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Abstract
Region-based genome-wide scans are usually performed by use of a priori chosen analysis regions. Such an approach will
likely miss the region comprising the strongest signal and, thus, may result in increased type II error rates and decreased
power. Here, we propose a genomic exhaustive scan approach that analyzes all possible subsequences and does not rely on a
prior definition of the analysis regions. As a prime instance, we present a computationally ultraefficient implementation
using the rare-variant collapsing test for phenotypic association, the genomic exhaustive collapsing scan (GECS). Our
implementation allows for the identification of regions comprising the strongest signals in large, genome-wide rare-variant
association studies while controlling the family-wise error rate via permutation. Application of GECS to two genomic data
sets revealed several novel significantly associated regions for age-related macular degeneration and for schizophrenia. Our
approach also offers a high potential to improve genome-wide scans for selection, methylation, and other analyses.

Introduction

Genomic scans assess genomic regions (usually sub-
sequences) with respect to some statistical measure and,
ideally, quantify its consistency with the null hypothesis.
Prominent applications include the detection of allele fre-
quency differences between cases and controls in genetic
association studies [1], the departure of the site-frequency
spectrum (SFS) from the expectation under neutral
evolution in selection analysis [2] and of differential
methylation patterns in epigenomics [3]. Although statis-
tical tests differ, the basic procedure remains similar across

these applications by comprising [1] the prior definition of a
set of contiguous analysis regions (bins) Bij, characterized
by start positions i and end positions j (“binning”), some-
times defined by setting scanning parameter values (“sliding
window”) [2]; the calculation of a suitable summary or test
statistic, T(Bij), for each bin [3]; the distributional assess-
ment of the statistics in order to identify extreme values,
frequently including the calculation of p values, and often,
but not always, followed by control of the family-wise error
rate (FWER).

With long chromosomal sequences, it is not known in
advance which subset of possible subsequences is most
suitable for statistical summarization and testing, i.e., which
regions will provide the highest power. Use of a priori fixed
regions, including sliding-window approaches with fixed
bins, will result in a highly likely increase in the type II
error rate and, correspondingly, reduced power, because
regions comprising the strongest signal(s) will almost cer-
tainly not be chosen prior to the analysis. A more probable
scenario is that a region of interest will only partially
coincide with the chosen analysis region. As a consequence,
the signal will be diluted by inclusion of nonrelevant var-
iants, split across multiple analysis regions, or both. Fixed,
predetermined binning therefore represents a major limita-
tion of current genomic scans. Moreover, due to unknown
correlation structures between regions, the correction for
multiple testing is often performed in a conservative way,
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e.g., by use of Bonferroni correction for the number of
tested regions [4].

Here, we focus on the application of the exhaustive scan
approach to rare-variant (RV) association studies based on
sequenced or genotyped data. RV analysis is motivated by
the observation that although genome-wide association
studies (GWAS) have usually identified common risk
alleles for a wide range of complex diseases [5], most of
these alleles cause at most moderate increases in risk and
contribute little to the overall heritability of diseases indi-
vidually, leaving large portions of human diseases’ herit-
ability unexplained [5, 6]. This observation motivated
studies to focus on the role of RVs, aiming to deliver
functionally interpretable variants of moderate-to-large
effect sizes and explaining additional disease risk varia-
bility. Region-based RV association analyses are based on
the assumption that multiple RVs in physical proximity
have similar effects on the phenotype. Under this assump-
tion, multiple RVs in a genomic region can be aggregated
and analyzed as a unit. In this context, the most common
approach is to define fixed bins by either using the locations
of known protein-coding genes as regions of analysis or by
using a sliding-window approach with two fixed para-
meters, namely the window size and the step size. Either
choice is fundamentally limited in scope, and will consider
only a tiny fraction of possible subsequences.

In RV analysis, “rareness” itself is another parameter that
is usually defined by a threshold of the minor allele fre-
quency, MAFT. Alternatively, weighting schemes have been
proposed that assign lower weights to variants with higher
allele counts. This does not fully solve the problem of
rareness thresholds, as the shape of the weighting function
is usually chosen somewhat arbitrarily and without a
stringent justification of its usefulness.

