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Abstract
Overactivation of the cAMP signal transduction pathway plays a central role in the pathogenesis of endocrine tumors.
Genetic aberrations leading to increased intracellular cAMP or directly affecting PKA subunit expression have been
identified in inherited and sporadic endocrine tumors, but are rare indicating the presence of nongenomic pathological PKA
activation. In the present study, we examined the impact of hypoxia on PKA activation using human growth hormone (GH)-
secreting pituitary tumors as a model of an endocrine disease displaying PKA-CREB overactivation. We show that hypoxia
activates PKA and enhances CREB transcriptional activity and subsequently GH oversecretion. This is due to a previously
uncharacterized ability of HIF-1α to suppress the transcription of the PKA regulatory subunit 2B (PRKAR2B) by
sequestering Sp1 from the PRKAR2B promoter. The present study reveals a novel mechanism through which the
transcription factor HIF-1α transduces environmental signals directly onto PKA activity, without affecting intracellular
cAMP concentrations. By identifying a point of interaction between the cellular microenvironment and intracellular enzyme
activation, neoplastic, and nonneoplastic diseases involving overactivated PKA pathway may be more efficiently targeted.

Introduction

The protein kinase A (PKA)-signaling cascade transduces
physiological hormone mediated processes and its deregula-
tion plays a central role in the pathogenesis of neoplastic as
well as nonneoplastic diseases. The PKA tetrameric holoen-
zyme is composed of regulatory (R) and catalytic (C) subunit
dimers. The regulatory subunits are each present in alpha (α)
and beta (β) isoforms (RIα, RIIα, RIβ, and RIIβ) and their
expression and tissue-specific balance are essential in shaping
the specificity and degree of its activity [1, 2]. When in the
R2C2 conformation, PKA is catalytically inactive. Following
the binding of the second messenger 3′5′-cyclic adenosine
monophosphate (cAMP) to the regulatory subunit dimer, a
conformational change occurs which allows the active cata-
lytic subunit to dissociate and phosphorylate serine/threonine
residues of substrate proteins, like cAMP-responsive element
(CRE) binding protein (CREB) [3–5]. PKA is deregulated in
several human cancers and in particular in endocrine tumors
such as thyroid cancer, adrenal tumors (Cushing’s syndrome,
Carney complex), and GH-secreting pituitary tumors (acro-
megaly) as a result of altered expression of its subunits [6–8].

Acromegaly is an endocrine neoplastic condition caused
by excessive GH secretion from tumors of the anterior
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pituitary gland [9]. Under physiological conditions hypo-
thalamic stimuli trigger GH synthesis by activating the
cAMP/PKA-signaling cascade and somatostatin analogs
that inhibit this pathway are the mainstay pharmacological
treatment for patients with acromegaly [10]. Therefore, the
pathophysiology of these tumors is tightly linked to an
overactivated PKA-signaling cascade that in 40% of cases is
due to activating mutations of the guanine nucleotide
binding protein (G protein), alpha stimulating activity
polypeptide 1 (GNAS1) gene (gsp oncogene) encoding for
the Gsα subunit [11]. Recent whole-genome and -exome
sequencing studies in acromegalic patients did not reveal
any novel recurrent somatic mutations, which could account
for the PKA overactivation in more than half of GH-
secreting pituitary tumor cases [12, 13]. In contrast, an
intriguing pathological feature of these tumors is their
decreased vascular density when compared with the non-
tumorous anterior pituitary tissue [14].

Decreased vascular density is frequently observed in
solid tumors where it leads to relative tissue hypoxia [15].
The cellular response to tissue hypoxia involves the
oxygen-dependent stabilization and activation of a family of
transcription factors known as hypoxia inducible factors
(HIFs). HIF-1α is a well characterized member of the HIF
family and is upregulated in various cancers compared with
nontumorous tissues [16, 17]. Under nonhypoxic condi-
tions, the activity of oxygen-dependent prolyl hydroxylases
marks HIF-1α for VHL mediated ubiquitination and sub-
sequent proteasomal degradation [18]. When the cellular
oxygen concentration drops to near 2% O2, prolyl-
hydroxylase activity is inhibited and HIF-1α remains sta-
bilized and translocates to the nucleus where it associates
with cofactors and binds to its cognate DNA motif thereby
initiating the transcription of target genes [19, 20]. HIF-1α
directly regulates adaptive processes, which can confer a
survival advantage to cells in a hypoxic tissue micro-
environment such as metabolic reprogramming towards a
glycolytic phenotype, pH regulation, and nutrient uptake
[21–24].

