
Vol.:(0123456789)1 3

Theoretical and Applied Genetics         (2023) 136:229  
https://doi.org/10.1007/s00122-023-04450-7

ORIGINAL ARTICLE

Genetic control and prospects of predictive breeding for European 
winter wheat’s Zeleny sedimentation values and Hagberg‑Perten 
falling number

Quddoos H. Muqaddasi1,7   · Roop Kamal Muqaddasi2   · Erhard Ebmeyer3 · Viktor Korzun4 · Odile Argillier5 · 
Vilson Mirdita1 · Jochen C. Reif2 · Martin W. Ganal6 · Marion S. Röder2 

Received: 24 March 2023 / Accepted: 16 August 2023 
© The Author(s) 2023

Abstract
Key message  Sedimentation values and falling number in the last decades have helped maintain high baking quality 
despite rigorous selection for grain yield in wheat. Allelic combinations of major loci sustained the bread-making 
quality while improving grain yield. Glu-D1, Pinb-D1, and non-gluten proteins are associated with sedimentation 
values and falling number in European wheat.
Abstract  Zeleny sedimentation values (ZSV) and Hagberg-Perten falling number (HFN) are among the most important 
parameters that help determine the baking quality classes of wheat and, thus, influence the monetary benefits for growers. 
We used a published data set of 372 European wheat varieties evaluated in replicated field trials in multiple environments. 
ZSV and HFN traits hold a wide and significant genotypic variation and high broad-sense heritability. The genetic cor-
relations revealed positive and significant associations of ZSV and HFN with each other, grain protein content (GPC) and 
grain hardness; however, they were all significantly negatively correlated with grain yield. Besides, GPC appeared to be the 
major predictor for ZSV and HFN. Our genome-wide association analyses based on high-quality SSR, SNP, and candidate 
gene markers revealed a strong quantitative genetic nature of ZSV and HFN by explaining their total genotypic variance as 
41.49% and 38.06%, respectively. The association of known Glutenin (Glu-1) and Puroindoline (Pin-1) with ZSV provided 
positive analytic proof of our studies. We report novel candidate loci associated with globulins and albumins—the non-gluten 
monomeric proteins in wheat. In addition, predictive breeding analyses for ZSV and HFN suggest using genomic selection 
in the early stages of breeding programs with an average prediction accuracy of 81 and 59%, respectively.

Introduction

Wheat producers and downstream value chains place a high 
premium on grain’s baking quality because it affects the 
end-user value and yields high monetary profits. Baking 
quality, therefore, becomes an important selection criterion 
in wheat breeding programs across the globe. In Germany, 
wheat varieties are released according to different quality 
classes, and several traits form the basis for determining a 
given class (Sortenliste 2021). Zeleny sedimentation values 
(ZSV) and Hagberg-Perten falling number (HFN) are among 
the most important parameters that help determine the qual-
ity class of a given wheat line. During registration trials, 
the lines are evaluated at two management intensity levels, 
i.e., without (level-1) and with (level-2) the application of 
plant growth regulators and fungicides. At level-1, measure-
ments are conducted mainly for the agronomic and disease 
traits. On the other hand, data gathered at level-2 primarily 
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form the basis for describing quality characteristics. Grain 
yield (GY) is measured at both intensity levels (Sortenliste 
2021). It is known that nitrogen fertilizers strongly impact 
both grain yield and quality in wheat. However, given the 
Nitrates Directive (91/676/EEC)—a core legislation to 
reduce agriculture-based nitrate emissions into water bod-
ies in the European Union—German Fertilizer Ordinance 
(Düngeverordnung) regulates nitrogen and phosphorous 
emissions into water bodies (Justiz 2017). Thus, the limited 
application of organic and inorganic fertilizers to reduce the 
risks of nutrient emissions warrant the exploitation of genet-
ics and breeding approaches to enhance the genetic gain for 
grain quality traits for climate-smart agricultural practices. 
Wheat grain quality is primarily determined by its texture, 
protein content, and quality. Historically, wheat proteins are 
divided into four major fractions: glutenin, gliadin, globu-
lins, and albumins (Osborne 1907). Glutenin and gliadin 
together form “gluten”—the largest natural macropolymer 
in wheat that affects wheat dough’s viscoelastic properties 
and the appearance and structure of flour-based products 
(Lukow et al. 1989; Payne 1987). Globulins and albumins, 
on the other hand, form the “non-gluten” fraction of wheat 
proteins, and, although present in minor fraction, their ratio 
and quality were reported to affect dough quality and flour 
processing (Gupta et al. 1992; Pence et al. 1954; Zhang et al. 
2021).

