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Abstract

Complex processes govern spatiotemporal distribution of precipitation within the high-mountainous headwater regions (com-
monly known as the upper Indus basin (UIB)), of the Indus River basin of Pakistan. Reliable precipitation simulations partic-
ularly over the UIB present a major scientific challenge due to regional complexity and inadequate observational coverage. Here,
we present a statistical downscaling approach to model observed precipitation of the entire Indus basin, with a focus on UIB
within available data constraints. Taking advantage of recent high altitude (HA) observatories, we perform precipitation region-
alization using K-means cluster analysis to demonstrate effectiveness of low-altitude stations to provide useful precipitation
inferences over more uncertain and hydrologically important HA of the UIB. We further employ generalized linear models
(GLM) with gamma and Tweedie distributions to identify major dynamic and thermodynamic drivers from a reanalysis dataset
within a robust cross-validation framework that explain observed spatiotemporal precipitation patterns across the Indus basin.
Final statistical models demonstrate higher predictability to resolve precipitation variability over wetter southern Himalayans and
different lower Indus regions, by mainly using different dynamic predictors. The modeling framework also shows an adequate
performance over more complex and uncertain trans-Himalayans and the northwestern regions of the UIB, particularly during the
seasons dominated by the westerly circulations. However, the cryosphere-dominated trans-Himalayan regions, which largely
govern the basin hydrology, require relatively complex models that contain dynamic and thermodynamic circulations. We also
analyzed relevant atmospheric circulations during precipitation anomalies over the UIB, to evaluate physical consistency of the
statistical models, as an additional measure of reliability. Overall, our results suggest that such circulation-based statistical
downscaling has the potential to improve our understanding towards distinct features of the regional-scale precipitation across
the upper and lower Indus basin. Such understanding should help to assess the response of this complex, data-scarce, and climate-
sensitive river basin amid future climatic changes, to serve communal and scientific interests.

1 Introduction of the Hindukush, Karakoram, and Himalayans mountain

ranges (HKH) contains the largest cryosphere volumes out-

The trans-Himalayan and transboundary Indus River flows
approximately 3200 km across its 1.12 million square kilome-
ter basin to ultimately descend into the Arabian Sea (FAO
2011). The upper Indus basin (UIB) marked by the confluence
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side the Poles (Soncini et al. 2015; Qiu 2008). The HKH
topography modulates two contrasting synoptic-scale process-
es: the South Asian Summer Monsoon and Western
Disturbances, to determine highly variable patterns of ob-
served precipitation over the UIB (Filippi et al. 2014;
Palazzi et al. 2013). Snow and glacial melt within the UIB
mainly govern the hydrological regime of the Indus River
(e.g., Tahir et al. 2011; Archer and Fowler 2004), which sus-
tains the livelihood of nearly 215 million downstream inhab-
itants (Latif et al. 2018; Lutz et al. 2016). In contrast, the lower
Indus (LI) primarily has an arid to semi-arid climate and rep-
resents large fertile plains, spate irrigation regions, and a di-
verse coastal ecology.

An accurate knowledge of the spatial and temporal distri-
bution of precipitation is largely unknown in the high altitudes
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(HA) of the UIB (Immerzeel et al. 2015; Hewitt 2005;
Winiger et al. 2005). This lack of certainty in precipitation
characteristics stems from an insufficient number of HA me-
teorological observatories, inaccuracies in available HA mea-
surements (Rasmussen et al. 2012), concerns about the data
quality (Hewitt 2011; Winiger et al. 2005), and serious con-
straints on transboundary data sharing due to regional politics
(Dabhri et al. 2016). It should be noted that most of the obser-
vatories with long-term records are sparsely located in the low
altitudes, while short-term and inconsistent observations of
the HA limit our understanding about the regional orography.

Given an elevated susceptibility to climate change and the
associated high social-ecological vulnerability (MRI 2015;
Nepal and Shrestha 2015), a reliable knowledge towards the
spatiotemporal organization of regional precipitation is imper-
ative to implement efficient adaptations at the basin level.

However, the observational constraints hamper a reliable
modeling of the processes that govern precipitation distribu-
tion within the basin. While different gridded products (e.g.,
reanalysis, remote sensing or interpolated station observa-
tions) can potentially help to overcome these observational
deficiencies (Immerzeel et al. 2015), the scope of such im-
provements is somewhat limited over the complex and largely
snow-covered HA of the UIB (Immerzeel et al. 2015;
Huffiman et al. 2007; Turner and Annamalai 2012).

Given the unique observational challenges, different strat-
egies have been adapted to improve the confidence in precip-
itation simulations over the UIB. However, studies often find
contrasting climate change signals over these regions, which
range from rapidly retreating glaciers (Kééb et al. 2012, 2015;
Wiltshire 2014; Jacob et al. 2012; Cogley 2011) to rather
glacial expansions in the Karakoram, also known as the
Karakoram anomaly (e.g., Bashir et al. 2017; Kapnick et al.
2014; Tahir et al. 2014; Bhambri et al. 2013; Minora et al.
2013). The lack of robustness in the projected change signal
and associated glacial response over this region implicates the
development of effective policy measures to reduce projected
vulnerability over the basin. Therefore, it is imperative to un-
derstand the influence of existing observational and modeling
challenges on projected climatic changes over this region and
to devise strategies for improving spatial inferences of region-
al precipitation. However, such improvements potentially
have to be derived through methodological considerations,
as the availability of additional high-quality data is still an
ongoing issue.

In this context, the reliability of spatially distributed
precipitation estimates may suffer from (i) altitudinal
biases; (ii) issues with observational data (homogeneity,
time series length, consistency), and/or (iii) the downscal-
ing approaches. We refer to these challenges as the type 1,
type 2, and type 3 uncertainties, respectively. Many previ-
ous studies exhibit the type 1 uncertainty because they rely
on the low-altitudinal observations to infer seasonal and
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annual precipitation statistics over the UIB (e.g., Igbal
and Athar 2018, Ali et al. 2015; Khan et al. 2015a;
Akhtar et al. 2008; Archer and Fowler 2004, Latif et al.
2018 and Khattak et al. 2011). Estimates in most of these
earlier studies neither represent the HA nor provide any
quantifiable mechanism for drawing logical inferences be-
tween the low and high altitudes, and therefore may lack
the reliability. Some of the recent studies (e.g., Immerzeel
et al. 2015; Dabhri et al. 2016, 2018; Hasson 2016) have
addressed this deficiency, either by incorporating the HA
perspective using short-term data (e.g., glacial mass bal-
ance and or fragmented HA monitoring) or by other as-
sumptions. These studies significantly differ in regional
precipitation estimates over the UIB, when compared with
historically observed estimates recorded by the valley sta-
tions. However, although estimates in these studies are
derived by maximizing spatial coverage within the UIB,
they may suffer from some other shortcomings. For exam-
ple, the use of a limited number of HA stations, which not
only contain short-term observations (e.g., Hasson 2016)
but may also exhibit issues related to homogeneity (e.g.,
Dahri et al. 2016), measurement errors, and assumption of
a linear precipitation gradient along the altitudes (e.g.
Immerzeel et al. 2013), and therefore may induce type 2
uncertainties in respective simulations.

The type 3 uncertainty originates from the choice of the
adapted statistical downscaling methodology. For instance,
bias correction methods, which have been widely used in
these previous studies, highly depend on the observations
for an appropriate characterization of the region of interest.
However, the observation sparsity over the UIB makes the
use of bias correction relatively ineffective. Lastly, the current
generation of General Circulation Models (GCMs) has persis-
tently failed in the representation of dynamic and thermody-
namic processes that dictate precipitation variability over this
region at varying time scales (e.g., Ashfaq et al. 2017; Palazzi
et al. 2015; Rastogi et al. 2018). Alternatively, regional cli-
mate models (RCMs) generally offer improved regional sim-
ulations due to better topographic representation and the flex-
ibility of region-specific tuning of the model parameters.
However, an evaluation of the seven fine-scale (0.44°)
CORDEX-SA experiments has also shown a limited success
over this region since they still derive boundary forcing from
the biased GCMs (e.g., Hasson et al. 2019; Mishra 2015; Syed
et al. 2014). The High Asia Refined analysis (HAR), which is
based on dynamical modeling, has shown promising results in
reproducing overall regional precipitation climatology and in
explaining sub-regional precipitation variability over time
(e.g., Maussion et al. 2014; Curio and Scherer 2016). More
recently, Pritchard et al. (2019) have evaluated HAR perfor-
mance specifically over the UIB in terms of precipitation and
other important near-surface variables. Although the annual
precipitation cycle is reasonably simulated, there exists some
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biases at seasonal scales, which lead to wetter and colder con-
ditions across the HA areas.