Noteworthy progress towards non-parametric RV ana-
lysis has been made in [7], who proposed the Variable-
Threshold (VT) approach, in which test statistics for all
possible MAFT are computed and the optimal MAFT is
adapted from the data. The method uses permutation testing
to adjust for the large number of tested hypotheses within a
bin; it is therefore computationally more intense. In [8], the
VT method was extended to the collapsing and the CMAT
tests [9], whereas the method became computationally
impractical for regression models.

However, even if the problem of the unknown “rareness”
can be alleviated, the problem of the choice of analysis
regions remains, which has been acknowledged before [10–
13]. The present work can be regarded as the extension of
the VT method to binning of analysis regions (“variable
binning”).

Here, we suggest to perform an exhaustive scan for
phenotypic association using a simple RV test (collapsing
method, COLL) as the test statistic [14]. COLL

dichotomizes samples by their carrier status, i.e., whether
the corresponding individual is carrying at least one rare
allele in the analysis region. In a case–control study design,
a 1-df χ2-test can be applied to the resulting 2 × 2 con-
tingency table. Interestingly, despite its relatively simple
disease model, the power of COLL is comparable with more
sophisticated methods for a wide range of disease models
[9]. However, COLL is inherently limited in that it can only
be applied to binary phenotypes only, does not account for
covariates, and has limited power if the associated RVs in
the region have different effect directions. A large number
of more advanced tests have been developed, see [8, 15, 16]
for categorizations. A notable example is the sequence
kernel association test (SKAT) [17], which is a variance-
component test and sensitive to mixed effect directions in a
region, allows for inclusion of covariates, and can be used
with binary and quantitative phenotypes.

Here, we propose the use of exhaustive scans to all
possible contiguous subsequences and to perform multiple-
testing correction by obtaining the distribution of extreme p
values from replicates of the data simulated under the null
hypothesis by repeatedly permuting case–control status. We
introduce this approach, in an exemplary way, for a specific
application, namely the genomic exhaustive collapsing scan
(GECS) approach for COLL, and present a computationally
efficient implementation of GECS. We show that although
the number of possible contiguous bins for all RVs at a
single chromosome is very large, namely n(n+ 1)/2 with n
variants, the number of distinct bins dramatically reduces by
about three to four orders of magnitude, rendering GECS
feasible and scalable even for whole-genome sequence data
in large sample sets. Furthermore, this acceleration allows
control of the FWER via repeated case–control status per-
mutation that provides optimal power to detect association
[18]. Based on simulations, we derive empirical thresholds
for genome-wide significance in case–control WGS studies
for different sample sizes and minor allele frequency
thresholds, in an approach analogous to [19]. In applying
GECS to two real-world data sets, we show that our
approach is feasible and scalable with large, modern asso-
ciation studies and provides a fine-grained, base-pair reso-
lution of associated regions contained in the data (Fig. 1),
which will enable a deeper understanding of the effect of
RVs on the etiology of complex diseases.

Methods

GECS algorithm

Our method is based on the observation that under
the collapsing test COLL (see Supplementary Note a),
test statistics for all locally distinct bins can be
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computed efficiently without explicit computation of each
bin. In pseudocode, the algorithm can be formulated as
follows:

for i ¼ 0; i < n; iþþð Þf
for j ¼ i; j < n; jþþð Þf

if Bij ¼¼ B iþ1ð Þj k Bij ¼¼ 1
� �

break;

else if Bij ¼¼ Bi jþ1ð Þ
� �

continue;

else compute T Bij
� �

; == locally distinct bin identified

g
g

Here, n is the number of variants on a linear chromosome, Bij

is the set of carriers of a minor allele (which can be
conveniently parametrized by a binary array) and T(Bij) is the
corresponding test statistic. See Supplementary Notes b–d for
a more detailed justification and description of the algorithm.

Simulation studies

We performed extensive simulation studies (Fig. 1) to (i)
determine genome-wide significance thresholds for region-
agnostic RV testing (Table 1), (ii) assess the statistical power of
our approach (Figs. 2, 3 and S5–S12), and (iii) benchmark the
feasibility of GECS for analysis of large genomic data sets (see

Supplementary Note f) for the description of the studies and
(Supplementary Note g) for the results.