The Zeleny sedimentation test determines the wheat glu-
ten content and quality whereby the flour is mixed in a lactic 
acid solution that causes the gluten to expand and sediment. 
Larger ZSV (slower sedimentation) represents high gluten 
content, strength, and quality—a means for predicting the 
bread-making quality of flour (Zeleny 1962). Major high-
molecular-weight (HMW) glutenin (Glu-1) loci, i.e., Glu-
A1, -B1, and -D1, are present on the long arm of group-1 
wheat chromosomes (Payne and Lawrence 1983). The low 
molecular weight (LMW) glutenin loci (Glu-3), on the 
other hand, are Glu-A3, -B3, and -D3 that are present on the 
short arm of group-1 homoeologous chromosomes (Singh 
and Shepherd 1988). The Glu-3 loci, consisting of several 
alleles, were reported to be linked with gliadin (Gli-1; Gli-
A1, -B1, and -D1) loci (Brown and Flavell 1981). Variations 
in the haplotypes of gluten loci yield varying gluten content 
and qualities, consequently determining the overall grain 
quality. Würschum et al. (2016) recently reported gluten 
loci’s association with sedimentation values. From the major 
known loci, the puroindoline (Pin-1) genes—present at the 
Hardness locus—which mainly affects the grain texture 
(Morris 2002), were also associated with ZSV (Kristensen 
et al. 2018; Mohler et al. 2012; Würschum et al. 2016). In 
addition to Glu and Pin loci, peroxidases (PODs)—that are 
widely distributed in cereals—have also been associated 
with improved rheological properties of flour doughs, loaf 

volume, crumb structure, and overall bread making (Geng 
et al. 2019; van Oort et al. 2000; Zhou et al. 2021).

Hagberg-Perten falling number test indicates starch 
degrading enzyme α-amylase’s activity in wheat flour 
(Perten 1964). Higher α-amylase activity quickly breaks 
down the grain starch particles into glucose and maltose 
reducing the viscosity of the slurry (mix of wheat flour 
in distilled water). Consequently, a viscometer (stirrer or 
plunger) falls rapidly (time measured in seconds) through 
lesser viscous slurry which results in a lower HFN (shorter 
time). However, if the starch particles are intact, the vis-
cometer falls slowly through the thick slurry resulting in 
high HFN. Low HFN (high α-amylase activity) is associ-
ated with pre-harvest spouting that imposes a significant 
negative impact on the grain quality resulting in flour that 
produces sticky and weaker doughs as well as smaller and 
deformed bread loaves.

Most grain quality traits harbor quantitative genetic con-
trol, i.e., their total genetic variance is controlled by the con-
certed action of large- as well as small-effect loci. In such 
a scenario, prediction of the total genetic value based on a 
large number of marker genotypes conferring both large and 
small effects on the trait becomes a method-of-choice (Meu-
wissen et al. 2001). Wheat grain quality traits, e.g., ZSV, 
HFN, flour water retention, and flour yield, are usually eval-
uated at the later stages of the breeding programs because, 
on the one hand, the kernel availability is usually scarce in 
earlier generations, and, on the other hand, most analyses 
are usually time- and cost-intensive and, thus, analyzing a 
large number of candidates becomes a virtual impossibility. 
Hence, quality data are gathered at the later breeding stages 
on the lines that show promising agronomic trait values and 
good disease resistance packages. Genome-wide prediction, 
by using phenotypic data collected at later stages on a rela-
tively larger set of environments as a “training set,” can help 
select the promising lines for quality traits in early breeding 
cycles by predicting their genetic values. In addition, in line 
and hybrid breeding programs, genome-wide prediction of 
traits can help design the parental crosses with better genetic 
gain. Recent studies have shown the promise of genome-
wide prediction of quality traits for genomic selection (Kris-
tensen et al. 2018; Liu et al. 2016; Muqaddasi et al. 2020; 
Sandhu et al. 2021).