It is clear that further efforts are needed to reduce uncer-
tainties in precipitation estimates over the UIB. For example,
incorporating a time series analysis along with careful data
quality checks, an avoidance of the direct use of available
HA observations, and the adaption of other, potentially better
suited statistical downscaling approaches, may help to resolve
some of these uncertainties. To this end, perfect prognosis
statistical downscaling (Wilks 2006) is a promising statistical
alternative, which offers distinct advantages. However, so far
only a few studies are reported in the region that make use of
this technique (e.g., Kazmi et al. 2016; Mahmood and Babel
2012). This approach employs large-scale atmospheric circu-
lations within a statistical downscaling framework to resolve
the observed precipitation distributions. The use of atmo-
spheric circulations is advantageous as these variables are rel-
atively better modeled in the GCMs (Kaspar-Ott et al. 2019),
and can explain the physical mechanisms that govern regional
precipitation. Given the observational uncertainty in the UIB,
such physical explanations of the downscaled precipitation
may further add confidence in the statistical modeling results.
Moreover, knowledge towards the large-scale dynamics that
influence precipitation distribution over the UIB is relatively
robust, as many of the previous studies provide a good over-
view in this regard that can serve as the basis for comparison.
For instance, Syed et al. (2006, 2010), Curio and Scherer
(2016), Cannon et al. (2015), Ahmad et al. (2015), and
Kazmi et al. (2016) explain different aspects of the precipita-
tion governing circulations over the region.

Considering such advantages and to present a different per-
spective, we have adapted perfect prognosis downscaling to
investigate the observed precipitation dynamics within the
Indus basin with a focus on the UIB, by accounting for spa-
tiotemporal precipitation variability. Due to the dominant role
of synoptic-scale circulations in regional precipitation over the
UIB, we assume that despite the differences in magnitudes,
distinct linear relationships of temporal precipitation variabil-
ity between the low and HA should exist, at least on sub-
regional scales. Such intra-regional signals, if properly identi-
fied and captured, can significantly improve the understanding
of precipitation variability over the relatively uncertain HA.
The availability of the recent HA observations can help to
validate this assumption. Especially, this study aims to:

i) Evaluate the effectiveness of low altitude stations in
representing HA precipitation dynamics across the
UIB without using actual precipitation measurements

it)  Identify precipitation governing circulations within a
robust statistical downscaling framework to explain ob-
served spatiotemporal precipitation patterns

iii)  Analyze the physical consistency of final statistical
models through composites of governing circulations

Moreover, extending the analysis to the LI further helps to
understand the water demand perspective, which is necessary
for effective water resources planning at the basin scale.

In Section 2, we provide a brief description of the study
area. Data and details of the adapted downscaling framework
and the approach for seasonal composites are described in
Section 3. This is followed by the description of results and
discussion in Section 4 and the details of composite analysis
and sources of uncertainty in Section 5. Finally, the conclu-
sions are drawn in Section 6.

2 Study area

The Indus River originates from the southwestern Tibetan
Plateau and ultimately descends into the Arabian Sea after
traversing through the entirety of Pakistan. The River basin
area stretches across four geopolitically complex South Asian
countries (i.e., China, India, Afghanistan, and Pakistan) and is
ranked 12th in the world in terms of its size (Fig. 1a). Annual
precipitation substantially varies across the basin with a mag-
nitude as low as 150 mm in the south to more than 2000 mm in
the northern highlands and follows a nonlinear variation along
the altitudes (Archer and Fowler 2004; Dahri et al. 2016). It
should be noted that this study only focuses on the basin area
controlled by Pakistan (the largest basin area among all four
countries and contains the highest altitudes), due to severe
constraints on availability of data over rest of the region
(Fig. 1b). Within this study, the UIB outlines the drainage area
above the Mangla dam over River Jehlum in Pakistan, as
shown in blue color in Fig. la.

3 Data and methodology

3.1 Precipitation: sources, homogeneity, and
distributional considerations

The Pakistan Meteorological Department (PMD) operates the
largest monitoring network across Pakistan that also includes
the Indus River basin. However, these observatories mostly rep-
resent low-altitude regimes (only two stations are located above
2000 m altitude with a maximum at 2394 m). Since the mid-
1990s, the Water and Power Development Authority (WAPDA)
of Pakistan has initiated a systematic monitoring program to
represent major sub-catchments within the UIB and that has
significantly improved the spatial and altitudinal coverage.
Additionally, the University of Bonn under Cultural Areas
Karakoram (CAK) Program has some operational observatories
in the HA of Hunza and Gilgit sub-catchments of the UIB.

We obtain precipitation time series of 58 stations (shown in
Fig. 2) from these three sources for further investigations. Out
of these 58 stations, 42 stations are located within the UIB to
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Fig. 1 (a) The transboundary Indus River basin, shown as colored
regions, along with the major tributary river network. The color scheme
differentiates between the upper and lower Indus basin. (b) The study area

account for its topographic complexity and significance for
the Indus waters. The mean data length of the 35 historic
and the 23 recent HA stations is 37 (1979-2015) and 17
(1994-2015) years, respectively. The inclusion of the HA
stations has extended the observational coverage of the UIB
up to 4730 m (20, 11, and 8 stations are located above 2000,
3000, and 3500 meters, respectively), to understand orograph-
ic dynamics, which otherwise is least understood, and govern
the basin hydrology. Information about the selected stations is
given in Table 1.

Based upon station precipitation analysis, we identify three
major seasons that cover the winter period spanning from
December through March (WS, DJFM), the pre-monsoon
spanning from April to June (PMS, AMJ), and the summer
monsoon season that spans from July to September (MS,
JAS). These seasons contribute about 34%, 22%, and 36%,
respectively, of the annual total of the basin precipitation and
provide the basis for further analysis in our study.

We group monthly time series in each of the three seasons
and check the data for its completeness (Moberg et al. 2006),
homogeneity (Wijngaard et al. 2003; Alexandersson 1986),
and underlying data structure. We make use of four different
statistical procedures for homogeneity testing to group the
stations as “useful” (where at least three tests indicate homo-
geneity), “doubtful” (where at least two tests indicate inhomo-
geneity), and “suspect” (where none or only one test indicates
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(Indus basin of Pakistan) with the same color scheme to represent the
upper Indus basin (UIB) and lower Indus (LI) basin of Pakistan. The
Mountains of the HKH region are also shown around the UIB

homogeneity) after Wijngaard et al. (2003). Although most of
the stations appeared as “useful,” some seasonal inhomogene-
ity has also been identified. For example, we find seven sta-
tions as “suspect” and seven stations as “doubtful” in the WS,
four stations as “suspect” and eight stations as “doubtful” in
the PMS, and four stations as “suspect” and nine stations as
“doubtful” in the MS. Most of the stations with homogeneity
issues are located within the UIB. Therefore, the use of these
stations without homogeneity considerations, as it has been
done in previous studies, can potentially lead to errors in the
seasonal precipitation estimates.

We further use several goodness-of-fit measures like the
KS test (Smirnov 1939), Anderson-Darling Statistics
(Anderson and Darling 1952), and Akaike and Bayesian
Information Criterions (Akaike 1973; Stone 1979), to identify
the underlying distribution for the observed precipitation. Our
analysis suggests that gamma distribution is the best statistical
representative for nearly all of the study stations. This identi-
fication helps to facilitate the choice of an appropriate statis-
tical model, which is described in detail in Section 3.5.

3.2 Precipitation regionalization and selection of
representative stations

We assume that large-scale atmospheric circulations drive
precipitation variability within the UIB. Therefore, it is
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Fig. 2 Location of the (numbered) study stations over the Indus basin of
Pakistan. The green circles represent the locations of historic stations
(1979-2015), while triangles show the recent HA installations (1994—

expected that despite differences in the magnitudes, common-
alities in temporal precipitation variability should exist among
the low and HA across the UIB. To test this assumption, we
employ a K-means cluster analysis on all 58 stations to

T
72°00'E

T
75°00'E

2015) within the UIB. The color scheme here represents the altitudinal
perspective across the River basin. The major river network is also shown
and named. For information about the numbers, please see Table 1

identify the precipitation regions with similar covariance,
using Spearman correlation as a distance measure (Wilks
2006). Such a precipitation analysis, which avoids actual pre-
cipitation amounts, is advantageous as it can potentially
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Table 1

Overview of the meteorological stations used in this study. The
Long and Lat are longitude and latitude measurements, expressed in
decimal degrees (dd). Altitudes represent average station elevation
above mean sea level in meters. Source: PMD Pakistan Meteorological

Department, WAPDA Water and Power Development Authority of
Pakistan, CAK University of Bonn under Cultural Areas Karakoram
Program (synthesized from Weniger et al. 2005 and in personal
communication with the lead author of Dabhri et al. 2016)