While germline and somatic mutations in the genes
encoding for PKA regulatory subunits have been char-
acterized, they are infrequent and little is known about
nongenomic effectors of aberrant PKA activity in human
tumors [7, 8, 25]. The role of the tumor microenvironment
in shaping the phenotype of AIP-mutation-positive soma-
totroph tumors recently been highlighted [26]. We therefore
hypothesized that the decreased vascular density observed
in acromegalic pituitary tumors may contribute to the acti-
vated PKA found in the absence of stimulating gsp muta-
tions. Studies in tissues under hypoxia due to myocardial or
cerebral infarction demonstrated high phosphorylation
levels of the PKA substrate CREB, suggesting that low
oxygen availability may indeed influence PKA activity

[27, 28]. In addition, there is evidence that hypoxia affects
the intracellular location of PKA and subsequently its
function [25]. Accordingly, the aim of this study was to
investigate the nongenomic effect of hypoxia on PKA
activation using GH-secreting pituitary tumor cells as
a model.

We observed that human acromegalic tumors, but not
the normal pituitary gland, present with HIF-1α immu-
noreactivity (IR) indicative of hypoxic state. In primary
human tumor cell cultures as well as immortalized pitui-
tary tumor cells, hypoxia, and HIF-1α increased PKA
activity and its downstream targets CREB and GH
synthesis without affecting intracellular cAMP con-
centrations. We show that HIF-1α represses the tran-
scription of the gene encoding for RIIβ (PRKAR2B) by
interacting with Sp1 and sequestering it from the promoter.
The selective overexpression of RIIβ abolished the effects
of HIF-1α on PKA activation and its downstream targets,
suggesting that the decreased PRKAR2B transcription
under hypoxia is sufficient to increase PKA activity.
Indeed, human acromegalic tumors showed reduced
PRKAR2B transcript levels that were negatively correlated
with HIF-1α protein. Altogether these data showcase the
important role of HIF-1α on PKA regulation which not
only has consequences in the pathogenesis of endocrine
tumors and their response to treatment, but may also
provide a basis for intervening in nonneoplastic diseases
such cardiac disorders in which hypoxia and PKA acti-
vation also play a central role.

Materials and methods

Compounds and antibodies

The adenylate cyclase activator forskolin was obtained
from Sigma (St. Louis, MO, USA). Primary antibodies used
in this study were: CREB (Cell Signaling, Cat. 86B10—
western Blot, ChIP), phospho-CREB Ser133 (Cell Signal-
ing Cat. 87G3—western Blot) Anti-FLAG M2 (Sigma, Cat.
F3165—western Blot), Anti-HIF-1α (Novus, Cat.
NB100134—western Blot, Immunohistochemistry, Co-
Immunoprecipitation, ChIP), Pit-1 (Santa Cruz Cat. Sc-442
—western Blot, ChIP), PP1a (Santa Cruz Cat. Sc-7482—
western Blot), Sp1 (Santa Cruz Cat Sc59X—western Blot,
ChIP), and PKA IIB Reg—H90 (Santa Cruz Cat. sc-
25424). Secondary Antibodies conjugated to HRP (rabbit
and mouse) used for western blot were obtained from Cell
Signaling. Biotinylated Rabbit IgG for immunohistochem-
istry was obtained from Vector (Cat. BA1000). Normal
rabbit and mouse IgG were obtained from Santa Cruz and
used as negative controls for co-immunoprecipitation and
ChIP studies.
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Immunohistochemistry

The tissue processing and immunohistochemistry of 39
paraffin embedded human GH-secreting pituitary tumors
was performed as previously described [29]. All samples
were obtained from patients undergoing transsphenoidal
tumor resection following signed and informed consent and
after approval of the local ethics committee. Following
staining, the IR of HIF-1α was scored according to the
following scheme: 1= 10–30% IR, 2= 31–60% IR, and
3= 61–100% IR. Nine nondiseased human pituitary glands
were obtained from autopsy cases of sudden death with no
evidence of endocrine diseases, taken 8–12 h postmortem.
Normal pituitary samples were subjected to the same pro-
cessing and scoring as described for tumor samples. The
removal and use of pituitary tissue was approved by the
ethics committee of the Max-Planck-Institute of Psychiatry
and informed consent was received from the relatives of
donors.