Gogna et al (2022) published several agronomic, dis-
ease, and quality traits’ phenotypic and genotypic data in 
the GABI panel of 372 registered European wheat varieties. 
In this study, we took advantage of the published data on 
ZSV and HFN plus further traits and analyzed them in more 
detail. We show the relationships and genetic trends of grain 
quality traits, especially with grain yield (GY). Moreover, 
the value of glutenin, puroindoline, and plant height loci 
is illustrated via constructing haplotypes to breed for sus-
tainable or better GY. Our association analyses revealed the 
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quantitative genetic nature of ZSV and HFN and identified 
known and novel putative loci annotated as globulins, albu-
mins, and peroxide. These genes affect the quality profiles 
of wheat grain. We also performed genome-wide predictions 
for ZSV and HFN to evaluate the prospects of predictive 
breeding: the results point to a promising use of genomic 
selection for these traits to increase the genetic gain per unit 
of time and perhaps cost.

Material and methods

The phenotypic and genomic datasets used in this study were 
previously published (Gogna et al. 2022). Therefore, in the 
following, we have limited ourselves to introducing only the 
essential information on phenotyping and genotyping.

Field trials and phenotypic data collection

A European wheat panel (GABI) comprising 372 varieties 
(358 winter type; 14 spring type) was evaluated for two 
major grain quality traits viz. Zeleny sedimentation values 
(ZSV; ml) and Hagberg-Perten falling number (HFN; s). The 
phenotypic data of these two traits were gathered from eight 
and four environments, respectively. Each environment was 
considered as a location-by-year combination. The field tri-
als were conducted using an alpha lattice design with two 
replications per environment. We did not observe condi-
tions conducive to pre-harvest sprouting (e.g., heterogene-
ous plots, uneven ripening, and lodging) that can strongly 
influence HFN. A major reason is that data were gathered by 
keeping in view the German registration authority’s (Bun-
dessortenamt) practices to obtain quality traits’ data from 
field trials where standard crop protection and plant growth 
regulator applications (intensity level-2) are executed: this 
reduces lodging and consequently impacts quality profiles, 
including HFN. A further detailed description of field tri-
als, agronomic practices, climatic conditions, and calcula-
tion of the adjusted entry means per environment was given 
previously (Gogna et al. 2022; Zanke et al. 2014). Briefly, 
the phenotypic measurements for ZSV and HFN were car-
ried out by the collaborating seed companies KWS Lochow 
GmbH and Syngenta Seeds GmbH by using sample volumes 
of 400 g grains per harvested field plot based on methods 
described by the International Association for Cereal Sci-
ence and Technology (ICC) standard number 116/1 and 
107/1, respectively.

Phenotypic data analyses

The consistency or stability among the environments for 
both traits was investigated by drawing environment-spe-
cific adjusted entry mean values as box-and-whisker plots. 

To check the general performance of a given trait across 
environments, we calculated the average correlation by per-
forming Fisher’s z transformation, as described previously 
(Muqaddasi et al. 2020). Across-environment individual 
variance components of the genotype, environment, and cor-
responding residuals were computed based on a restricted 
maximum likelihood (REML) approach by employing a 
random model:

where yij is the phenotypic value (adjusted entry mean) of 
the ith genotype in the jth environment, � is the common 
intercept term, gi is the effect of the ith genotype, ej is the 
effect of the jth environment, and �ij is the corresponding 
residual term as � ∼ N

(
0, I�2

�

)
 with I and �2

�
 being the iden-

tity matrix and residual variance, respectively. The broad-
sense heritability ( H2 ) across environments was calculated 
as follows:

where �2
g
 and �2

�
 denote the variance components of the 

genotype and residuals, respectively, and nE represents the 
number of environments. The best linear unbiased estima-
tions (BLUEs) were computed accordingly by setting the 
genotype as the fixed effect and all other effects as random 
in Eq. 1.

