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Abstract
Tacaribe virus (TCRV) is the prototype of the New World arenaviruses (also known as TCRV serocomplex viruses). While 
TCRV is not itself a human pathogen, many closely related members of this group cause hemorrhagic fever, and thus TCRV 
has long served as an important BSL2 system for research into diverse areas of arenavirus biology. Due to its widespread use, 
a coding-complete sequence for both the S and L segments of the bipartite genome has been publically available for almost 30 
years. However, more recently, this sequence has been found to contain significant discrepancies compared to other samples 
of the same original strain (i.e., TRVL-11573). Further, it is incomplete with respect to the genome ends, which contain 
critical regulatory elements for RNA synthesis. In order to rectify these issues we now present the first complete genome 
sequence for this important prototype arenavirus. In addition to completing the S segment 5’ end, we identified an apparent 
error in the L segment 3’ end as well as substantial discrepancies in the S segment intergenic region likely to affect folding. 
Comparison of this sequence with existing partial sequences confirmed a 12-amino-acid deletion in GP, including putative 
glycosylation sites, and a 4-amino-acid exchange flanking the exonuclease domain of NP. Accounting for these corrections, 
the TRVL-11573 strain appears to be nearly identical to that isolated in Florida in 2012. The availability of this information 
provides a solid basis for future molecular and genetic work on this important prototype arenavirus.

Arenaviruses are small RNA viruses with two ambisense 
genome segments. The large (L) segment encodes the viral 
polymerase (L) and the matrix protein (Z), while the small 
(S) segment encodes the glycoprotein (GP) and the nucleo-
protein (NP). The open reading frames (ORFs) are sepa-
rated by a structured non-coding intergenic region (IGR) that 
facilitates transcription termination (Fig. 1A) [1–3]. Highly 
conserved sequences at the genome termini (untranslated 
regions, UTRs) contain conserved complementary nucleo-
tides that are critical for viral RNA synthesis [4–6].

The arenaviruses that infect mammals (i.e., mammarena-
viruses) are divided into the Old World arenaviruses, which 
are primarily found in Africa, and the New World arenavi-
ruses, which are mostly found in South America. Tacaribe 

virus (TCRV; species Tacaribe mammarenavirus) is the 
prototype of such New World arenaviruses (also known as 
TCRV serocomplex viruses). While many members of this 
group are causative agents of hemorrhagic fever, TCRV is 
not itself a human pathogen, making it important both for 
comparative pathogenesis studies and as a BSL2 system for 
basic research into arenavirus biology [7, 8].

TCRV was originally isolated from dead bats collected 
in Trinidad as part of a rabies surveillance program at 
the Trinidad Regional Virus Laboratory (TRVL). Fur-
ther efforts led to several additional isolations during the 
period from 1956 to 58; however, only the strain TRVL-
11573 was preserved [9]. It has since been disseminated 
to laboratories worldwide, where it has formed the basis 
for all molecular biology research on this virus. Indeed, it 
remained the only strain in existence until 2012, when a 
nearly identical virus isolate was recovered from ticks col-
lected in a Florida state park [10]. Unsurprisingly, given 
its importance for research, sequences for both segments 
of the TRVL-11573 strain were generated early on and 
have been available in the GenBank database since 1993 
(accession no. M20304 [S], J04340 [L]) [11–14]. The 
genome sequence established by these reference sequences 
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is coding-complete and has formed an important basis for 
many molecular and functional studies. However, more 
recent studies have increasingly suggested that these 
sequences also contain significant errors [10, 15, 16]. Fur-
thermore, no currently available TCRV sequence includes 
the 5’ end of the S segment – information that is critical 

for the development of molecular systems dependent on 
viral RNA synthesis (e.g., reverse genetics systems). To 
address these issues, we have generated a complete (end-
to-end) genome sequence based on the TCRV prototype 
strain TRVL-11573 using modern sequencing methods.
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Provenance and sequencing