Cell culture

The rat GH-secreting pituitary tumor cell line GH3 was
obtained from ATCC and cultured for maintenance in
DMEM (Gibco 41965) supplemented with 10% heat inac-
tivated fetal calf serum (Gibco 10270), 100 Uml−1 peni-
cillin/streptomycin (Biochrom) and 2 nM glutamine
(Biochrom). Processing and culturing of primary human
acromegalic tumors was performed as previously described
[30].

Hypoxia chamber

The hypoxic treatment of cells was performed in a modular
hypoxia incubator chamber (StemCell Technologies, Cat.
27310). For hypoxic incubation, cells were placed in the
center of the chamber which was sealed shut and connected
via a flow meter (StemCell Technologies, Cat. 27311) to a
gas tank containing 1% O2, 5% CO2, and 94% N2. The
modular chamber was placed in a standard humidified
incubator at 37° for 6–12 h. A normoxic control was placed
in the same incubator outside of the hypoxia chamber.
Control of hypoxia was performed either by western blot for
HIF-1α protein expression or hypoxia responsive element
(HRE)-luciferase assay.

Western blot

Sample preparation of snap-frozen tissue (human normal
anterior pituitary gland and acromegalic pituitary tumors)
was performed as follows: tissue samples were homo-
genized in ice-cold RIPA buffer (50 mM Tris pH 8.0,

150 mM NaCl, 1% NP–40, 0.5% sodium deoxycholate and
0.1% SDS) using an Ultra-Turrax. GH3 cell lysates were in
RIPA buffer and disrupted using a 20G insulin needle.
Protein concentration was determined with the Bradford
assay. Immunoblot was performed using 10–15 µg to total
protein in sample buffer (Roti-Load 1, Roth). Signals were
detected using ECL Clarity (Biorad).

Co-immunoprecipitation

Co-immunoprecipitation experiments in GH3 cells were
performed on the nuclear fractions. For fractionation cells
were collected by careful scraping and pelleted by cen-
trifugation. The cell pellet was carefully resuspended in
hypotonic cell lysis buffer and incubated on ice for 15 min.
Following centrifugation, the supernatant was decanted and
cells were disrupted again in hypotonic lysis buffer using a
20G insulin syringe and centrifuged. The supernatant con-
taining the cytoplasmic fraction was separated and 75 µl of
cell extraction buffer was used to resuspend the pellet. A
final centrifugation step was performed and the supernatant
containing the nuclear fraction was separated to a clean tube
and subjected to preclearing for 30 min at 4 °C using 10 µL
Protein G Dynabeads per 106 cells. The immunoprecipita-
tion reaction was performed using Protein G Dynabeads
coupled to the primary antibody in a separate reaction. In
total, 10 µL of the antibody-bead complexes were given to
30 µL of precleared lysates. Following rotation overnight at
4 °C, immune complexes were washed and suspended in
sample buffer (RotiLoad 1, Roth) to be immunoblotted as
described above.

Chromatin immunoprecipitation

GH3 cells were processed with the EZ ChIP chromatin
immunoprecipitation kit (Upstate), using rabbit anti-Pit-1
(Santa Cruz), anti-CREB (Cell Signaling), anti-HIF-1α
(Novus), and anti-Sp1 (Santa Cruz) antibodies. Normal
rabbit and mouse IgGs were used as negative control for the
respective immunoprecipitation reactions. Primers against
the rat Gh promoter were previously described [31]. Primers
against the rat Pit-1 promoter were 5′-TGACGTCAAAT
AAAGTTTCTGTTTT-3′ and 5′-TGTTAACCCGAACTG
TCTTTCTTAC-3′ (Eurofins MWG Operon), and primers
against rat Prkar2B were 5′-CACCAATGTGGAGGCTG
AAGT-3′ and 5′-GCAAATCCCACGCTTCTTTCT-3′.

PP1 activity

Phosphatase activity was measured using the Ser/Thr
phosphatase assay kit 1 (Upstate) according to the manu-
facturer’s instructions, at OD630nm.
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PKA activity assay

The PepTag Nonradioactive Protein Kinase Assay Kit
(Promega, Madison, USA) was used according to the
manufacturer’s instructions. Imaging of the phosphorylated
peptide substrate was performed using a ChemiDoc MP
(Bio-Rad) and densitometric quantification was performed
using Bio-Rad ImageLab 4.1 software.