Sr. No Station name Long Lat  Altitude Time series Source  Sr. Station Long Lat  Altitude Time series Source
No name
(dd) (dd) (m) (length) (dd) (dd) (m) (length)
1 Astore 74.90 3533 2394 19792015 PMD 41 Zaini 72.15 36.28 3000 19942015 WAPDA
2 Badin 68.90 24.63 9 19792015 PMD 42 Ziarat 74.28 36.83 3669 19942015 WAPDA
3 Balakot 72.55 34.55 995 19792015 PMD 43 Schndor 72.53 36.09 3719 19942015 WAPDA
4 Barkhan 69.72 29.88 1097 19792015 PMD 44 Shigar 75.59 35.53 2470 19962015 WAPDA
5 Bunji 74.63 35.67 1372 19792015 PMD 45 Rama 74.81 3536 3140 19992015 WAPDA
6 Chilas 74.10 35.42 1251 19792015 PMD 46 Rattu 74.81 35.15 2920 19992015 WAPDA
7 Chitral 71.83 35.85 1498 19792015 PMD 47 Ushkore 73.36 36.02 3353 19992015 WAPDA
8 Darosh 71.78 35.57 1464 19792015 PMD 48 Yasin 73.30 36.63 3353 19992015 WAPDA
9 DI Khan 70.93 31.82 172 19792015 PMD 49 SaifulMaluk 73.69 34.84 3200  2000-2015 PMD
10 Dir 71.85 3520 1425 19792015 PMD 50 Bagrot 74.55 36.01 2310 19942010 CAK
11 Ghari Duptta 73.62 3422 814 19792015 PMD 51 Kelash 71.65 3570 2810  2003-2015 PMD
12 Gilgit 74.33 35.92 1460 19792015 PMD 52 Kalam 72.98 35.83 2744 1995-2015 PMD
13 Gupis 73.40 36.17 2156 19792015 PMD 53 Khot 72.59 36.52 3505 19942015 WAPDA
14 Hyderabad 68.42 2538 28 19792015 PMD 54 Pattan 73.00 35.06 752 2004-2015 PMD
15 Islamabad 73.10 33.62 508 19792015 PMD 55 Hunza-PMD 74.65 36.32 2374  2007-2015 PMD
16 Jacobabad 68.47 2830 35 19792015 PMD 56 Malam Jaba 72.90 34.75 2591 2003-2015 PMD
17 Jehlum 73.73 32.93 287 19792015 PMD 57 Mangla 73.60 33.10 283 19952015 PMD
18 Kakul 73.25 34.18 1308 19792015 PMD 58 MirKhani ~ 74.70 35.50 1250  2008-2015 PMD
19 Karachi-AP 66.93 2490 22 19792015 PMD
20 Khanpur-PBO 70.68 28.65 93 19792015 PMD
21 Kohat 71.43 33.58 327 19792015 PMD
22 Kotli 73.90 33.52 610 19792015 PMD
23 Lahore-PBO 74.33 31.55 214 19792015 PMD
24 Multan-PBO 71.43 30.20 122 19792015 PMD
25 Muree 73.40 33.90 2168 19792015 PMD
26 Muzafarabad 73.48 3437 702 19792015 PMD
27 Peshawer AP 71.51 33.99 353 19792015 PMD
28 Risalpur 71.98 34.08 308 19792015 PMD
29 Rohri 68.90 27.67 66 19792015 PMD
30 Saidu Sharif 72.35 34.73 961 19792015 PMD
31 Sakardu-PBO 75.68 35.30 2210 19792015 PMD
32 Sargodha 72.67 32.05 187 19792015 PMD
33 Shaheed 68.37 26.25 37 19792015 PMD
Banazirabad
34 Sialkot Cant 74.53 32.52 255 19792015 PMD
35 Zhob-PBO 69.47 31.35 1405 19792015 PMD
36 Burzil 75.09 3491 4030 19992015 WAPDA
37 Deosai 75.60 35.10 3910 19952015 WAPDA
38 Kunjrab 75.40 36.85 4730 19942015 WAPDA
39 Hushey 76.40 3537 3010 19942015 WAPDA
40 Naltar 74.27 36.22 2810 19952015 WAPDA
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account for the erroneous HA precipitation measurements
(e.g., Curio and Scherer 2016; Tahir et al. 2011). During clus-
tering, the objective function is set to maximize (minimize)
correlation within (across) the regions to define sharp regional
boundaries. Due to greater uncertainty in precipitation obser-
vations within the HA of the UIB, we also perform another
regionalization experiment that only covers the HA part of the
basin. Subsequently, the cluster centroids are computed and
correlated with each of the respective regional members. The
regional representative (RR) stations for each region are se-
lected by using multiple considerations, which include a cor-
relation between centroid and station, number of missing
values, the level of homogeneity, and the length of observa-
tional record. The time series of these RR stations serve as
predictands during the subsequent modeling process to draw
sub-regional precipitation inferences.

3.3 Predictor data

We use variables of ERA-Interim reanalysis (Dee et al. 2011)
at a 2 x 2 grid resolution as predictors. Using the understand-
ing established in earlier studies (e.g., Ahmad et al. 2015;
Kazmi et al. 2016; Mahmood and Babel 2012; Syed et al.
2010), a number of dynamic and thermodynamic variables
at different vertical levels have been selected. These include
geopotential heights (zg) at three atmospheric levels (200,
500, 700 hPa), meridional and zonal winds (ua and va) at four
atmospheric levels (200, 500, 700, 850 hPa) and mean sea
level pressure (psl) as dynamic variables, and relative and
specific humidity (hur and hus) at two atmospheric levels
(1000 and 700 hPa) as thermodynamic predictors. A larger
domain was considered for the dynamic variables (10° E to
100° E, 10° N to 60° N) compared with the domain used for
thermodynamic variables (64° E to 80° E, 22° N to 40° N) to
account for both, the large-scale dynamical and more
regional-scale thermodynamic influences.

3.4 Principle component analysis

We perform s-mode Varimax-rotated PCA, separately for
each predictor to identify important centers of variation and
to reduce dimensionality of the predictors (see Preisendorfer
1988). The number of PCs is extracted using a modified dom-
inance criterion (Philipp 2003) with some additional con-
straints that each retained PC should dominate all other PCs
by more than one standard deviation over at least seven grid
boxes, and explains at least 3 % of the total variance. The PC
scores serve as the predictor time series and the PC loadings
define the location of centers of variation.

3.5 Generalized linear models

We adapt GLM framework (Mc Cullagh and Nelder 1989) to
model the relationships between the atmospheric variables
(PC scores) and observed precipitation of the RR stations.
We selected the GLM framework due to gamma-distributed
monthly precipitation. Within a GLM framework, the maxi-
mum likelihood estimation is used to estimate the model pa-
rameters for the expected value £ of a random variable (7)) at
any given time #:

E(Y:):Mzzgfl(ﬂt)=g7127thﬂj (1)

where (i, is the mean for the probability density function
(PDF) at time ¢, 7, is a combination of linear predictors, g is
the canonical link function, X;; is the value of the jth covariate
for observation ¢, n is the total number of covariates, and 3, are
parameters whose values have to be estimated from the data.
We use log-canonical link function in this study.

For those cases having exact zeros in observed time series
of the RR, we use Tweedie exponential dispersion models
within a GLM framework, due to their ability for simulta-
neous modeling of discrete and continuous precipitation fea-
tures (e.g., Dunn 2004; Hertig and Jacobeit 2015; Hertig et al.
2017). The Tweedie family of distributions has three parame-
ters (i.e., |, mean, dispersion parameter ¢ > 0, and the
Tweedie index parameter p). The index p defines the particu-
lar distribution and a typical case (1 < p < 2) represents
Poisson-gamma models, which are suitable for modeling pos-
itive continuous data with exact zeros (Hasan and Dunn
2011). The variance of the distribution is var [¥] = ¢pu”. The
estimation of the index parameter requires sophisticated nu-
merical computations that have been resolved using the profile
maximum likelihood estimate provided in the Tweedie R
package (Dunn 2010). In summary, we use Tweedie model
only when exact zeros appear in the predictand time series and
otherwise gamma models for regression analysis.

3.5.1 Measures of model performance

Mean squared error skill score (MSESS) is a commonly
employed metric to judge the accuracy of continuous non-
probabilistic forecasts like precipitation, over the long-term
climatology (Wilks 2006). MSESS is defined as:

MSEmodeled
MSESS = [-—>modded 2
SESS MSEreference X 100 ( )
where
1 *
MSE modeled = —Y"_, (y —y)2 3)
n
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1 2

MSE reference = —3"_, (y—y ) (4)
n

and

MSE mean squared errors

*

model prediction
observation

mean over the observations
number of observations

SRR

MSESS ranges from 0% (no skill improvement over the
reference model, in this case a long-term climatology) to 100
% (perfect model).

3.6 Downscaling framework: model development and
selection

We develop GLM-based regression models to identify the
atmospheric variables that exert the strongest influence on
precipitation. We use a cross-validation framework by ran-
domly selecting calibration (two-thirds of available time
series) and validation periods (remaining one-third) and adapt
the following stepwise reduction process, which is randomly
repeated 1000 times to identify effective and robust statistical
models:

I. The PC time series of each predictor is individually
regressed against each of the RR stations. Initially, the regres-
sion models are developed using all PCs of an individual
predictor as input. Subsequently, the revised models are de-
veloped based on an adjusted PC input (i.e., dropping PCs,
one by one) and the corresponding MSE is calculated. We use
MSE to rank the significance of the PCs and to identify the
most influential PCs of each predictor (i.e., PCs whose ab-
sence maximized the errors were considered the most impor-
tant). Next, the models containing only two most influential
PCs are developed and the corresponding errors and MSESS
are computed. These 2 PC models are further complemented
one by one with the remaining ranked PCs to identify the best
PC combination per predictor (i.e., which maximizes MSESS
during the calibration and validation phases). We repeat this
process for all 15 predictors and the model that demonstrates
maximum predictability over the calibration and validation
periods (sum of the MSESS) is termed as the best signal pre-
dictor model (SPM).

II. We further test different predictor combinations to eval-
uate any performance improvement over the best SPM from
step 1. For such combinations, the best SPM is complemented
one by one with the remaining predictors. If two correlated
PCs of different variables (absolute correlation threshold of
0.40) are found, only the more influential PC (showing greater
error effect, when removed) was retained for further consider-
ation. Moreover, an addition of a second predictor is only
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considered, if it improves the prediction skills by at least 7%
over the best SPM. This arbitrary number effectively demon-
strates reasonable validation improvements without
overfitting the models. The same procedure is repeated during
the combinations of three or more predictor variables to iden-
tify better performing combinations, wherever applicable.