TCRV (strain TRVL-11573) [9] was obtained through the 
University of Geneva and was originally sourced from the 
Arbovirus Reference Laboratory of the CDC [17]. Virus 
stocks were grown on Vero76 cells (CCLV-RIE0228), and 
viral RNA was isolated from these supernatants using a 
QIAamp Viral RNA Mini Kit (QIAGEN) and reverse 
transcribed using virus-specific primers and Superscript 
III (Invitrogen). The resulting cDNA was then used with 
iProof (Bio-Rad) to amplify specific overlapping regions 
of the genome, which were then purified using a Nucle-
oSpin Gel and PCR Clean-Up Kit (Macherey-Nagel). 
Genome ends were amplified from cDNA using ligation-
anchored PCR, as described previously [18–20]. Briefly, 
for 3’ end amplification, a 3’-end-blocked linker (/5Phos/
GAA​GAG​AAG​GTG​GAA​ATG​GCG​TTT​TGG/3Phos/) was 
ligated to the viral RNA using T4 RNA ligase (NEB) prior 
to reverse transcription with a gene-specific primer and 
subsequent PCR using a gene-specific primer and a primer 
complementary to the linker sequence. In contrast, for 5’ 
end amplification, cDNA was synthesized using an inter-
nal gene-specific primer and cleaned up using a QIAquick 
PCR Purification Kit (QIAGEN) prior to linker ligation 
and PCR as described above. Sanger sequencing of all 
products with specific primers was performed by Eurofins/
GATC. Additional details of the experimental protocols 
are available on request. IGR folding predictions were per-
formed using Mfold [21].

Sequence properties

Sequencing of the TCRV genome revealed 7103 nucle-
otides for the complete L segment (GenBank accession 
MT081317) and 3422 nucleotides for the complete S 

segment (GenBank accession MT081316) (Fig. 1A) and 
identified 16 nucleotides that were missing from the 5’ end 
of the existing S segment reference sequence (Fig. 1B). 
Significant discrepancies were also identified in compari-
son to the previously reported 3’ end sequence of the L 
segment. Specifically, we observed differences at nucleo-
tides 6 and 8 of the 3’ terminus that change the predicted 
base pairing between the 5’ and 3’ termini (Fig. 1B). The 
new sequence data would suggest that the TCRV genome 
ends are identical to those of the closely related Junín virus 
(JUNV) and Machupo virus (MACV). Interestingly, it has 
been reported recently that publically available reference 
sequences for JUNV and MACV also contained errors at 
these same positions and that such errors can hamper the 
development of reverse genetics systems [22–24]. We also 
identified discrepancies in the IGRs (Fig. 1C). While the 
single-nucleotide insertion in the L segment IGR appears 
to have little effect on the energetics of folding, the more 
extensive changes in the S segment are predicted to have a 
dramatic effect on the stability of the secondary structures 
formed in this region (ΔG = -78.0 (vRNA)/76.6 (cRNA) 
kcal/mol compared to ΔG = -52.4 (vRNA)/53.8 (cRNA) 
kcal/mol) for the reference sequence). These changes indi-
cate that the IGRs of TRVL-11573 are identical to those 
reported for the Florida strain (Fig. 1C).

Comparison of the coding regions also highlighted sev-
eral obvious differences. In particular, the NP sequence 
contains two frameshift mutations (a deletion and an inser-
tion) that result in a 4-amino-acid exchange from GPPT to 
DLQL (Fig. 2A) in a loop region flanking key exonuclease 
active site residues. While this mutation was originally 
proposed to explain the reduced ability of TCRV NP, in 
comparison to other arenavirus NPs, to inhibit type I inter-
feron (IFN) production during infection [25], the presence 
of a GPPT-to-DLQL mutation could not be confirmed by 
more-recent sequences derived from the TRVL-11573 
isolate [15], nor was it found in the 2012 Florida isolate 
[10]. Furthermore, the sequence data for GP revealed a 
12-amino-acid deletion that eliminates potential N-linked 
glycosylation sites that are present in  the reference 
sequence. While it is unclear if this difference is due to the 
loss of this region during virus passaging over the decades, 
or whether it is due to improvement in sequencing tech-
niques, our observation is consistent with findings from 
a recently reported partial GP sequence for TRVL-11573 
(KP159416) [16] (Fig. 2B) as well as the 2012 Florida 
strain [10], suggesting that other current isolates also 
lack this sequence. Overall, the sequences generated in 
this study support both of these reported deviations from 
the currently available reference sequence for the TRVL-
11573 isolate of TCRV.