Plasmid transfection, RNA interference, and
reporter assays

GH3 cells were transfected using SuperFect (Qiagen) [32].
Single-interfering RNAs (siRNAs) were against rat HIF-1α
(Santa Cruz Cat. sc-45919) and rat Creb1 (Santa Cruz Cat. sc-
72030) and nonspecific scramble control (Santa Cruz Cat. sc-
37007). The following expression plasmids were used: M7
pdn-PKA-GFP (Randall Moon; Addgene plasmid # 16716),
RSV CREB (Marc Montminy; Addgene plasmid # 22394),
RSV CREB-M1 (Marc Montminy; Addgene plasmid #
22395), PRKAR2B (Origene, SKU SC125501), and pCMV-
3xFLAG-HIF-1α (gift of Eduardo Arzt (Buenos Aires
Argentina)). In vitro mutagenesis was performed to change the
Arginine30 to Alanine in the pCMV-3xFLAG-HIF-1α plasmid
(QuickChange II-Direct Mutagenesis Kit, Agilent Technolo-
gies), and constructs were verified by sequencing (Sequiserve,
Vaterstetten Germany). Luciferase reporter constructs used in
this study were as follows: HRE-luciferase, a gift from Nav-
deep Chandel (Addgene plasmid # 26731) contains three
hypoxia response elements from the Pgk-1 gene upstream of
firefly luciferase. The pA3GHluc GH-luciferase, a gift from A.
Gutierrez-Hartmann, Denver USA, has the proximal (_593) rat
GH promoter upstream to the luciferase gene. The pCRE-luc
construct (Mercury pathway profiling system; Clontech
Laboratories, Mountain View, CA, USA) has the CRE
upstream to the TATA box of the herpes simplex virus thy-
midine kinase promoter and firefly luciferase. The reporter
genes were cotransfected with RSV-βGal. Luciferase activity
was measured using a TriStar and galactosidase activity (o-
Nitrophenyl β-D-galactopyranoside) in an absorbance plate
reader at 405 nm. Relative luciferase values (Luc/Gal) were
applied to normalize for transfection efficiency.

Radioimmunoassays

Rat GH was measured as previously described [33]. Human
GH was measured using a commercial kit (DRG Diag-
nostics, Cat. RIA-0225). To correct for possible effects of
hypoxic incubation and transfection on the proliferation of
GH3 cells, cell proliferation was measured in parallel using
the nonradioactive WST-1 assay (Roche) and used to nor-
malized GH values. Rat intracellular cAMP was measured
using a commercial kit (Perkin Elmer, Cat. NEK033).

Quantitative real-time RT-PCR (qPCR)

Total RNA was extracted from cells and tissues with Trizol
reagent (Life Technology) according to the manufacturer’s
instructions. Total of 1 µg RNA was reverse transcribed
using the QuantiTect Reverse Transcription Kit (Qiagen)
according to the manufacturer’s instructions. Quantitative
real-time PCR was performed on a capillary LightCycler
(Roche) using the QuantiFast SYBR Green PCR Kit (Qia-
gen) at a final volume of 10 μl. Expression levels of the
housekeeping genes (human β-actin and rat TFII-β) were
used for normalization. In the case of human pituitary
tumors, only those that had been screened by conventional
PCR for the presence of normal pituitary tissue in the sample
were included in the study as previously described [34].

Gsp mutation analysis

DNA from human acromegalic pituitary tumors (snap fro-
zen) was used for the analysis of the gsp mutation status as
previously described [11].

Statistical analysis

Statistical analysis was performed using SPSS (PASW
Statistics) 18. Differences in human tissue samples were
assessed using the nonparametric Mann–Whitney U-Test
with P < 0.05 considered as significant in samples with
similar variance. Differences in cell line experiments were
assessed using the Student’s t test with P < 0.05 considered
as significant. Analysis of patient data was performed using
linear regression analysis and Pearson’s rho with P < 0.05.
Experiments with full data/replicate values were included
for statistical analysis.