3.7 Composite analysis

Composites can help to identify atmospheric circulations that
are associated with different precipitation regimes to evaluate
the physical consistency (reliability) of the statistical models.
We construct the sample composites where monthly scores of
the dominating PC (as identified in the final regression
models) exceed or fall below = 1.5 PC scores to subsample
the cases of higher positive and higher negative PC scores.
These subsets are evaluated to identify wetter (dryer) precip-
itation regimes of the predictand and their associated summary
statistics such as the number of events, mean precipitation rate
per event, and the dominant month. The same thresholds are
further used to subsample relevant large-scale seasonal circu-
lations to define climatology over respective subsamples and
the standardized anomalies of these predictors are plotted to
investigate precipitation supporting (suppressing) circulation
patterns. Similarly, the difference between these contrasting
regimes is also plotted to identify the circulation anomalies
that support above-normal precipitation.

4 Results and discussion
4.1 Precipitation regionalization

In our analyses, the K-means clustering identifies six WS,
seven PMS, and seven MS precipitation regions across the
Indus basin to explain adequately the observed precipita-
tion variability under the basin-wide experiment. The re-
gionalization scheme successfully clusters 57%, 78%, and
48% of the total recent HA stations (23) around the histor-
ical observatories within the identified WS (three), PMS
(four), and MS (five) precipitation regions in the UIB.
The second regionalization experiment identifies four sub-
regions during each of these seasons and further improves
the spatial coverage within the UIB by clustering 70%, 83
%, and 83% of the HA stations around different historic
stations. Table 2 presents the statistical performance during
both of these regionalization experiments. Both experi-
ments show a good inter- and intra-regional performance
in terms of selected statistical attributes with an exception
of the MS in the second experiment. Thus, both regionali-
zation experiments validate our assumption of similarities
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Table 2 Summary of precipitation regionalization experiments on
seasonal scales. Column 1 represents the precipitation seasons, and

regions. Total explained variance is shown in column 5. Columns 6 and
7 define the correlation within (WI) and between (BW) the regions,

column 2 defines the number of precipitation regions. Columns 3 and 4 respectively
show sum of squared errors (SSE) within (WI) and between (BW)
Season Final regions SSE (WI) SSE (BW) EVar (%) Corr (WI) Corr (BW)
Basin-wide regionalization
WS ( Dec—Mar) 6 23.44 130.11 85 0.78 0.46
PMS ( Apr—Jun) 7 482 346.54 88 0.82 0.18
MS ( Jul-Sep) 7 38.05 139.19 78.6 0.77 0.28
HA-UIB regionalization
WS (Dec-Mar) 4 12.84 55.86 81 0.84 0.48
PMS (Apr-Jun) 4 22.25 121.97 84 0.82 0.36
MS (Jul-Sep) 4 26.93 54.17 70 0.76 0.27

in the precipitation variability between the recent HA and
historic stations. Therefore, the historic stations can advan-
tageously be used to infer orographic precipitation over
more uncertain HA through these regionalization schemes.

Figures 3, 4, 5, and 6 describe the outcome of the precip-
itation regionalization process and identify the RR and those
HA stations that could not be clustered around any of the
surrounding historic stations during both regionalization ex-
periments. Averagely, four different regions have been iden-
tified through both of these experiments to represent precipi-
tation dynamics of the UIB. These regions represent precip-
itation variability of the southern Himalayans, northern
Himalayans, and the northwestern parts of the UIB and
provide an opportunity for a fine-scale analysis. The iden-
tification of such distinct precipitation regions further jus-
tifies the need for a sub-regional approach, as such het-
erogeneity may not be properly reflected by considering
UIB as a single unit. Similarly, some of the important LI
features (e.g., spate irrigation, irrigated plains, and the
coastal belt) are also identified during the basin-wide re-
gionalization experiment. These are important reflectors
of the water demand and should simultaneously be con-
sidered to demonstrate integrated water resources plan-
ning at the basin scale.

Overall, the regionalization schemes successfully cap-
ture the orographic heterogeneity within the UIB, show a
good regional coherence, and significantly cover the al-
titudinal perspective within the observational profile dur-
ing all three seasons. Moreover, our regionalization pro-
vides a more realistic basis for understanding sub-
regional precipitation characteristics, when compared
with the previously used hydrological units (Dahri
et al. 2016) or the administrative units (Igbal and
Athar 2018).

4.2 Seasonal precipitation models

Using the outlined downscaling procedure (Section 3.6),
we successfully model observed seasonal precipitation
patterns over 29 sub-regions of the study basin under
both regionalization experiments. However, we were un-
able to determine valid models for three smaller regions,
representing the coastal belt within the basin-wide ex-
periment (R2 in PMS and R2 in WS) and one UIB
region (R3 in MS) during the revised regionalization
experiment. This issue partly stems from the relatively
large number of dry months (84, 80, and 21, respective-
ly) in the observed time series of RR stations for these
regions.

4.2.1 Predictor significance

The final composition of valid seasonal precipitation models
(Table 3) indicates a dominant influence of wind predictors in
basin-scale precipitation distribution (nearly 80% in total).
Particularly, the lower tropospheric winds most effectively
resolve the basin-wide regional models (50.9%). The influ-
ence of upper tropospheric winds is also significant at the
basin scale (25.5 %). Among these wind predictors, the me-
ridional wind velocities in the lower (40%) and upper tropo-
sphere (25%) are more prominent in these sub-regional
models. However, their effectiveness has a stronger seasonal-
ity, where a maximum contribution is realized during the MS
(va850 =52.5%, va200 = 32.5%). After the wind components,
the contribution of thermodynamic predictors is at its maxi-
mum at the basin scale (about 15%), which also exhibits
strong seasonality with the maximum during the PMS (nearly
26%) and WS (about 15 %) and a minimum during the MS

@ Springer



38

M. S. Pomee et al.

69°0'0"E
!

Elevation

1223 2029 3016 4041 4955

36°00°N
L

33°00°N
L

30°00'N
1

27°00°N
L

24°00°N
1

0 75 150 300 450

T
36°00°N

T
33°00°N

T
30°00'N

T
27°00°N

R6

A Not Included

N~ Rivers

D Indus Basin Pakistan

Kilometers

T
24°00'N

T
69°0'0"E

Fig.3 The WS (i.e., DJFM) precipitation regionalization under the basin-
wide experiment. The colored circles show different precipitation regions
with similar co-variability. The numbered circles are the locations of the

(5%). Among thermodynamic predictors, relative humidity
(especially at 1000 hPa level) is the most effective predictor
during all precipitation seasons. The lower level dynamic var-
iables (psl, zg700) form the third important predictor set
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RR stations in respective precipitation regions. The triangles define those
HA stations that could not be grouped with any of the available historic
stations within the UIB

among regional models (7.6%) and mainly dominate during
the WS.

These final predictors capture the seasonally varying
regional climatology to explain observed precipitation
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Fig. 4 Same as Fig. 3 but for the PMS precipitation season (i.e., AMJ)

patterns. For instance, the thermally induced local  from different remote oceanic and terrestrial sources
Hadley circulations during the MS are adequately repre-  (e.g., the Arabian, Caspian, and Mediterranean Seas)
sented by the meridional component of tropospheric  during the PMS and WS play a crucial role in regional
winds. Similarly, the atmospheric moisture sources from  precipitation (e.g., Cannon et al. 2015; Curio and
local evapotranspiration within the basin and advection  Scherer 2016; Mei et al. 2015; Syed et al. 2010). Our
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Fig. 5 Same as Fig. 3 but for the MS precipitation season (i.e., JAS)

statistical models represent such moisture influences
through the humidity-related predictors particularly dur-
ing the PMS, when the strength of dynamic forcing
reduces over this region. Thus, the identified predictors
are representative of the major physical processes that
govern the regional precipitation and therefore enhance
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the confidence in statistical simulations. Similarly, ex-
planations are also valid for the predictors of the HA-
UIB regionalization experiment due to their close simi-
larity with the basin-wide experiment. More details
about the physical explanations of the statistical models
will follow in Section 5.