Real-world data set analysis

Advanced age-related macular degeneration (AAMD)
GWAS from the International AMD Genomics Consortium
(dbGaP accession: phs001039.v1.p1) and schizophrenia
(SCZD) exome sequencing study from a population-based
schizophrenia Swedish case-control cohort (dbGaP acces-
sion: phs000473.v2.p2). We validated the most interesting
bins by performing association testing with SKAT (p′
values, see Supplementary Note h). For the description of
the data sets, the quality control, and the analysis setup see
Supplementary Note e and h.

Results

Real-data analysis

Advanced age-related macular degeneration (AAMD)

We applied GECS to the whole-genome imputed
case–control data of the subset of samples with European

Fig. 1 Workflow chart of the entire simulation study illustrating the major steps and procedures. See main text for details.
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ancestry and cases with AAMD (Table S3). The strongest
signals were detected in bins overlapping with protein-
coding genes, including human leukocyte antigen B (HLA-
B), HLA-DRA, and MICB in chromosome 6, FYB in chro-
mosome 5, CFD, and NRTN in chromosome 9, and PLE-
KHA1 in chromosome 10 (Table S10). These genes, among
others, are involved in the regulation of the immune system
process and innate immune response. The set of genes
overlapping significant bins were enriched in the activation
of immune response pathway, in particular, the positive
regulation of immune response (7.36-fold enrichment,
Bonferroni-corrected p value of 4.4 × 10−4; see Table S11).
In addition, GECS reidentified and refine most of the pre-
viously reported RV associations with AAMD (e.g., CFI,
C3, SKIV2L, SYN3, and C9) (Table S12) [20, 21]. Odds
ratios of identified bins ranged between 0.5 and 3.45,
indicating that carrier status can be both positively and
negatively correlated with AAMD. Significant bins with
OR > 1 were overrepresented on chromosome 6, with OR
values ranging between 1.1 and 1.4 and bin sizes ranging
between 2 and 26 rare variants.

Notably, bin 6.I (chr6: 31,323,455–31,323,745 bp, hg19)
of 12 rare variants (MAF ≤ 0.05) was found to be significant
with a p value of 3.48 × 10−10, p′ value of 2.76 × 10−11, and
OR of 1.18 [1.12, 1.24]. This bin overlaps with the protein-
coding HLA-B, which plays a very important role in the
immune system (Fig. S17). Interestingly, a previous study
found a positive correlation between the HLA-B allele
HLA-B27 with AAMD [22]. Also, bin 6.II (chr6:
31,473,707–31,474, 883 bp) overlapped with the MICB
gene and comprised six rare variants (MAF ≤ 0.05). This bin
was found to be significantly associated with AAMD with
p value 1.71 × 10−10, p′ value of 2.08 × 10−13, and OR=
1.27 [1.19, 1.38] (Fig. S18). An example for a bin with OR
< 1 is 10.I (chr10: 124,226,492–124,249,185 bp), which
comprised 64 rare variants (MAF ≤ 0.05), was found to
be associated with AAMD with p value of 2.09 × 10−84,
p′ value of 2.96 × 10−30, and OR= 0.62 [0.59, 0.65].
Notably, this bin, with an apparently protective effect
of rare alleles overlaps with HTRA1, which has been
functionally studied in the context of AMD [23]. The
association signal was independent from multiple common
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Fig. 2 Comparative power analysis for a rare disease (prevalence
K= 0.01) and small sample size (N= 1000). Results are given for
studies with proportion of neutral rare variants (PNV)= 0.3, different
simulated window sizes (x-axis), and different proportions of

detrimental rare variants (PDV) (y-axis). Black lines: GECS; red lines:
SMA. In each grid cell, the power is presented on the y-axis and OR
intervals on the x-axis. For an overview see Table S20.
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variants found to be associated with AAMD in this gene
[24, 25]. Another noteworthy finding was bin 6.IV (chr6:
31,878,006–31,878,721 bp) with five rare variants in the C2
gene (MAF ≤ 0.05) was found to be significantly associated
with AMD with p value of 3.78 × 10−80, p′ value of 1.23 ×
10−70, and OR= 0.53 [0.50, 0.57] (Fig. S19). Our finding is
in line with the known role of some protective haplotypes in
the C2-AS1 region were found to be significantly reducing
the risk of AMD [26]. For more results, see Supplementary
Note i.