Correlations, genetic trend, and determination 
of best‑fit path analysis model

Since grain protein content (GPC; %), grain hardness (GH; 
%), and grain yield (GY; dt ha−1) are considered during the 
variety registration trials, we retrieved their phenotypic data 
(i.e., genotypic values or BLUEs) from a previously con-
ducted study based on multiple environments (Muqaddasi 
et al. 2020). We calculated the genetic correlations among 
all five traits based on their across-environments BLUEs, as 
described previously (Muqaddasi et al. 2020).

To test the genetic trend or progress (δ) , we performed 
linear regression based on BLUEs calculated from Eq. 1 
and the year-of-registration of only winter wheat varieties 
(n = 325) covering three decades starting from the year 1980 
as δ = b∕y0 , where b and y0 denote the regression slope and 
the mean of varieties released in 1980, respectively. In addi-
tion, we highlighted Rht-D1 alleles (i.e., tall, and short) in 
scatterplots to show their distribution across the years of 
registration.

Path analysis—an extension of multiple regression—
allows determining the best-fit hypothesis to explain the 
relationships between the dependent and independent traits 

(1)yij = � + gi + ej + �ij

(2)H2 =
�2
g

�2
g
+
(

�2
�

nE

)
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by comparing different models (Streiner 2005). We set GY, 
ZSV, and HFN as dependent traits and examined two differ-
ent models as follows:

In model 1 (Eq. 3), all the possible relationships among 
the investigated traits were exploited. For example, GY was 
predicted by GPC, GH, ZSV, and HFN; ZSV by GPC, GH, 
and HFN; and HFN by GPC and GH. The indices, namely 
χ2 test, comparative fit index (CFI), Tucker–Lewis’ index 
(TLI), and standard root mean square residual (SRMR) 
were used to analyze the goodness of fit of the model as χ2 
(P) > 0.05 , CFI ≥ 0.90, TLI ≥ 0.95, and SRMR ≤ 0.08 (Suhr 
2008). In model 1, some trait relationships were observed to 
be non-significant which led us to develop model 2 (Eq. 4), 
in which only significant relationships from model 1 were 
fitted.

To calculate the effect of the independent traits on the 
dependent, let p be the path from one trait to another and T 
be the trait number. In the first step of model 2 (Eq. 4), GY 
was only affected by GPC; therefore, the direct (or total) 
effect for GY was calculated as GYT5 ∼ GPC[p51T1]

 ; whereas, 
ZSV and HFN were predicted by both GPC and GH. Based 
on the best-fit indices, model 2 was selected to calculate the 
effects of each independent trait on the dependent traits (for 
more details, see the Results section).

Genotyping and molecular data analyses

The whole wheat panel (n = 372) was first genotyped with 
732 simple sequence repeat (SSR) markers that resulted in 
scorable 770 loci and 3176 alleles (Kollers et al. 2013). In 
addition, two state-of-the-art high-density single nucleotide 
polymorphic (SNP) marker arrays, namely, 90,000 Illumina 
iSelect (Wang et al. 2014) and 35,000 Axiom Affymetrix 
Breeders Array (Allen et al. 2017) were employed. The 
genetic (cM) for SSRs were retrieved from Sorrells et al. 
(2011) while the physical positions (bp) for SNP arrays were 
retrieved from Sun et al. (2020).