Modeling regional precipitation over the Indus River basin of Pakistan using statistical downscaling 41

Regions

Q@ ~
O R2
. R3
O R4
A Not Included

N~ Rivers
[ uprer indus Basin Pakistan

03060 120 180 240
e Kilometers

Elevation

I 362- 1,841
[ ]1842-30862
[ ]3063-4027
[ 4,028- 4,927
[ ]4928-8561

Fig. 6 Same as Fig. 3 but for the HA-UIB precipitation regionalization. (a) WS, (b) PMS, and (c) MS precipitation regions, respectively

4.2.2 Winter season models

The summary of the seasonal modeling process (Table 4)
shows that GLM-Tweedie models adequately represent the
WS precipitation dynamics across all five precipitation re-
gions of the Indus basin. For information about these regions
and the RR stations, please see Fig. 3. Within its three UIB
regions (R1, R2, and R5), the mean calibration (validation)
root mean squared error (RMSE) amount to 27.14 mm (27.93
mm) with a corresponding MSESS of 41.60% (34.69%). The
R3 region (stretching along the foothills of the southern
Himalayans and covering the lower Hindukush areas further
northwest) contains 16 study stations including some of the
HA, and receives the highest precipitation amounts (93 mm
per month) among all other UIB regions during the WS.
Therefore, precipitation (snow and liquid) within this larger
region dominates the river flows during the winter and early
spring seasons and its accurate modeling is highly desirable.
The RR station strongly represents precipitation characteris-
tics of this region (correlation = 0.93 with regional centroid)
and therefore allows to make reliable inferences over a broad

altitudinal range (308 to 2744 m) in this region. A single
predictor (va850) effectively models the observed precipita-
tion of this RR with a high validation skill (49.57%). Another
large UIB region (R1), which mainly covers the Karakorum
and trans-Himalayan valleys of the Hindukush, also exhibits
an acceptable validation skill (26.1%) despite a large number
of dry months. This is mainly a cryosphere-dominated region,
which is also strongly represented by its RR station (correla-
tion = 0.83 with regional centroid) and provides inference
over the relatively higher altitudes (1251-3200 m) of more
uncertain trans-Himalayas. Zonal winds at 700 hPa level
(ua700) and specific humidity at 1000 hPa level (hus1000)
effectively model the observed precipitation patterns in this
region. Similarly, another northern Himalayan region (RS)
shows a higher predictability skill (28.39%) despite having
the largest numbers of dry months and provides important
information for the highest altitudinal bands (21564030 m) in
our analysis. This region has the largest cryosphere extent, re-
ceives mainly solid precipitation and, together with R1, helps to
regulate the hydrology of the Indus River. Such a skillful statis-
tical representation of the observed WS precipitation that covers
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Table 3 Frequency of the predictors (in percentage) in final seasonal
precipitation models for different sub-regions of the Indus basin of
Pakistan. Column 1 shows the large-scale predictors used in this study.
The number after each predictor reflects the atmospheric level (pressure
level in hPa). Columns 2—4 represent the predictor frequencies in the
different seasons. The last column shows the average of the seasonal
predictor frequencies

Predictors WS (%) PMS (%) MS (%) Basin-wide (%)
va200 20.0 19.4 32.5 24
ua200 0.0 0.0 2.5 0.8
zg200 0.0 0.0 0.0 0.0
zg500 0.0 0.0 0.0 0.0
zg700 20.0 0.0 0.0 6.7
hus700 0.0 0.0 2.5 0.8
hur 700 0.0 9.7 0.0 32
hur1000 8.6 16.1 2.5 9.1
hus1000 5.7 0.0 0.0 1.9
va500 0.0 0.0 25 0.8
ua500 0.0 0.0 2.5 0.8
ua700 14.3 0.0 0.0 4.8
va700 0.0 22.6 0.0 7.5
va850 31.4 12.9 52.5 323
ua850 0.0 19.4 0.0 6.5
mslp 0.0 0.0 2.5 0.8
Total 100 100 100 100

the larger spatio-altitudinal scales within the UIB can greatly help
in reducing the uncertainty in future projections.

Two LI regions (R4 and R6) also exhibit significant validation
skills (25.39 % and 32.89%) for making reliable inferences over
diverse conditions of the northeastern rain-fed areas, irrigated
plains, and southwestern spate regions. However, precipitation
in these regions requires both dynamic and thermodynamic pre-
dictors for effective modeling, as shown by the final models
(Table 4). The relatively higher error rates in some of the WS
cases are discussed in Section 5.3.

4.2.3 Pre-monsoon season models

During the PMS, the GLM-gamma models provide the best
modeling performance with an overall skill score of approxi-
mately 50% during calibration and 42% in validation
(Table 4). Moreover, the average validation performance
(43.90%) and the average ability of the RR stations in describ-
ing the spatial perspective (correlation coefficient of 0.92)
over four different UIB regions (R1, R3, RS, and R7, see
also Fig. 4) are at its maximum, compared with other precip-
itation seasons. Within the UIB, the largest northern
Himalayan region (R1) contains 21 study stations including
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most of the HA observatories and covers a larger altitudinal
band (12514030 m). R1 exhibits a validation skill of nearly
50%. Similarly, two northwestern regions (RS and R7) that
exhibit higher monthly precipitation (106 mm and 82 mm)
have also been skillfully modeled (50.42% and 46.97%) and
allow reliable precipitation inference over an elevation band
between 353 and 2591 m. The southern Himalayan UIB re-
gion (R3) that receives more than 100 mm of monthly precip-
itation and represents the lower northeastern elevations (508—
2168 m) also demonstrates a good validation performance
(about 29%). During the PMS simulations over the UIB, rel-
ative humidity is an important predictor (see Section 4.2.1)
along with lower tropospheric winds, to explain the observed
spatial variability. Overall, a highly skillful UIB modeling
during this transitional season is important for the assessment
of seasonal water availability in the future period.

Additionally, the PMS modeling performance over the two
LI regions (R4 and R6) exhibits higher validation skills
(40.11% and 37.64%, respectively) to infer precipitation dy-
namics over the irrigated plains and lower southwestern spate
regions. These conditions are simulated by a set of dynamic
and thermodynamic predictors.

4.2.4 Monsoon season

Precipitation dynamics are spatially more complex over the
UIB during the MS, as it required five different precipitation
regions (R1, R3, R4, RS, and R7, see also Fig. 5). Moreover,
both the GLM-gamma and Tweedie models are required for
statistical simulations of observed precipitation variability
over the UIB. Nonetheless, a reasonable average validation
performance across all of these UIB regions (32.73%) contrib-
utes to confidence in resulting spatial inferences. Within the
UIB, maximum validation skill (52.41%) is demonstrated
over the wettest southern Himalayan region R3, which re-
ceives monthly precipitation sums of 181 mm over a larger
vertical horizon (122 to 2591 m). The RR station for this
region exhibits a correlation of 0.84 with the regional centroid.
The R3 region mainly receives liquid precipitation, which
helps to regulate the downstream reservoir operations (e.g.,
hydropower and irrigation). The modeling process of the
two other UIB regions (R1 and R7) also exhibits reasonable
validation skills (28.57% and 23.65%, respectively). These
regions reflect the highest observed altitudinal range (1251
to 4030 m and 2156 to 4730 m) over the Karakoram and
Hindukush areas. Similarly, two northwestern regions (R5
and R4) also demonstrate reasonable validation skills
(20.71% and 39%) and represent an altitudinal range from
962 to 3719 m. A strong dynamic forcing during the MS
helped to largely resolve the complex MS processes within
the UIB, as shown by various predictors of the statistical
models (Table 4).
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Table 4  Statistical performance of the seasonal downscaling models
over the Indus Basin of Pakistan. Column 1 outlines the identified
precipitation region, column 2 indicates the name of the regional
representative (RR) station, and its correlation with respective regional
centroid is given in the parenthesis. Column 3 (Reg. Alt) indicates the
mean regional altitude in meters (m) above mean sea level and in
parenthesis the range of regional altitude. Columns 4, 5, 6, 7 and 8
show the adapted GLM, number of dry months in time series of RR

station, number of final predictors, predictor names, and number of PCs
in final regression models, respectively. The mean monthly-observed
(modeled) precipitation rates of RR station are shown in column 9 (10)
respectively. The calibration (validation) root mean squared errors
(RMSE) and mean squared error skill scores (MSESS) are reflected in
columns 11 (12) and 13 (14) respectively. The blue (green) color indicates
UIB (LI) seasonal regions and red color shows the average outcome of
seasonal models over the entire Indus basin

RR Reg. Alt GLM Dry
(Corr) Mon
(m) (Nos)  (Nos)

Chilas 2223 Tweedie 39 2
(0.83) (1251-3200)
Kakul 1173.5 Tweedie 7 1
(0.93) (308-2744)
Gupis 3266 Tweedie 56 2
(0.70) (2156-4030)
Jacobabad 266 Tweedie 69 2
(0.80) (35-1097)
Jehlum 365 Tweedie 19 2
(0.89) (122-1405)

Avgll & 2.0
Astore 2627 Gamma 0 2
(0.86) (1251-4030)

Ghari 1327 Gamma 0 2
Duputta (508-2168)

(0.91)

Dir 1281 Gamma 0 1
(0.94) (353-2591)

Saidu.Shairf 961 Gamma 0 2
() 961)

Sialkot 419 Gamma 0 1
(0.84) (187-1097)

DI Khan 259 Tweedie 20 2
(0.74) (28-1405)

| Avefiasa | S
Sakardu 2218 Tweedie 16 2
0.74) (1251-4030)

Jehlum 746.25 Gamma 0 1
(0.84) (122-2591)

Darosh 2868 Tweedie 11 1
(0.76) (1464-3719)

- Saidu.Shari f 961(961) Gamma 0 2
)

Gupis 2892 Tweedie 20 3
(0.69) (2156-4730)

Risalpur 659 Gamma 0 2
0.75) (172-1425)

Hyderabad 52 Tweedie 45 2
(0.88) 9-122)

Predictor PCs Mean Preci RMSE MSESS
mm/mon
¢ ) (mm) %)