Results

HIF-1α is overexpressed in GH-secreting pituitary
tumors

Immunohistochemistry performed on archival paraffin
embedded GH-secreting pituitary tumors from patients with
acromegaly and normal autoptic pituitary samples showed
abundant nuclear HIF-1α staining in acromegalic tumors
and virtually absent staining in the normal pituitary (Fig.
1a). These results were confirmed in western blot analysis
which demonstrated strong expression in acromegalic
tumors but absent HIF-1α signal in the normal pituitary
(Fig. 1b, c). HIF-1α stability is mainly posttranscriptionally
regulated, and while HIF-1α transcripts were detected in
both normal pituitaries and acromegalic tumors, no sig-
nificant differences were measured (Fig. 1d) indicating that
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the increased HIF-1α transcription per se is not responsible
for the abundant protein expression observed in acromegalic
tumors. As GH-secreting tumors carry oncogenic gsp
mutations in 40% of cases [35], we examined the possible
association between gsp status and HIF-1α protein levels in
21 acromegalic tumors (Table 1). Linear regression analysis
showed no significant predictive value of the presence of
the gsp oncogene on HIF-1α protein expression (Table 1).
These data suggest that the increased HIF-1α expression
does not occur secondary to gsp oncogenic mutations.

HIF-1a mediates the effects of hypoxia on GH
synthesis

To examine the impact of HIF-1α on PKA activity we first
studied its effect on GH synthesis, which is tightly regulated
by the PKA-signaling cascade [36–39] and is therefore a
physiologically relevant readout of PKA activity. Primary
cultures of human GH-secreting tumors incubated under
hypoxia (1% O2 for 18 h) showed a significant increase in
GH secretion compared with parallel normoxic cultures of
the same tumor (Fig. 2a). Similarly, immortalized GH-
secreting pituitary tumor GH3 cells incubated under
hypoxic conditions showed increased rat Gh promoter
activity, transcription and hormone secretion, and these
effects were abrogated by knocking down HIF-1α with
RNA-interference (Fig. 2b–d). Transient overexpression of

HIF-1α also significantly increased Gh promoter activity as
well as transcription and secretion (Fig. 2e–g). An HIF-1α
construct unable to bind to the consensus HRE due to a
single amino acid mutation in its DNA-binding domain
(HIFR30A) [40] also increased Gh promoter activity to a
similar extent as the wild-type HIF-1α (Fig. 2h, Supple-
mentary Figs. 1 and 2), indicating that HIF-1a was not
directly promoting growth hormone transcription via pro-
moter binding. In addition, chromatin immunoprecipitation
showed no enrichment of HIF-1α on the Gh promoter in
contrast to the abundant binding of Pit-1 which was used as
positive control [41] (Fig. 2i). These results effectively rule
out a direct DNA binding as the cause of HIF-1α–induced
GH synthesis and point to an integration point upstream to
its transcription.

HIF-1α affects CREB phosphorylation and
transcriptional activity

Pituitary GH transcription is stimulated by CREB both
directly, through the binding to its canonical CRE promoter
sequences, and indirectly by promoting the transcription of
the POU1F1 gene, which encodes for Pit-1 [36, 41, 42].
Indeed, CREB inhibition with RNA interference abrogated
the ability of hypoxia to increase rat Gh transcription (Fig.
3a). Hypoxia significantly increased CRE transcriptional
activity in a HIF-1α-dependent manner (Fig. 3b), and HIF-
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Fig. 1 HIF-1 is upregulated in acromegalic pituitary tumors
(ACRO) compared with the normal anterior pituitary gland (NP).
a HIF-1α immunoreactivity in representative normal pituitary gland
and acromegalic tumor. Signal is visualized with diaminobenzidine
(DAB) staining (brown nuclei). Counterstaining with toluidine blue
(blue nuclei). The graph shows the distribution of the HIF-1α immu-
noreactivity score on normal pituitary glands (n= 5) and acromegalic
tumors (n= 39). The absolute numbers of samples are denoted in the
graph bars. b Representative immunoblot for HIF-1α on normal