Since high-molecular-weight glutenin subunits (HMW-
GS; Glu-1) and grain hardness puroindoline (Pin-1) genes 
are reported to have a significant impact on wheat end-use 
quality, we sequenced the whole panel to observe their 
allelic frequency and impact in European wheat. Each 

(3)Model 1 ∶

⎧
⎪⎨⎪⎩

GYT5 ∼ GPCT1
+ GHT2

+ ZSVT3
+ HFNT4

ZSVT3
∼ GPCT1

+ GHT2
+ HFNT4

HFNT4
∼ GPCT1

+ GHT2

(4)Model 2 ∶

⎧
⎪⎨⎪⎩

GYT5 ∼ GPCT1

ZSVT3
∼ GPCT1

+ GHT2

HFNT4
∼ GPCT1

+ GHT2

Glu-1 locus on chromosomes 1AL (Glu-A1), 1BL (Glu-
B1), and 1DL (Glu-D1) consists of two tightly linked genes 
encoding x- and y-type HMW-GS. PCR-based candidate/
functional markers were applied to distinguish the wheat 
varieties for null-, x-, and y-type glutenin subunits. For Glu-
A1, as described in Liu et al. (2008), the functional marker 
UMN19 was used to distinguish between Ax-null and Ax2* 
subunits. For Glu-B1, two markers were used: one distin-
guished between Bx6 and Bx7 or Bx17 subunits (Schwarz 
et al. 2004), and the second distinguished between Bx7NE 
(normally expressed) and Bx7OE (overexpressed) subunits 
(Butow et al. 2003). For Glu-D1, UMN25 and UNM26 
functional markers helped discriminate Dx2 + Dy12 and 
Dx5 + Dy10 subunits (Liu et al. 2008).

For Pin-1 loci, i.e., Pina-D1 and Pinb-D1, pyrosequenc-
ing technology was employed to genotype the whole panel 
for the frequently present alleles in European wheat, viz., 
Pina-D1a, Pina-D1b, Pinb-D1a, Pinb-D1b, Pinb-D1c, 
and Pinb-D1d. The details about pyrosequencing were 
given previously by Huang and Röder (2005). As Morris 
(2002) described, the presence to both Pin wild type alleles, 
i.e., Pina-D1a and Pinb-D1a, leads to soft endosperm tex-
ture, whereas loss-of-function mutations in any of the two 
loci lead to wheats with hard endosperm. We divided the 
whole panel based on soft and hard wheats as boxplots and 
analyzed the difference between the means of both catego-
ries via Welch’s two-sided t-test by assuming unequal vari-
ances at the confidence interval of 0.95.

Introduction of reduced height (Rht) genes resulted in 
significant improvement in GY in wheat (Hedden 2003) 
and, given the negative relationship between GY and qual-
ity traits, the whole panel was genotyped with Rht-D1 to 
observe its allelic effect on GY and grain quality traits 
(Muqaddasi et al. 2017).

For all candidate markers (i.e., Glu-D1, Rht-D1, and Pin-
1), boxplots were drawn for the complete set of varieties 
(BLUEs) and those harboring reference and variant alleles. 
We used Welch’s two-sided t-test to observe if there existed 
significant differences between the means of varieties har-
boring different alleles.

Genome‑wide association studies and candidate 
gene identification

We performed genome-wide association studies (GWAS) 
based on the BLUEs calculated across environments and 
molecular markers that passed the quality criteria of < 5% 
missing values and > 5% minor allele frequency. We com-
bined the SSRs, SNP arrays, and functional-gene markers for 
the molecular markers set. Following Yu et al. (2006), a 
standard linear mixed-effect model was used to perform 
GWAS as:
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where y is the column vector of BLUEs of each genotype 
calculated across environments, � is the common intercept, 
�, v, u and � are the vectors of marker, population struc-
ture (principal components), polygenic background, and 
residual error effects, respectively; X, P and Z are the cor-
responding design matrices. �, �, �, and v were assumed to 
be fixed while u and � as random with u ∼ N

(
0,G�2

u

)
 and 

� ∼ N
(
0, I�2

�

)
 . The variance-covariance genomic relation-

ship matrix (G) was calculated based on the second solution, 
as described by VanRaden (2008).