Schizophrenia

We applied GECS to the WES variant data (Table S5). The
analysis was conducted with three MAF thresholds, and the
genome-wide significance threshold in the combined study
comprised 1.87 × 10−08 (Tables 2, Figs. S21–24). Most
of the alleles identified to be significantly associated
to schizophrenia had OR < 1, so that the carrier status
appeared to be protective (Table 3, S15). For example, bins
like 15.I (chr15: 73,044,829–73,044,833 bp), 17.I (chr17:

Table 1 Empirical, sample-size dependent significance thresholds (α, with control of the FWER at 5%) for simulated genome-wide studies.

Sample size Number of
replications

SMA GECS, 3 MAFT
combined

GECS, MAFT=
0.01

GECS, MAFT=
0.03

GECS, MAFT=
0.05

1000 1000 2.95 × 10−8 7.35 × 10−10 3.61 × 10−9 1.73 × 10−9 1.60 × 10−9

5000 1000 1.86 × 10−8 3.31 × 10−10 1.26 × 10−9 8.92 × 10−10 8.49 × 10−10

10,000 1000 1.27 × 10−8 2.81 × 10−10 1.05 × 10−9 7.13 × 10−10 6.91 × 10−10

20,000 500 1.15 × 10−8 2.59 × 10−10 9.28 × 10−10 6.36 × 10−10 6.01 × 10−10
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Fig. 3 Comparative power analysis for a rare disease (prevalence
K= 0.01) and moderate sample size (N= 10,000). Results are given
for studies with proportion of neutral rare variants (PNV)= 0.3, dif-
ferent simulated window sizes (x-axis), and different proportions of

detrimental rare variants (PDV) (y-axis). Black lines: GECS; red lines:
SMA. In each grid cell, the power is presented on the y-axis and OR
intervals on the x-axis. For an overview see Table S20.
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49,239,143–49,239,143 bp), and 22.I (chr22: 17,687,954–
17,688,129 bp) overlapped with genes on chromosome 15
(ADPGK), 17 (NME1, NME2), and 22 (CERC1)
(Table S16). These genes are involved in the purine
nucleoside triphosphate biosynthetic process, which has
previously been demonstrated as to be strongly linked to the
development of schizophrenia [27]. On the other hand, bin
19.I (chr9: 8,999,386–9,028,410 bp), comprising 62 rare
SNPs (MAF ≤ 0.03), was found to be significant, with p
value 2.59 × 10−09, p′ value 3.11 × 10−10, and OR= 1.29
[1.19, 1.40], covering exonic regions of the MUC16 gene
(Fig. S25). Although some rare alleles in MUC16 were
reported in association to schizophrenia, none of the 62 rare
alleles in this bin were reported before. Moreover, genes
covered by bins 15.I, 17.I, 19.I, and 22.I were found to
have a function in the small molecule metabolic processes.
Interestingly, gene PRSS3 was covered by bin 9.I
(9: 33,796,672–33,798,630) comprising 20 rare variants
(MAF ≤ 0.05), p′ value of 3.89 × 10−11, and OR= 1.37
[1.24, 1.52]. This gene was not previously reported to be
related to schizophrenia. The relatively small sizes of the
detected significant bins in the WES data of schizophrenia
indicate that the availability of large whole-genome

sequencing studies will enable a considerable power gain
for our method (Table S17).

Discussion

While genome-wide scans with heuristically predetermined
analysis regions are an established approach, they are lim-
ited in their scope, resolution, and power by requiring a
prior choice of the analysis regions. In the context of
selection analysis, Akey fittingly compared the scan with a
hatchet and called for more refined scalpel-like approaches
[28]. We argue that in Akey’s analogy, the exhaustive scan
is an electron microscope, as it allows for base-pair-level
analysis of genomic regions, with genome-wide, non-
conservative, optimally powerful correction for multiple
testing using replicates of the data generated under the null
hypothesis.