pituitary glands (n= 3) and acromegalic tumors (n= 6). c Quantifi-
cation of HIF-1α signal as determined by western blot on 5 normal
pituitaries and 25 acromegalic tumors. Values are HIF-1α to β-actin
ratio and presented as fold increase versus the mean normal pituitary
values. Error bars: s.d. **P < 0.01 to normal pituitary glands (U-test).
d Real-time RT-PCR data on RNA from the same samples as in
c. Data are means ± standard deviation of two measurements and
presented as HIF-1α/TFIIB fold increase versus the mean normal
pituitary values *P < 0.05 (Student’s t test).
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1α overexpression both triggered CRE transcriptional
activity (Fig. 3c) and increased the recruitment of CREB to
endogenous Pou1f1 promoter in GH3 cells (Fig. 3d). A
prerequisite for CREB DNA binding and transcriptional
activity is the phosphorylation of its Ser133 residue by PKA
[43]. The phosphorylation pattern of CREB displays a
burst-attenuation kinetic [44] with maximal phosphoryla-
tion occurring at ~1 h, followed by sequentially decreasing
phosphorylation due to the action of the serine/threonine
protein phosphatase PP1, which returns to basal levels at
~6 h [45–47]. HIF-1α overexpression increased basal
phosphorylation of CREB and blunted the physiological
attenuation of forskolin-induced Ser133 phosphorylation
over 6 h (Fig. 3e, Supplementary Fig. 3). Ser133 phosphor-
ylation of CREB was also found under hypoxic incubation
(Supplementary Fig. 4). No changes in PP1 protein
expression or phosphatase activity were observed, indicat-
ing that HIF-1α does not block CREB dephosphorylation
(Supplementary Fig. 5). In contrast, overexpression of a
CREBS133A mutant (CREB-M1) that cannot be phosphory-
lated [43] blunted the effects of hypoxia on endogenous rat
Gh transcription in GH3 cells (Fig. 3f, Supplementary Fig.

6), indicating the importance of CREB phosphorylation in
hypoxia’s action.

HIF-1α and hypoxia activate PKA

PKA is the major kinase phosphorylating CREB [48, 49].
Both HIF-1α overexpression and hypoxic incubation sig-
nificantly increased PKA activity (Fig. 4a, b). Over-
expression of a dominant negative catalytically inactive
PKA in GH3 cells abolished the stimulatory action of
hypoxia on GH promoter activity, transcription, and secre-
tion (Fig. 4c–e), demonstrating that hypoxia and conse-
quently HIF-1α requires a catalytically active PKA to
mediate its effects. PKA activation first occurs following an
increase in intracellular cAMP concentrations [48, 49].
However, neither HIF-1α inhibition with RNA interference
nor hypoxic incubation affected basal and forskolin-induced
intracellular cAMP levels (Fig. 4f, g), indicating that HIF-
1α activates PKA independently of cAMP.

HIF-1α suppresses Prkar2b transcription

PKA activity can be dysregulated as a result of altered
subunit expression patterns activity [48, 49]. As a tran-
scriptional regulator, we therefore speculated that HIF-1α
may induce basal PKA activity by altering the balance of
the expression of the different PKA subunits. HIF-1α
overexpression and incubation under hypoxic conditions
significantly suppressed the expression of the gene encod-
ing for RIIβ (Prkar2b) and did not significantly affect the
expression of the genes encoding for the other regulatory
subunits (Pkar1a, Prkar1b, and Prkar2a) and the catalytic
subunit (Prkaca) (Fig. 5a). Similarly, overexpression of
both wild type and the HIF-1αR30A suppressed Prkar2b
transcription, whereas HIF-1α inhibition using RNA inter-
ference increased Prkar2b gene transcription (Fig. 5b). To
determine whether the decreased expression of the Prkar2b
gene impacts the catalytic activity of the PKA enzyme we
reduced its expression with three different siRNA constructs
and observed increase in PKA activity (Fig. 5c). In contrast,
overexpression of the regulatory RIIβ subunit compromised
the stimulatory action of hypoxia on PKA activity and
blunted its effects on GH synthesis (Fig. 5d–g).

These observations suggest that hypoxia via HIF-1α may
render PKA active by suppressing Prkar2b transcription.
Prkar2b gene transcription is regulated by the transcription
factor Sp1 that binds on the GC-rich sequences of its pro-
moter [50, 51]. As HIF-1α is able to bind and sequester Sp1
[52], we investigated whether it may physically interact
with and sequester it away from the endogenous Prkar2b
promoter in GH3 cells. Indeed, chromatin immunoprecipi-
tation experiments revealed that GH3 cells overexpressing
HIF-1α showed decreased Sp1 enrichment to the Prkar2b

Table 1 Patient cohort used for mRNA and protein screening.