To declare the marker-trait associations (MTA), we 
employed the Bonferroni correction (α) criterion to account 
for multiple testing as α = − log10

(
0.1

p

)
 where p is the num-

ber of quality markers used in the GWAS. Since Bonferro-
ni’s correction amounted to − log10 (P) = 5.34 , we used an 
exploratory threshold of − log10 (P) = 3.5 to identify the 
MTA. As described by Utz et al. (2000), the genotypic vari-
ance ( pG ) explained by all the QTL was determined as 

pG =

(
R2
adj

H2

)
× 100 where R2

adj
 was calculated as 

R2
adj

= R2 −
(

z�

N−z�−1

)(
1 − R2

)
 by fitting the MTA 

(
z′
)
 in the 

order of their descending P values in a multiple linear 
regression model; R2, N and H2 denote the regression coef-
ficient, number of observations, and the broad-sense herit-
ability calculated in Eq. 2. The pG explained by the indi-
vidual MTA was accordingly calculated from their sum of 
squares.

The genetic gain per unit time and cost become co-exten-
sive with the genotypic variance explained by the trait-asso-
ciated markers. For example, if the quantitative trait loci 
(QTL) underlying a given trait explain a small proportion 
of genotypic variance, marker-assisted selection for these 
QTL becomes cost and time intensive. Hence, we selected 
the markers that explained pG of  ≥  ~ 10% and designated as 
the QTL for the respective trait. We considered the markers 
with the highest −log10(P) value and pG from each QTL 
as “representative markers” for that QTL. The QTL were 
named based on accepted QTL naming conventions in 
wheat literature (Boden et al. 2023). The sequences har-
boring each SNP (MTA) were taken from the genotyping 
arrays and BLASTed onto the wheat’s reference sequence to 
determine their corresponding gene identifiers and human-
readable descriptions. Also, the gene-start, -stop, and the 
SNP position (bp) were retrieved from Sun et al. (2020).

Genome‑wide predictions

We evaluated the genome-wide prediction (GP) accura-
cies of ZSV and HFN by using five genomic selection (GS) 

(5)y = 1� + X� + Pv + Zu + � models with different marker variance assumptions. The 
GS models were genomic best linear unbiased prediction 
(GBLUP), BayesA, BayesB, BayesC, and reproducing kernel 
Hilbert space regression (RKHSR) (Gianola and Van Kaam 
2008; Habier et al. 2007; Meuwissen et al. 2001; Pérez and 
Los Campos 2014; VanRaden 2008). The implementation of 
GBLUP and RKHSR on the same panel has been reported 
previously (Muqaddasi et al. 2019). For Bayesian imple-
mentation (BayesA–C), we followed Pérez and Los Campos 
2014 and implemented the same prior densities and default 
hyperparameters mentioned in the BGLR package.

We evaluated the accuracy 
(
rGP

)
 of all prediction mod-

els by using a fivefold cross-validation scenario. The varie-
ties were randomly divided into five subsets: four of them 
were used as the training set to estimate the genetic values 
of the remaining test set. The accuracy of prediction was 
defined as Pearson’s product-moment correlation between 
the observed (y) and predicted 

(
ŷ
)
 genetic values standard-

ized by the square root of the broad-sense heritability, as 
rGP =

cor(y,̂y)
H

 . Since the cross-validation runs were repeated 
for 50 cycles, the mean and standard deviation values were 
calculated to show the performance of the individual GS 
model. Unless stated otherwise, all calculations were per-
formed in software R (Team 2013) mainly by using packages 
lme4 (Bates et al. 2015), lavaan (Rosseel 2012), and rrBLUP 
(Endelman 2011).