GECS is scalable to large association studies of imputed
and sequenced variant data, as demonstrated by our simu-
lation of the null model. The efficiency of our imple-
mentation allowed us to estimate significance thresholds
for RV analysis in whole-genome sequenced data for

Table 2 Significance thresholds
(α, with control of the FWER at
5%) for the whole-genome,
imputed AAMD data set, and
the whole-exome SCZD
data set.

Data set SMA GECS, 3
MAFT combined

GECS,
MAFT= 0.01

GECS,
MAFT= 0.03

GECS,
MAFT= 0.05

AAMD 1.81 × 10−8 1.43 × 10−9 7.42 × 10−9 2.80 × 10−9 2.54 × 10−9

SCZD 8.32 × 10−7 1.87 × 10−8 4.35 × 10−8 3.59 × 10−8 2.84 × 10−8

Table 3 A selection of bins with the locally most significant association signals in AAMD and SCZD data sets, detected by GECS and verified
by SKAT.

Chr. Bin position (hg19) Gene MAFT #RVs OR [95% CI] p value p′ value

AAMD 6 31,935,392 31,937,762 DXO, SKIV2L 0.03 28 0.55 [0.52, 0.59] 6.24 × 10−76 4.74 × 10−81

6 31,878,006 31,878,721 C2 0.05 5 0.53 [0.50, 0.57] 3.78 × 10−80 1.23 × 10−70

10 124,226,492 124,249,185 HTRA1 0.05 64 0.62 [0.59, 0.65] 2.09 × 10−84 2.96 × 10−30

19 6,718,146 6,718,155 C3 0.03 2 2.98 [2.42, 3.69] 7.87 × 10−27 6.30 × 10−28

6 31,473,707 31,474,883 MICB 0.05 6 1.27 [1.19, 1.38] 1.71 × 10−10 2.08 × 10−13

6 31,323,455 31,323,745 HLA-B 0.05 12 1.18 [1.12, 1.24] 3.48 × 10−10 2.76 × 10−11

4 110,685,721 110,685,820 CFI 0.01 5 3.42 [2.34, 5.04] 2.15 × 10−11 7.03 × 10−10

6 31,373,445 31,373,957 MICA 0.05 9 1.29 [1.20, 1.39] 5.74 × 10−12 1.03 × 10−09

5 39,199,134 39,199,134 FYB 0.03 1 1.75 [1.47, 2.08] 2.40 × 10−10 1.70 × 10−10

5 39,327,884 39,327,888 C9 0.03 2 1.75 [1.48, 2.03] 4.58 × 10−12 1.28 × 10−11

SCZD 9 33,796,672 33,798,630 PRSS3 0.05 20 1.37 [1.24, 1.52] 5.07 × 10−10 3.89 × 10−11

15 73,044,829 73,044,833 ADPGK 0.03 2 0.42 [0.36, 0.52] 1.17 × 10−19 4.30 × 10−20

17 49,239,143 49,239,143 NME1.NME2 0.01 1 0.13 [0.06, 0.29] 2.72 × 10−09 5.58 × 10−11

19 8,999,386 9,028,410 MUC16 0.03 62 1.29 [1.19, 1.40] 2.59 × 10−09 3.10 × 10−10

22 17,687,954 17,688,129 CERC1 0.01 9 0.27 [0.19, 0.40] 3.79 × 10−13 6.77 × 10−14

Each bin is the most significant signal in the block of all overlapping significant bins detected by GECS. These bins are verified by SKAT, adjusted
for sex, age, ten principal components, and common variants in physical proximity, if available (p′ values). For verification with SKAT, we set the
threshold at 5 × 10−8 for AAMD and 2 × 10−6 for SCZD. See Supplementary Material for more comprehensive results.
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association studies comprising up to 20,000 individuals. As
a by-product, the analysis offered another opportunity to
study significance thresholds (FWER control at 5%) for
single-marker analysis (SMA), which, even for small sam-
ple sizes of N= 1000, was found to be stricter (α= 2.95 ×
10−8) than the commonly used threshold of α= 5.0 × 10−8.
This result is consistent with previously published results
[19, 29] and highlights the need to abandon the “agreed-
upon” significance threshold of 5.0 × 10−8, which is antic-
onservative for large-scale association studies.