Case Nr. Sex Age Grade Gsp status Gsa mRNA HIF-1a
protein

1 M 61 II − 557 113

2 M 31 II − 57 196

3 M 50 III + 475 200

4 M 38 II + 729 188

5 F 54 III − 755 161

6 F 37 III − 999 348

7 F 30 III − 175 216

8 F 51 III − 170 180

9 M 51 III − 684 231

10 M 49 III − 668 5

11 M 24 II − 288 429

12 M 43 III − 858 56

13 M 46 III − 734 80

14 M 34 II + 330 190

15 M 83 III − 168 332

16 M 72 II − 324 162

17 F 38 III + 207 147

18 M 36 II + 332 168

19 M 57 I − 997 322

20 M 42 III − 174 165

21 M 32 III + 239 123

Patient cohort of the 21 acromegalic tumors that were analyzed by
real-time PCR, western blot, and gsp mutational status. No significant
predictive value of the presence of the gsp mutation status on HIF-1α
protein expression was observed (F(1,20)= 0.479, P= 0.497, R2=
−0.025).
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promoter compared with IgG controls (Fig. 6a, d). No
promoter enrichment of HIF-1α on Prkar2b was observed

confirming that it does not affect Prkar2b transcription by
direct DNA binding. Hypoxia, HIF-1α silencing, and
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transient overexpression of HIF-1α did not affect Sp1
transcription (Supplementary Fig. 7). However, HIF-1α co-
immunoprecipitated with Sp1 in hypoxic GH3 cells con-
firming their physical interaction in pituitary tumor cells
(Fig. 6b, e).

This observation suggests that high levels of HIF-1α may
compromise PRKAR2B transcription. Indeed in GH-
secreting pituitary tumors from patients with acromegaly

(n= 10), we confirmed a significant decrease in PRKAR2B
expression (Fig. 6a) and a significant increase in HIF-1a
expression compared with normal anterior pituitary glands
(Fig. 6c, a) and this was also shown at protein level (Fig. 6d,
b). In contrast, no significant changes were observed in the
expression of the genes encoding for all the other subunits
(Supplementary Fig. 8). In addition, we observed a sig-
nificant negative correlation between HIF-1α protein and
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PRKAR2B mRNA levels in the GH-secreting pituitary
tumors (Fig. 6e, c).

Altogether, these data demonstrate that hypoxia and HIF-
1α ensure PKA activation by downregulating RIIβ, and this
has physiological consequences on endocrine cells under-
going hypoxia during tumorigenesis.

Discussion

In cancer, hypoxia has long been recognized as a con-
tributing factor to the development and survival of tumor
cells [53], and HIF-1α has been identified as a key mediator
of the adaptive processes which confer a survival advantage
in the hypoxic tumor microenvironment [21, 22, 54]. Our
findings delineate a novel pathogenic mechanism through
which HIF-1a can amplify PKA signaling independently of
gsp mutations or intracellular cAMP concentrations. In GH-

secreting tumors, whose pathophysiology is closely linked
to PKA activity, we show that HIF-1α suppresses the
transcription of the gene that encodes for RIIβ thereby
promoting PKA activation, which in turn leads to greater
activation of downstream targets such as CREB and ulti-
mately promotes excessive GH synthesis.

There has been previous evidence that hypoxia and HIF-
1α may affect PKA activity. First, in a model of melanoma
it was demonstrated that the PKA scaffold protein
AKAP12v2 is a direct transcriptional target of HIF-1α, and
its hypoxic induction effectively enhances the migratory
capacity of melanoma cells [25]. At the organelle level,
hypoxia can promote the ubiquitination and degradation of
the mitochondrial AKAP121, therefore attenuating PKA-
CREB signal transduction to the outer mitochondrial
membrane during brain ischemia [55]. Finally, in A549
lung cancer cells it was shown that long-term (2 days)
hypoxic incubation can increase the relative expression of
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PRKACA, indicating that this may occur independently of
HIF-1α transcriptional regulation [56].

In our system, both hypoxia and HIF-1α overexpression
did not affect PRKACA expression, but dramatically
repressed the transcription of PRKAR2B. Furthermore, this
repression was essential for the stimulatory action of
hypoxia and HIF-1a on the downstream PKA read-outs
CREB and GH synthesis, providing with novel mechanistic
insights into the nature of HIF-1α–PKA interactions. In fact,
we found that the stimulatory effect of HIF-1α on PKA
activity in GH-secreting pituitary tumor cells occurs speci-
fically through suppression of RIIβ. In contrast to many
other protein kinases which are regulated by the turnover of
an activation loop phosphate, PKA is regulated by the
composition of its holoenzyme structure, which determines
its activation potential by cAMP [57]. As such, alterations
in the structure of the holoenzyme complex make it sus-
ceptible to deregulation of kinase activity [48, 49]. As we
found no significant alterations in intracellular cAMP levels,
we propose that the suppression of PRKAR2B expression is

the sole trigger of overactive PKA under these conditions.
Therefore, PRKAR2B poses to be the first direct target of
HIF-1α within the PKA holoenzyme.