(Name) (Nos)  Obs Mod Cal Val Cal Val
va850+zg700 8 18 17 17.60 1810 33 26.1
va850 7 93 93 49.88 5054 51.92 49.57
ua700+hus1000 6 11 12 13.95 1515 39.87 2839
va200+hus1000 8 7 7 10.69 11.64 47.86 28.75
hur1000+2g700 6 46 46 37.53 3798 4198 36.62
7.0 35 35 2593  26.68 4293 33.89
7.0 41 41 27.14 2793 41.60 34.69
7.0 27 27 24.11 2481 4492 32.69
hur700+va850 7 57 57 32.6 3402 5544 4937
va700 + ua850 8 101 101 4474 4829 41.14 2883
hur1000 2 106 104 45.62 47.63 56.68 50.42
hur1000+ua850 5 82 80 44.58 4545 5453 4697
va200 6 43 42 3092  31.71 4598 40.11
hurl000+ua850 3 21 20 17.71 1823 44.65 37.64
52 68 67 36.03 37.56  49.74 4222
5.5 87 86 41.89 4385 5195 43.90
45 32 31 2432 2497 4532 3888
va850+hus700 7 13 13 1132 1277 4409 2857
va200 7 181 180 7673 7863 5692 5241
va200 6 21 21 16.26  16.82 28.82 20.71
va850+hurl000 11 115 116 547  60.03 5271 3832
va850+psl+ua200 8 19 20 18.61  20.65 41.69 23.65
va700+ua500 7.0 114 115 7426 76.89 41.13  32.06
ua700+va500 4.0 40 40 4516  46.58 46.58  40.32
7.7 72 72 41.96 4427 4423 3262
7.8 70 70 3552 3778 44.85 3273
5.5 77 78 59.7 61.74 4386 36.19

@ Springer



44

M. S. Pomee et al.

In contrast, the homogenous topography and the strong MS
influence across the LI helps to relatively better model precip-
itation over spate and irrigated regions (R4 and R2), with
validation skills of 32.06% and 42.32 %, respectively. Spate
regions not only provide an abundance of flows during the MS
to support diverse livelihood but also cause regular havoc
through damage to downstream infrastructure and human
lives during extreme events. Therefore, its consideration is
important to minimize the socio-economic suffering as well
for enhancing national water availability through effective
planning.

4.3 HA-UIB modeling

The HA-UIB modeling summary (Table 5) shows some per-
formance compromises. For instance, the mean validation
skills over four WS regions show a decrease of 3.5% com-
pared with the corresponding skills in the basin-wide model-
ing (34.69%). Howeyver, this performance loss is primarily due
to a poor simulation of a single-station region (R4), which
exhibits a lower validation skill (18.42 %). The performance
for this particular region suffers from a relatively lower pre-
cipitation rate (7 mm/month), a higher number of dry months
(33), and the presence of some outliers. All other WS regions
in the HA-UIB modeling exhibit comparable skills by mainly
using different dynamical predictors. However, the trans-
Himalayan regions (R2, R4) additionally require specific hu-
midity as a predictor.

Four PMS regions show a very similar average skill
(42.62%) compared with the basin-wide modeling (43.90%)
despite the presence of some dry months in time series of
some RR stations (R3 and R4). Thermodynamic contributions
still largely dominate the PMS precipitation simulations
(Table 5), where the lower level relative humidity appears as
the most influential predictor (i.e., best SPM) in three out of
four sub-regional models.

Similarly, the average modeling performance in the
MS across its three different precipitation regions also
exhibits nearly similar prediction skills (30.60%, ~ 2%
less). Still, the dynamic predictors largely dominated
these HA-MS simulations as shown by the final statis-
tical models (Table 5), although the model for the
northern Himalayan region (R1) also includes the con-
tribution of specific humidity.

Overall, the HA-UIB regionalization significantly im-
proves the spatio-altitudinal representation over the UIB in
all seasons, without losing much of the predictability power.
This increased spatial coverage helps to infer precipitation
dynamics over the hydrologically important yet highly uncer-
tain HA regions within the UIB. The resulting inferences can
be significantly trusted for the wetter southern Himalayan re-
gions during all seasons and the northwestern Hindukush and
the Karakorum regions during the PMS and WS due to the
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stronger representations by the respective RR stations.
However, caution is required during the MS particularly over
the northwestern Hindukush region (R2) and the Karakoram-
central region (R1) due to relatively poor representation by the
respective RR stations. The weaker MS penetration into north-
western and Karakoram region could be one of the reasons.
Overall, thermodynamic contributions increase in the trans-
Himalayan regions, which reflect the role of atmospheric
moisture buildup around the UIB from different moisture
sources, as demonstrated by various centers of variation for
humidity-related predictors (not shown).

5 Physical consistency of the statistical
relationships: composite analysis

Composites can help to identify atmospheric conditions dur-
ing different precipitation regimes to evaluate and explain the
physical mechanisms of statistical models. The choice of
model(s) to be presented in the following section is based on
the relative importance for the season (i.e., the core precipita-
tion seasons), the significance of the regional scale, prediction
performance of the statistical models, and a distinct domina-
tion of a single PC in the final regression models. Using these
multiple considerations, we select one MS and one WS region
to discuss the atmospheric characteristics underlying the sta-
tistical models.

5.1 MS synoptic analysis using composite

During the MS, a larger region (R3) that contains 12 stations
and receives a higher amount of precipitation (181 mm/
month) is selected for the composite analysis. We use upper
level meridional winds (va200) to model the precipitation var-
iations at its RR station, which exhibits a high statistical skill
during validation (52.41%). We use PC1, which has a corre-
lation (Spearman) of 0.62 with the observations of RR station
to construct composites. The positive loading pattern of PC1
(Fig. 7) stretches over a larger region (from Bay of Bengal to
the East African coast) with its center over the Arabian Sea.
Positive PC scores indicate drier conditions and vice versa.
We select a threshold of + 1.5 PC scores, which helps to
clearly define these contrasting patterns (Table 6) with ten
positive cases (average 69 mm per month) and six negative
cases (average 344 mm per month).

The monsoon circulation is characterized by an anticyclone
with its center along the southern boundary of the Tibetan
Plateau, a tropical easterly jet in the upper troposphere, a
westerly jet over the Arabian Sea, and the southwesterly flow
over the Bay of Bengal in the lower troposphere (e.g.,
Krishnamurti 1973; Ashfaq et al. 2017; Duan et al. 2012).
More recently, the analysis of extratropical influences on re-
gional MS dynamics has identified an upper level high over



Modeling regional precipitation over the Indus River basin of Pakistan using statistical downscaling 45

Table 5 Same as Table 4, but for HA-UIB regions

Kakul
(0.95)

Gupis
(0.65)

Chilas
(0.78)
Gilgit
(1)

Astore
(0.78)

(0.94)
Gilgit
(1)

Chitral
(0.91)

Sakardu
(0.68)

Darosh
(0.67)

(0.90)

(Corr)

Ghari Duputta

Reg. Alt GLM Dry Mon Predictors PCs Mean Preci MSE MSESS
(mm/mon) (mm) (%)
(m) (Nos) (Nos) (Name) (Nos) Obs Mod Cal Val Cal Val
1174 Tweedie 7 1 va850 7 93 93  49.88 50.54 51.92 4957
(308-2744)
3201 Tweedie 56 2 ua700+hus1000 6 12 11 14.11 1535 39.87 28.39

(2156-4030)

2379 Tweedie 39 2
(1251-3146)

va850+zg700 8 17 18 17.67 1821 33 26.1

1460 Tweedie 33 2
(1460)

va700+hus1000 6 7 7 879 881 20.85 1842

34 1.8 6.8 32 32 2260 2320 3641 31.12

2896 Gamma 0 2
(1251-4030)

hur700+va850 7 57 57 32.6  34.02 5544 4937

956 Gamma 0 2 va700 +ua850 8 101 101 4474 4829 41.14 30.83
(702-1308)
2874 Tweedi 8 2 hur700+ua200 8 21 21 1721 1859 43.66 29.54

(1460-3200)

2014 Tweedi 12 2
(752-3000)

hur1000+va500 6 43 43 2328 2397 68.68 63.74

5 2 73 56 55 2946 3122 5223 4337

2788 Tweedie 16 2
(1251-4730)

va850+hus700 7 13 13 1132 1277 44.09 2857

2618 Tweedie 11 1 va200 6 21 21 1620 1679 3082 20.71
(752-3719)
2218 Gamma 5 1 uas500 7 186 186 7531 80.19 52.06 44.72

(1251-4030)

11 1.3 6.7 73 73 3428 36.58 4232 30.60
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the west central Asia (WCA) as a stronger MS precursor (e.g.,
Kazmi et al. 2016). In our composite analyses, we analyze the
relevant dynamical circulations in the upper and lower tropo-
spheres to explain the associated physical mechanisms.

During the wet MS composite of zg200 (Fig. 8a), a stron-
ger high-pressure anomaly over the WCA and a low-pressure
anomaly over the Indian Peninsula reflect amplification of the
upper level anticyclone and tropical easterly jet. Strong upper
level easterlies (Fig. 8a) point towards a stronger than normal
local Hadley circulation. All of these conditions should favor a
stronger than normal cross-equatorial moisture flow.
Additionally, the circulation anomalies in Fig. 9a exhibit
stronger than normal westerlies over the Arabian Sea and
south-westerlies over the Bay of Bengal. These upper and
lower tropospheric anomalies (Figs. 8c and 9c) in monsoon
dynamics point towards a stronger than normal monsoon due
to an enhanced moisture supply through oceanic sources and
an increased dynamic and orography forcing (Hunt et al.
2018; Ashfaq et al. 2017; Curio and Scherer 2016; Mei et al.
2015; Saeed et al. 2010).