The estimates of α allow us to assess the absolute power
of the region-based exhaustive scan in future whole-genome
deeply sequenced data sets. In contrast to previous studies
[9], the power study is free from the assumption that the
simulated region and the analysis region happen to coincide.
Since the exhaustive scan is guaranteed to identify the most
strongly associated regions, our FWER control accounts for
the multiple-testing “cost” of finding these regions, which
was ignored in previous studies. Overall, the power of
GECS is higher, or at least comparable with SMA for small
to moderate odds ratios of associated rare variants (1.01 ≤
OR < 3), being the OR range expected to be most com-
monly found in complex diseases. For large sample sizes
and large effect sizes, GECS, in general, offers no advan-
tage to detect association. This result reflects the expectation
that given a large sample size, enough rare alleles will be
present to detect associated variants with sufficient power in
single-variant tests [30].

We applied GECS to real-world data sets, namely of
AAMD (imputed microarray data) and of schizophrenia
(WES), and performed very stringent quality control of both
sets to avoid possible type I errors. Application of GECS to
AAMD confirmed a multitude of previously reported rare
associated SNPs, for which SMA was underpowered to pick
up many signals due to the low MAFs. We confirmed that
exhaustively scanning for association through all possible
combinations of contiguous rare variants from different
MAF thresholds alleviates the limitations posed by previous
fixed-bin strategies. The in-depth follow-up analysis
showed high enrichment of genes covered by identified bins
in pathways with key roles in the development and function
of immune system. Our approach was also successfully
applied to the schizophrenia data set, however, judging by
the limited spatial extent of the resulting bins, the approach
might be underpowered due to limited coverage of the
genome in WES studies and will probably improve with
availability of WGS data.

GECS is a powerful approach for detecting phenotypic
association of genomic regions harboring rare variants and
for refining our understanding of their contribution to pre-
disposition for complex diseases. We conclude that our
approach is well-suited for whole-genome and whole-
exome association analyses. However, GECS utilizes the

simple allele counting function of COLL to achieve perfect,
essentially base-pair-level spatial resolution. As COLL is
only able do dichotomize individuals by the carrier status,
the test is not able to distinguish between carriers of one or
more minor alleles. We alleviated the limitations of COLL
by performing follow-up analysis of candidate regions with
locally exhaustive scans using SKAT. Enabling the
exhaustive scan with more sophisticated tests that take more
sources of information into account, like allele counts and
covariates, might reveal further associated candidate
regions. The challenge of extending the exhaustive scan
approach to more complex association tests is purely
computational in nature. Our algorithm does not generalize
to other published association tests in a straightforward
manner, so that new solutions will be required to generalize
the exhaustive association scan beyond the collapsing
method.

Application of exhaustive scans is not limited to asso-
ciation testing and could be useful in further applications, in
particular for studying methylation and evolutionary selec-
tion. In fact, our preliminary results show that the exhaus-
tive scan is feasible for the study of selection when used
with SFS-based tests such as Tajima’s D (data not shown).
This is due to the fact that the computational complexity of
SFS-based tests is independent from the number of indivi-
duals in the study, since only allele count data is required.
As a consequence, the quadratic space of all contingent
regions can be computed by brute force, even for very large
data sets. Moreover, modern, efficient coalescent simulators
such as msprime [31] and fastsimcoal2 [32] can be used to
simulate the null model under neutral evolution under rea-
listic demographic histories [33], which can be used for
FWER-controlled p values.

In summary, we developed a method that allows for an
exhaustive scan of all possible contiguous genomic regions
with the collapsing test and eliminates the choice of can-
didate bins. Instead, the space of all possible bins is tested.
This eliminates binning as a source of type II error and is
expected to improve power. Furthermore, the speed-up by
several orders of magnitude allows for computation of
nonconservative genome-wide significance thresholds by
permutation, leading to improved power when compared
with conservative correction methods such as Bonferroni’s.
We show that GECS indeed improves statistical power in
both simulated and empirical data sets.

Data availability

The software is written in C++ and is available at https://
github.com/ddrichel/GECS.
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