Results

Phenotypic data analyses reveal consistent 
performance, significant genotypic variation, 
and stable genetic trend for sedimentation values 
and falling number

Grain quality traits, viz. Zeleny sedimentation values (ZSV) 
and Hagberg-Perten falling number (HFN) were assessed 
on a panel of 372 wheat varieties registered in European 
markets (Table S1). The field trials to collect data were per-
formed in replicated trials in eight and four environments, 
respectively. Boxplots based on adjusted entry means drawn 
for individual environments showed consistent performance 
of both traits yielding positive average Pearson’s product-
moment correlation (r(ZSV) = 0.78;r(HFN) = 0.44) across all 
the environments (Fig. S1a,b). Grain protein content (GPC) 
and grain hardness (GH) are high-throughput traits that can 
be relatively easily scored non-destructively (e.g., via near-
infrared reflectance; NIR) especially in an early generation 
where the kernel availability is usually scarce. We retrieved 
the genotypic values (BLUEs) for all 372 varieties from a 
previous study to evaluate if there existed any genetic corre-
lation and trend. Grain yield (GY) is the principal parameter 
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to select in breeding programs. Like GPC and GH, we 
retrieved the GY genotypic values calculated based on eight 
environments from a previous study to find its association 
with quality traits (Muqaddasi et al. 2020).

Our across years individual variance component analy-
ses revealed wide genotypic variation that was significantly 
(P < 0.001) larger than zero for both ZSV and HFN, with 
their BLUEs approximating normal distribution (Table 1; 
Fig. 1a–e). Despite a significant environmental variance, the 
large genotypic variance translated into high broad-sense 
heritability estimates of 0.96 and 0.74 for ZSV and HFN, 
respectively (Table 1). Large genotypic variance coupled 
with high broad-sense heritability estimates point to, on one 
hand, a high selection advantage; and, on the other hand, a 

reasonable underlying allelic diversity that should favor reli-
able downstream analyses to evaluate promises of genomic 
approaches.

Our regression analyses to evaluate the effect of year-
of-registration on varieties revealed noteworthy results 
(Fig. 2a–e). For example, the genetic trend for GPC signifi-
cantly (P < 0.001) decreased by 0.17% per annum (Fig. 2c) 
whereas GY significantly (P < 0.001) increased (0.36%; 
0.321 dt ha−1y−1; Fig.  2e). Statistically non-significant 
(P > 0.05) genetic trends were observed for ZSV, HFN, and 
GH (Fig. 2a,b,d). In addition to the regression on the abso-
lute trait-BLUEs, we performed the regression on the ratio 
calculated from ZSV and GPC: these values are indicative of 
the protein (gluten) quality and content simultaneously. For 

Fig. 1   Phenotypic distribution and correlation of the investigated 
traits in a panel of 372 European wheat varieties. Distribution of 
(a) Zeleny sedimentation value (ZSV), (b) Hagberg-Perten falling 
number (HFN), (c) grain protein content (GPC), (d) grain hardness 

(GH), and (e) grain yield (GY); (f) Pearson’s product-moment cor-
relation (r) among the investigated traits where *** and ** denote 
the significance of respective correlation at probability (P) of < 0.001 
and < 0.01, respectively

Table 1   Summary statistics of the Zeleny sedimentation values (ZSV) and Hagberg-Perten falling number (HFN) in European wheat varieties

Env. = number of environments in which the corresponding trait was investigated, �2

G
 = genotypic variance, �2

E
 = environmental variance, �2

�
 = 

residual variance, α = significant at the probability (P) level of 0.001, H2 = broad-sense heritability

Trait Minimum Mean Maximum Env �2

G
�2

E
�2

�
H2

ZSV 26.27 45.73 63.83 8 67.68 α 58.19 α 21.01 0.96
HFN 153.93 332.82 432.13 4 1884 α 2267 α 2601 0.74
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ZSV/GPC ratio—in contrast to GPC where a negative selec-
tion trend was observed—we observed a positive although 
non-significant genetic trend (Fig. 2e). This suggests that 
albeit the protein content has decreased, the breeders were 
able to develop varieties with good protein quality that con-
sistently met baking requirements during registration trials.

Correlation and path analysis uncover genetic 
relationships among quality traits and grain yield

The genetic correlation among all five investigated traits 
based on their BLUEs revealed that all quality traits, viz. 