In contrary, the composite during dryer MS (Fig. 8b) ex-
hibits an eastward shift in the upper level anticyclone and a
weakening of the tropical easterly jet. The weakening of the
easterly jet (Fig. 8b) points towards a weaker than normal
local Hadley circulation, which reduces the cross-equatorial
flow. Similarly, an eastward shift of the anticyclone is linked
with drier than normal conditions over western South Asia
and the UIB, and wetter than normal conditions over eastern
South Asia (Ashfaq et al. 2009; Soman and Kumar 1993). In
the lower levels, both, westerlies over the Arabian Sea and
south-westerlies over the Bay of Bengal, exhibit a weakening.
It should be noted that the Arabian Sea and Bay of Bengal are
important moisture sources for northern and northwestern
South Asia (Mei et al. 2015). Therefore, anomalies in the
lower level circulations should (Fig. 8c) lead to a decrease in
moisture supply from these two oceanic sources, which, when
combined with upper level circulation anomalies, lead to a
decrease in the MS precipitation particularly over western
South Asia that includes the UIB (Wang et al. 2019; Ashfaq
et al. 2017; Ahmad et al. 2012).

The composite differences (Fig. 8c) reflect the relative
strength of upper level circulations (WCA high, tropical east-
erly jet) to restrict the interaction of mid-latitude MS currents
around UIB and their lower level dynamical signatures (Fig.
9c¢) to produce an excessive MS precipitation around UIB.

5.2 WS synoptic analysis using composite

Similar to the MS, we construct composites for the WS to
analyze the circulation characteristics during the wet and dry
precipitation regimes over a selected UIB region. We select
region R3 in the WS for the construction of composites, which
contains 16 stations and receives a high regional precipitation
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(70 mm per month). A single predictor (va850) effectively
models the observed precipitation at its RR station with a val-
idation skill of 53%. PC2, which has the highest absolute re-
gression coefficient (0.51) and high co-variability with the RR
station (correlation coefficient of 0.65) is used to subsample the
composites. The higher positive loadings of PC2 extend over a
larger region that stretches from southern Pakistan to Africa and
is centered over the Arabian Sea off the East African coast (Fig.
10). Due to a positive regression coefficient and the loading
pattern, the higher positive PC scores (Table 7) support
above-normal precipitation (12 cases, 187 mm per month),
whereas the higher negative PC scores support below-normal
precipitation (4 cases, 8 mm per month).

During the WS, the extratropical storms originate mainly at
the surface level around the North Atlantic, Europe, and the
Mediterranean region, and propagate eastward by prevailing
westerlies at mid and upper tropospheric levels to produce
precipitation over the UIB (e.g., Martyn 1992; Barlow et al.
2005). Therefore, in the following discussion, we analyze
composites of relevant dynamical predictors to describe the
anomalous WS precipitation regimes over the UIB.

During a wetter WS, the sea level pressure composites (Fig.
11a) exhibit a higher pressure anomaly over northern Siberia
and Europe and a low-pressure anomaly over northern Africa,
which supports a strong eastward propagation of the
extratropical cyclones, commonly known as the Western
Disturbances (Ridley et al. 2013). Such an anomaly is analo-
gous to the pattern that emerges during the negative phase of the
North Atlantic Oscillation (NAO) and facilitates cyclogenesis
activities around the Mediterranean, Europe, and the Middle
East region. These storm tracks are further intensified over the
WCA region due to a low-pressure anomaly (Fig 11a), which
favors a positive precipitation anomaly over the UIB and sur-
rounding areas (Syed et al. 2006). Moreover, a low sea level
pressure anomaly over the Bay of Bengal, eastern Tibetan
Plateau and a low-pressure anomaly over the southern
Arabian Sea also support a stronger moisture transport from
the Arabian Sea towards the UIB—a condition well known
during the positive or warm phase of the El Nifio-Southern
Oscillation (ENSO), as shown by Syed et al. (2006, 2010)
and Wang and Xu (2018). A cyclonic circulation anomaly in
Fig. 12a and the eastward circulation anomaly over the
Mediterranean Sea provide further evidence of excessive pre-
cipitation around the UIB. On the other hand, the dryer WS
composite (Fig. 11b) exhibits a southward shift of the
Siberian high and produces high sea level pressure anomalies
over the UIB, Central Asia, and the Mediterranean, and a low
sea level pressure anomaly over northern Europe. These condi-
tions are analogous to the positive phase of the NAO and favor
a northward movement of the extratropical cyclones tracks dur-
ing the WS. Consequently, the lack of cyclogenesis activity
reduces the strength and moisture transport towards the UIB.
Additionally, the moisture supply from the Arabian Sea also
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Fig.7 Loading pattern of PC1-va200 (most influential PC in the final regression model due to the highest absolute regression coefficient) during the MS
season. The green contours show labeled loadings over different regions

Table 6 A statistical summary of the MS composite analysis of a last column gives the significance level of the estimated model coeffi-
selected UIB precipitation region (R3). The table provides information cients. The information about the most influential PC, its correlation with
about the association between observed and modeled precipitation, used observations of the RR, threshold of PC scores used to subset contrasting
GLM framework to identify governing circulations (predictor) and the precipitation regimes, and their statistical summaries are also provided in
regression coefficients of different PCs including the intercept term. The the table

Parameters Value/description Model significance level (alpha, «)
Mean observed precipitation rate of the RR (mm/month) 181 NA
Adapted GLM framework Gamma

Governing predictor va200

Mean modeled precipitation rate of the RR (mm/month) 180

Correlation between observed and modeled precipitation (Spearman) 0.80

Regression coefficient (intercept term) 5.05 0.001
Regression coefficient (PC1) - 043 0.001
Regression coefficient (PC2) -0.27 0.001
Regression coefficient (PC4) —0.11 0.05
Regression coefficient (PC5) 0.08 1
Regression coefficient (PC7) -0.10 0.1
Regression coefficient (PC9) -0.09 0.1
Regression coefficient (PC10) 0.14 0.001
Most influential PC (maximum absolute regression coefficient) PCI NA
Correlation between PC1 and RR observations 0.62

PC scoring threshold for composites 1.50

No. of positive cases (PC scores = > 1.50) 10

Mean precipitation per positive event (mm/month) 69

Dominant month during positive cases September

No. of negative cases (PC scores = < — 1.50) 6

Mean precipitation per negative event (mm/month) 344

Dominant month during negative cases July
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Fig. 8 Standardized composite means of geopotential heights and
atmospheric winds at 200 hPa (wind vector, m/s) during the MS
precipitation season for a sample UIB region (R3). The panel (a) shows
the mean state of the large-scale circulations during above-normal

greatly reduces due to the anomalous northerly winds (Fig. 12b)
as also pointed out by Hunt et al. (2018). Wind anomalies over
the Mediterranean Sea and land (Fig. 12b) also favor a reduced
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precipitation and (b) represents the conditions during below-normal pre-
cipitation over R3. Panel (c) reflects the difference between these two
circulations (a minus b)

moisture flow, eventually resulting in lower than normal pre-
cipitation over the UIB as reflected in our corresponding com-
posite. The difference plots (Figs. 11c and 12¢) reflect the
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Fig. 9 (a—c) Same as Fig. 8 but for lower tropospheric wind composites at 850 hPa atmospheric level (wind vector, m/s) during the MS precipitation

s€ason

influence of relative dynamical forcing supporting a positive
precipitation around the UIB.

We also constructed similar composites for the geopotential
heights at 700 hPa, 500 hPa, and 200 hPa atmospheric levels to
analyze the corresponding circulations as the low-pressure sys-
tems travel at high altitudes towards the UIB (Fig. 13). The
corresponding difference plots (Fig. 13a—) confirm the pres-
ence of previously described mechanisms and their barotropic
nature across the troposphere. It is important to note that some
of the earlier studies relate a positive NAO signal with increased
winter precipitation over the UIB (e.g., Syed et al. 2010;
Ahmad et al. 2015), which is not consistent with our findings.
Instead, we see evidence that perhaps the negative NAO sup-
ports positive winter precipitation over the UIB. Some other
studies such as Archer and Fowler (2004) also point towards
a mixed precipitation response during the positive and negative
phases of the NAO. Therefore, further investigation is needed
to establish a robust understanding of the NAO influence on
winter precipitation variability over the UIB.

5.3 Sources of uncertainty

In this study, we have attempted to improve seasonal pre-
cipitation assessments within the UIB by addressing many

of the common uncertainty sources through methodologi-
cal improvements. Still, our estimates are based on certain
assumptions. For instance, despite significantly improving
the HA representation in our station ensemble, altitudes
beyond 4730 m (see Table 1) still have no representation
in our analysis due to the unavailability of reliable time
series data. This lack of representation of higher altitudes
has the potential to influence the regionalization process
and reliability of precipitation inferences over the UIB.
However, it is worth mentioning that the bulk of the
UIB precipitation falls between 3000 and 4500 m alti-
tudes (Hewitt 2014), and its magnitude starts decreasing
rapidly above 5000 m (Hewitt 2014; Winiger et al. 2005).
Thus, it is expected that the regions of maximum precip-
itation are well represented in our station ensemble (see
Section 3.1 and Table 1). Moreover, the mean equilibrium
line altitude (ELA) is estimated between 4500 and 5500 m
(e.g., Khan et al. 2015b) in the UIB and any precipitation
beyond the ELA does not contribute to the runoff. We
assume that precipitation variation between 4730 m and
the ELA may be represented by our identified UIB
regions, and thus, inferences can be extended to fill gaps
beyond the available observations. Curio and Scherer
(2016) classified the region around the UIB into at least
four different precipitation classes to define
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05