Interestingly, taking these discrepancies into account, 
TRVL-11573 shows a much higher degree of sequence 

Fig. 1   Analysis of Tacaribe virus non-coding sequences. (A) Sche-
matic diagram of the genome, indicating discrepancies in non-coding 
regions. Open reading frames (colored boxes), terminal noncoding 
regions (grey boxes) and intergenic regions (hairpin) are all indicated. 
Arrowheads indicate the location of missing data and discrepancies. 
(B) Genome termini. Sequences determined in this study (TCRV-
EXP, shown in bold) were compared to the reference sequences 
for strain TRVL-11573 (TCRV-REF) and the 2012 Florida strain 
(TCRV-Florida) as well as Junín virus (JUNV, strain Romero) and 
Machupo virus (MACV, strain Carvallo). Mismatches are shown in 
red, and missing data are indicated by dashes. Complementarity of 
the genome end sequences is shown with the promoter region at the 
3’ end boxed. Missing data/discrepancies are shown in red. (C) Inter-
genic regions. Annotation is as described for (B). GenBank acces-
sion numbers are as follows: TCRV-EXP (S segment, MT081316; 
L segment, MT081317), TCRV-REF (S segment, M20304; L seg-
ment, J04340), TCRV-Florida (S segment, KF923400; L segment, 
KF923401). JUNV and MACV S and L segment sequences were as 
published in references [23] and [24], respectively
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similarity to the sequence isolated from ticks in Florida 
than was reported based on the previously available refer-
ence sequence [10], with the S segments showing 99.7% 
identity (9 nucleotide mismatches; 6 amino acid changes) 
and the L segments showing 99.9% identity (10 nucleo-
tide mismatches; 2 amino acid changes). Indeed, when 
all publically available TRVL-11573 sequences, including 
partial sequences, are taken into account, only one nucleo-
tide position in the S segment and two in the L segment 
appear to be unique to the Florida isolate, representing an 
unexpected level of conservation between viruses from 
different countries that are separated by more than 50 years 
in their isolation dates (in addition to the extensive labora-
tory passage history of TRVL-11573).

In summary, we detected a number of significant dif-
ferences in both the coding and non-coding sequence of 
the TCRV strain TRVL-11573 sequence compared to the 

early sequences that have until now represented the only 
publically available reference for this important prototype 
arenavirus. It is anticipated that the availability of the first 
complete sequence of TCRV, covering both the coding 
and non-coding regions and based on modern sequencing 
methods, will be instrumental for future molecular and 
evolutionary studies of this virus.
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Fig. 2   Analysis of Tacaribe virus coding region sequences. Sequence 
discrepancies in the (A) nucleoprotein (NP) or (B) glycoprotein (GP) 
open reading frame. Arrowheads indicate the location of discrepan-
cies, which are shown in red text in the respective sequences. Amino 
acid positions are indicated. Exonuclease catalytic site residues (in 
NP) and putative N-linked glycosylation sites (in GP) are boxed in 

black. GenBank accession numbers are as follows: TCRV-EXP (S 
segment, MT081316; L segment, MT081317), TCRV-REF (S seg-
ment, M20304; L segment, J04340), TCRV-Florida (S segment, 
KF923400; L segment, KF923401), TCRV-NP partial (KC329849), 
TCRV-GP partial (KP159416)
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