fibre length [30]. In the
Fenofibrate Intervention and Event Lowering in Diabetes
(FIELD) study, treatment with fenofibrate for 5 years in individ-
uals with type 2 diabetes was associated with a lower risk of
amputations in the lower limbs, particularly minor amputations
in the absence of peripheral arterial disease, which were predict-
ed by neuropathy [31]. Moreover, the de novo sphingolipid
synthesis pathway is considered a promising target for pharma-
cological intervention in insulin resistance. It has been shown
that inhibition of serine palmitoyltransferase, the first enzyme
in the sphingolipid biosynthesis pathway, increases insulin sensi-
tivity [32]. Thus, there is accumulating evidence supporting the
notion that lipidomics-based novel disease-modifying treatment
approaches could merit further investigation in type 2 diabetes
patients with polyneuropathy and CAN.

Other lipid metabolites contributing to an increased risk of
diabetes and CVD include acylcarnitines [33–35]. Carnitine is
a quaternary ammonium compound involved in fatty acid
metabolism, maintaining the balance between free and esteri-
fied CoA, which is crucial for normal cell function. In humans,
carnitine exists as free active L-carnitine or as acylcarnitines
(i.e. esterified forms with various chain lengths) [36].
Carnitine plays an important role in transporting long-chain
fatty acids from the cytosol to the mitochondrial matrix, where
β-oxidation takes place, and accumulation of acylcarnitines
may reflect dysregulated fatty acid oxidation [37]. In a
Chinese study, a panel of acylcarnitines mainly involved in
mitochondrial lipid dysregulation predicted incident type 2
diabetes beyond conventional risk factors [33]. Among indi-
viduals with suspected stable angina pectoris, elevated serum
even-chained acylcarnitines were associated with increased
risk of cardiovascular death and to a lesser degree with acute
myocardial infarction, again independent of traditional risk
factors [35]. Althoughwe observed inverse associations of four
acylcarnitines with several HRV indices (see ESM Table 4),
statistical significance was lost after Bonferroni correction,
while none of the ten NEFAs showed associations after rigor-
ous adjustment (see ESM Table 1). However, since a type II
error cannot be excluded, it is conceivable that if these associ-
ations were true, they would obviously be weaker than for the
aforementioned lipid metabolites.

The potential source of bias resulting from the disparity in
the use of lipid-lowering medications, the vast majority of
which were statins, in 23% and 1% of participants with type
2 and type 1 diabetes, respectively, deserves comment. To
address this aspect, all relevant analyses were adjusted for
lipid-lowering medication. In epidemiological studies, the
statin-mediated lipidomic changes in individuals with the
metabolic syndrome or type 2 diabetes showed a significant
shift towards the lipid profile of control individuals, indicative
of a marked trend towards a normolipidemic phenotype [38].
Moreover, administration of rosuvastatin for 3–8 weeks in
individuals with hyperlipidaemia was associated with

decreased levels of phosphatidylcholines and acylcarnitines
and increased levels of polyunsaturated fatty acids, favouring
an improvement of the atherogenic lipid profile [39]. Thus, we
would expect a favourable effect of statins towards a normal-
isation of the plasma lipidome which could rather attenuate
the associations between HRV indices and lipid metabolites
observed herein.

Although dyslipidaemia is increasingly recognised as an
important factor contributing to the pathogenesis of neuropa-
thy, particularly in type 2 diabetes [3, 4], it is currently not
well understoodwhether specific lipid classes and levels in the
nerve are impacted [40]. It cannot be determined from this
study whether the observed increase in systemic lipid levels
in relation to lower HRV mirrors the local content in the
peripheral nerves in diabetes. However, there is emerging
evidence suggesting that the nerve concentrations of lipid
metabolites such as phosphatidylcholines and SMs are elevat-
ed in mouse models of type 2 diabetes [41]. Recently, a
dysregulation of lipid pathways with an increase in triacyl-
glycerols containing saturated fatty acids and increased
expression of diacylglycerol acyltransferase 2 (DGAT2), the
enzyme required for the last step in triacylglycerol synthesis,
was identified. Increased DGAT2 expression was present not
only in nerves assessed in murine models of type 2 diabetes
but also in sural nerve biopsies from hyperlipidaemic individ-
uals with diabetes and peripheral neuropathy. These findings
support the hypothesis that abnormal nerve–lipid signalling is
an important factor in the pathogenesis of neuropathy in type 2
diabetes [40]. However, to date, no such experimental and
clinical evidence is available for autonomic nerves.

This study has several strengths. First, it has a relatively large
sample size of individuals with well-controlled type 1 and type
2 diabetes who underwent comprehensive metabolic character-
isation assessed by state-of-the-art methodology. Second, HRV
was determined during a 3 h hyperinsulinaemic–euglycaemic
clamp, avoiding the impact of confounding factors such as
blood glucose fluctuations [42]. Third, rigorous adjustment
for numerous possible confounders and for multiple testing
was applied. Yet this study also has some limitations. First,
the cross-sectional design for the lipid metabolites and the rela-
tively short follow-up period without deterioration in HRV after
5 years do not provide insight into the temporal sequence of the
observed associations. Second, although a control group with
normal glucose tolerance and HRVmeasurements is part of the
GDS, lipidomics data for comparison with the diabetes groups
were not available. Thus, it cannot be unequivocally deter-
mined from this study whether the observed associations of
higher plasma levels of specific phosphatidylcholines and
SMs with lower HRV indices can be attributed specifically to
type 2 diabetes. However, indirect evidence suggests that such a
scenario is conceivable, since on the one hand no such associ-
ations were found in recent-onset type 1 diabetes and on the
other hand the systemic concentra t ions of both
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phosphatidylcholines and SMs predict the development of type
2 diabetes [11, 26, 27]. Third, statistical power of the prospec-
tive analysis was limited due to the relatively high number of
dropouts at 5 years.

In conclusion, using targeted lipidomics we demonstrated
that higher plasma levels of phosphatidylcholines and SMs are
closely associated with lower cardiac vagal tone in individuals
recently diagnosed with type 2 diabetes as opposed to those
with type 1 diabetes. However, since cardiac autonomic func-
tion did not deteriorate over 5 years, analysis of the predictive
value of lipid metabolites for the progression to CAN was not
readily feasible. Further follow-up of the GDS participants over
10 and more years will presumably reveal deterioration in
HRV in both participants with type 1 diabetes and type 2
diabetes, a prerequisite to allow for a more promising predic-
tion analysis. Thus, plasma lipid panels could not only be
useful to improve the prediction of the longer-term develop-
ment or progression of CAN but also may allow for the clinical
stratification of patients early in the course of the disease to
target interventions in a more individualised approach to partic-
ularly susceptible patients. It has been suggested that given the
key role of lipids in the pathophysiology of type 2 diabetes and
CVD, lipidomics in general has the potential to improve predic-
tion of future disease risk, inform on mechanisms of disease
pathogenesis, identify patient groups responsive to particular
therapies, and more closely monitor response to therapy. The
ultimate utility of lipidomics to clinical practice will depend on:
(1) its ability to predict future risk of morbidity and mortality
when incorporated into conventional clinical risk engines; and
(2), for widespread application, lipidomic-based measurements
must be practical and accessible through standard pathology
laboratories [43]. It remains to be established whether targeted
lipidomics could be helpful in developing novel, potentially
disease-modifying lipid-lowering treatment modalities.
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