Previous studies have shown that loss of RIα/β is asso-
ciated with more aggressive tumor behavior [49, 58, 59],
while the expression of RIIα/β promotes cell cycle arrest
[52, 60]. In this sense, our findings that suppression of RIIβ
in pituitary tumor cells leads to increased PKA activity and
GH hypersecretion are in line with these previous findings.
However, as RIα/β and RIIα/β are not only functionally
nonredundant but also display a tissue-specific pattern of
distribution [57], we believe the effects of loss or gain of a
specific isoform should not be generalized without biolo-
gical validation in the particular system of interest.

To date, the regulatory Iα subunit has been of particular
interest in the pituitary as mutations mapping to its locus at
17q22-24 are commonly found in patients with Carney
Complex, a multiple neoplasia syndrome which is asso-
ciated with abnormal GH and prolactin secretion [7]. Large-
scale genetic screening of sporadic acromegalic cases have
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revealed no loss of PRKAR1A gene expression indicating
that PRKAR1A mutations are not involved in GH hyperse-
cretion outside of the Carney Complex [12, 13, 50]. Given
the paucity of evidence supporting mutations of the PKA
subunits as being causative of GH hypersecretion in
sporadic cases, our study presents a novel nongenomic
mechanism through which HIF-1α acts as a surrogate of the
tumor microenvironment to influence GH synthesis.

We found that HIF-1α downregulates PRKAR2B tran-
scription but we did not detect any direct binding to its

promoter. While HIF-1α can directly activate the tran-
scription of a multitude of target genes via its constitutive
DNA binding domain (CGTC), its role in transcriptional
repression remains less well characterized. Genome-wide
association studies of HIF-1α DNA binding and transcrip-
tion profiling have shown that HIF-1α-dependent gene
suppression most commonly occurs through indirect
mechanisms such as the HIF-1α upregulates the transcrip-
tion of transcriptional repressors that then suppress the
expression of the affected genes [51, 61]. A less
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characterized mechanism is through physical interaction
and sequestration of transcription factors from their target
promoter sequence. In this context, HIF-1α was shown to
compete with Sp1 for c-Myc, resulting in the transcriptional
repression of the Myc target gene MutSα [62]. The
PRKAR2B promoter has CG-rich regions with Sp1-binding
sites [63, 64]. We found that HIF-1α physically interacts
with and decreases Sp1 binding from the Prkar2b promoter
therefore supporting the concept of HIF-1α-mediated tran-
scriptional repression beyond the HRE-dependent regula-
tion of gene expression. This effect of HIF-1a occurs solely
by sequestering Sp1 and does not affect total Sp1 levels.
These results point to a general mechanism through which
HIF-1α may suppress the transcription of genes with CG-
rich promoters.

A considerable amount of work has described the reg-
ulation action of PKA on HIF-1a [65]. Upstream PKA
activators modulate HIF-1α transcriptional activation of
target genes such as VEGF-A in lung cancer models [66]. In
fact, PKA directly phosphorylates HIF-1α in endothelial
cells under intermittent hypoxia [67]. Indeed, two putative
PKA phosphorylation sites on HIF-1a Thr63 and Ser692

promote its stabilization independently of prolyl hydro-
xylation in rat cardiomyocytes [68]. This shifted the focus
on the role of PKA-mediated regulation of HIF in models of
congestive heart failure, as PKA plays an important role for
signal transduction through β-adrenergic receptors in car-
diomyocytes. Furthermore, inhibition of β-adrenergic
receptors reduces the hypoxia-induced stabilization of HIF-
1α in primary human endothelial cells [69]. Our study
demonstrates that the PKA–HIF-1α interaction is reciprocal,
with HIF-1α exerting a positive feedback on PKA.

Taken together with our findings of a novel mechanism
of PKA activation through HIF-1a, the possibility of a feed-
forward loop between HIF-1α and PKA may be of sig-
nificant interest in regards to examining nongenomic
mechanisms of PKA activation in both neoplastic and
nonneoplastic diseases. Our studies in GH-secreting pitui-
tary tumor cells provide with a new link between an
environmental stressor in the form of hypoxia and an
important intracellular physiological regulator of pituitary
function. Given the diversity of cellular processes which are
coordinated by PKA [70, 71], these observations may have
implications reaching beyond endocrine pathology.
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