Fig. 10 Loading pattern of PC2-va850 (most influential PC in the final regional model due to the highest absolute regression coefficient) during the WS

precipitation. The green contours show labeled loadings over different regions

Table 7  Same as Table 6, but provide information about a selected UIB region (R3) during the WS

Parameters Value/description Model significance level (alpha, «)
Mean observed precipitation rate of the RR (mm/month) 93 NA
Adapted GLM framework Tweedie

Governing predictor Va850

Mean modeled precipitation rate of the RR (mm/month) 93

Correlation between observed and modeled precipitation (Spearman) 0.78

Regression coefficient (intercept term) 433 0.001
Regression coefficient (PC2) 0.51 0.001
Regression coefficient (PC6) -0.21 0.001
Regression coefficient (PC7) -0.16 0.01
Regression coefficient (PC9) 0.23 0.001
Regression coefficient (PC10) 0.18 0.001
Regression coefficient (PC13) -0.12 0.05
Regression coefficient (PC15) =0.11 0.05
Most influential PC (maximum absolute regression coefficient) PC2 NA
Correlation between PC1 and RR observations 0.65

PC scoring threshold for composites 1.50

No. of positive cases (PC scores = > 1.50) 12

Mean precipitation per positive event (mm/month) 187

Dominant month during positive cases March

No. of negative cases (PC scores = < — 1.50) 4

Mean precipitation per negative event (mm/month) 8

Dominant month during negative cases December

@ Springer



Modeling regional precipitation over the Indus River basin of Pakistan using statistical downscaling 51

zvaves [T

2 4

A VAR !
1 1 v 1 1 ] ( 1 1]
10°E 20°E 30°E 40°E 50°E 60'E 70°E 80°E 90'E 100°E

) 5

c)

Fig. 11 (a—c) Same as Fig. 9 but for sea level pressure composites during the WS

spatiotemporal precipitation variation using HAR data
that covers the entire orography of the UIB. We also
identify on average four different regions based upon ob-
servations, which are in line with their findings and sup-
port our assumption regarding the adequacy of our region-
alization in explaining effective orography of the entire
UIB. Our study is also limited to only those station ob-
servations that are located on the Pakistan side of the
UIB. While there are some online data sources (e.g.,
NOAA-NCDC’s data available from https://www.ncdc.
noaa.gov) that provide observations of few stations on
the Indian side of the UIB, those are mostly located in
the low-altitude areas and do not overlap recent time pe-
riod covered by the HA stations used in this study.
Therefore, while it is understandable that additional sta-
tion observations should improve the spatial coverage of
the UIB, substantial effort is needed for the spatiotempo-
ral homogenization of these datasets for drawing mean-
ingful inferences, and particularly to infer orography,
which is the focus of our study. We rather assume that

precipitation variability explained by our regions may also
represent the conditions in surroundings of the UIB of
Pakistan, as the same large-scale forcing governs the re-
gional precipitation. Already some studies (e.g., Archer
and Fowler 2004) have pointed out that some of the
Indian stations show stronger covariation with precipita-
tion of adjacent stations of Pakistan.

Moreover, we have employed ERA-Interim-based predic-
tors in our study, as the more recent ERAS (Hersbach et al.
2018) was not publicly available at the time when this study
was begun. Since statistical downscaling is based on the use of
large-scale circulations, we do not expect that the improve-
ments in the horizontal resolution in ERAS5 will have a signif-
icant impact on the downscaling results. In any case, we eval-
uate the robustness of ERA-Interim-based final predictors by
performing a similar PCA on ERAS predictors and use Taylor
diagrams (Taylor 2001) for the comparison of loading patterns
(centers of variation) of the two datasets. We find a high cor-
respondence among dynamical predictors that dominate our
final regression models (Section 4.2.1). Thus, the strong
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Fig. 12 (a—c) Same as Fig. 9 but during the WS precipitation

correspondence of governing PCs among these different
datasets (not shown) provides confidence in the use of ERA-
Interim as predictors.

Another shortcoming is related to the RMSEs in
Tables 4 and 5, which are sometimes higher than the cor-
responding precipitation rates. However, the relatively
higher RMSEs are associated with a higher number of
zeros in the observed time series, which increases the total
errors due to the addition of smaller errors in simulating
exact zeros in the regression models. In the case of gamma
or those Tweedie models that have very few number of
months with zero precipitation, the mean errors are within
an acceptable range (e.g., in Table 4, PMS-R3 and WS-
R3). Therefore, despite relatively higher error rates during
some (relatively dry) winter cases, the ability of our models
to simulate a large fraction of observed seasonal variance is
still significant.

Despite some of these uncertainties, our study presents a
unique approach to assess and explain fine-scale precipitation
variability over large parts of the effective drainage basin
using large-scale circulations and carefully selected actual ob-
servations. This will serve to meet communal and scientific
interests by providing an alternative to analyze the complex,
climate-sensitive, and yet data-scarce region, within the avail-
able observational framework.
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6 Summary and conclusions

Complex processes govern spatiotemporal characteristics of
regional precipitation over the UIB. An inadequacy of obser-
vational coverage within the UIB and regional limitations of
various de facto precipitation products further compound the
challenge of a reliable estimation of precipitation at varying
time scales. In this study, we employed atmospheric circula-
tions within a statistical modeling framework to resolve the
observed (seasonal) precipitation over the Indus basin of
Pakistan with a focus on the UIB. By taking a distinct advan-
tage of data from recent HA observatories, we adapted a K-
means cluster analysis to demonstrate the effectiveness of rel-
atively low-altitude stations with historic data to provide pre-
cipitation inferences over more uncertain, but hydrologically
important, HA of the UIB. This precipitation regionalization
scheme also captured the spatial heterogeneity of precipitation
over the UIB by identifying more sub-regions within the UIB,
when compared with the ones identified over the L1. We argue
that the precipitation regionalization is effective in filling out
the spatial gaps over the UIB despite the lack of observations
at very high altitudes. Furthermore, the RR stations for each of
the precipitation regions were carefully identified to serve as
predictands. We used different dynamical and thermodynamic
variables from the ERA-Interim reanalysis as predictors.
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Fig. 13 Composites of geopotential height differences across the troposphere during WS. (a) geopotential heights at 700 hPa, (b) geopotential heights at

500 hPa, and (c) geopotential heights at 200 hPa

We adapted a GLM framework with gamma and
Tweedie distributions to model the typical predictor-
predictand relationships across the Indus River basin dur-
ing the major precipitation seasons. The final selection of
precipitation models was based on minimizing the MSE
(maximizing the MSESS) by duly considering the multi-
collinearity among different predictors within a robust
cross-validation framework. Overall, the precipitation
models exhibited a high performance over the wetter south-
ern Himalayans and various LI regions by mainly using
different dynamical predictors. The typical modeling
framework also demonstrated an adequate performance in
resolving the seasonal precipitation of cryosphere-
dominated and topographically complex trans-Himalayans
regions, which largely govern the hydrological regime of
the Indus River system. Knowing that highly localized pro-
cesses are difficult to model and also govern some part of
the mountainous precipitation variability, the modeled
skills over different parts of the UIB are quite reasonable
to explain the precipitation dynamics using large-scale at-
mospheric circulations.

A skillful modeling of the trans-Himalayan regions, partic-
ularly during the westerly dominated circulations (PMS and
WS) which mainly nourish the seasonal snowpacks, should
help to improve our limited understanding about the spatial
characteristics of regional precipitation and to assess the future
stability of associated cryosphere. However, relatively com-
plex models containing both dynamic and thermodynamic
predictors were required to simulate such cryosphere-
dominated trans-Himalayan regions. Moreover, we also sepa-
rately modeled the HA part of the UIB due to its importance in
the basin hydrology and associated greater uncertainty. We
also demonstrated the robustness of ERA-Interim circulations
against the latest ERAS reanalysis, and the insensitivity of the
final precipitation models against different precipitation mea-
surement losses.

Furthermore, we constructed composites for two major wet
seasons (MS and WS) to analyze and explain the large-scale
atmospheric structures during the wet and dry precipitation
anomalies over the UIB. These composites provided addition-
al confidence regarding the reliability of the statistical models
by explaining the physical processes that govern precipitation
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dynamics over the complex UIB. We showed that the strength
and location of an upper level high over the WCA (Siberian
high) influence the anomalous behavior of UIB precipitation
by triggering different dynamical and thermodynamic insta-
bilities during the MS (WS).

We have also simultaneously modeled the precipita-
tion distribution over different LI regions in a similar
way to have a coherent perspective about the water
supply (UIB) and its demand (LI). Such investigations
will further help in devising appropriate strategies for
water resources planning at the basin scale. These sta-
tistically skillful and physically consistent models also
offer an opportunity to investigate the sub-regional re-
sponse of the Indus basin under different climate sce-
narios by downscaling relevant circulations from the
GCMs. Given that the latest GCMs tend to exhibit a
relatively better skill in representing large-scale circula-
tions when compared with their raw precipitation output
(e.g. Mueller and Seneviratne 2014), future precipitation
changes, derived through such predictors, may provide
more realistic policy feedback to support the regional
adaptations.

However, considering melt-dominated hydrological re-
gime of the Indus basin, the downscaling of precipitation
alone cannot fulfill the requirements for understanding the
basin hydrology. Therefore, similar efforts are needed to
downscale regional temperatures. Thus, we plan to apply sim-
ilar statistical downscaling techniques on the temperature
fields in addition to the use of these models for precipitation
projections amid different climate scenarios.
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