ZSV, HFN, GPC, and GH showed a negative correlation 
with GY. The most pronounced significant negative (− 0.76, 
P < 0.001) correlation was observed between GPC and GY 
(Fig. 1f). Among the grain quality traits, ZSV showed a 
higher negative and significant correlation with GPC and 
GH in comparison with HFN (Fig. 1f). HFN showed sig-
nificant but lower correlations with all quality as well as 
GY—this points to a possible different genetic underpinning 
of ZSV and HFN. Besides, we observed genetic associations 
among the traits by regressing the quality trait BLUEs on 
GY: this also showed that (1) the most variance in GY is 

Fig. 2   Scatterplot of (a) Zeleny sedimentation value (ZSV), (b) Hag-
berg-Perten falling number, (c) grain protein content (GPC), (d) grain 
hardness, (e) grain yield, and (f) ratio of ZSV/GPC as a function of 
year-of-registration of 325 European winter wheat varieties covering 
three decades (1980–2009). Regression estimations, coefficient of 

determination (R2), significance (P) values, and increase per annum 
(δ) for traits are given in each sub-figure. Black and red dots represent 
the Rht-D1a and -D1b alleles, respectively, while the gray solid line 
represents the linear regression line
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explained by GPC (R2 = 0.57) followed by ZSV (R2 = 0.26), 
and (2) there, nevertheless, exist varieties with above aver-
age values for each combination (Fig. S2a–d).

Our path analysis revealed underlying genetic relation-
ships among the grain quality parameters and grain yield 
(Table S2, Fig. 3) with the most pronounced negative effect 
of GPC on GY, i.e., every unit increase in GPC resulted 
in 6.82 units decrease in GY (Fig. 3). In contrast to GY, 
GPC showed a direct positive effect on ZSV and HFN, i.e., 
every unit increase in the GPC increased the ZSV and HFN 
by 6.78 and 14.6 units, respectively. GH displayed positive 
effects on ZSV and HFN but with overall lower values than 
GPC. Interestingly, ZSV, HFN, and GH did not significantly 
affect GY. Interaction between ZSV and HFN was also non-
significant (Table S2). These results further cement (1) the 
possibility of different genetic architecture and interaction 
of ZSV and HFN, especially concerning GPC, GH, and GY 
(Fig. 3), and (2) the interpretation of the above-mentioned 
genetic trend analyses where although the GY increased, 
except GPC, none of the other quality traits significantly 
changed.

GWAS identifies large‑effect loci and putative 
candidate genes for sedimentation values 
and falling number

We elucidated the genetic control of ZSV and HFN based 
on 372 wheat varieties and genomic markers (Fig. 4). For 
ZSV, in total, we identified 59 marker-trait associations 
(MTA) representing four QTL, viz., QZsv.ipk-1A, QZsv.ipk-
1B, QZsv.ipk-1D, and QZsv.ipk-5D (Tables 2, S3, Figs. 4, 
S3–S7). However, only seven MTA were identified for HFN, 
each on separate chromosomes, which signified two QTL 
with ≥ 10% of genotypic variance as QHfn.ipk-1A and QHfn.
ipk-5B (Tables 2, S3, Figs. 4, S8, S9). Each QTL from ZSV 
and HFN was represented by the most significant MTA, 
explaining the largest genotypic variance. The total geno-
typic variance explained by all the MTA for ZSV and HFN 
amounted to 41.49% and 38.06%, respectively.

The MTA BLASTed onto the wheat reference sequence 
resulted in identifying high-confidence genes. The func-
tional annotations (human-readable descriptions) yielded 
highly plausible candidate genes. For example, a SNP AX-
95236907 representing the ZSV-QTL QZsv.ipk-1A corre-
sponded to the gene TraesCS1A02G317900 with functional 
annotation of Peroxidase—an enzyme that is known to influ-
ence the wheat quality (Table S3, Fig. S3). For QZsv.ipk-1D, 

Fig. 3   Path diagram elucidating all possible relationships among the 
investigated traits, viz. Zeleny sedimentation value (ZSV), Hagberg-
Perten falling number (HFN), grain protein content (GPC), grain 
hardness (GH), and grain yield (GY). Single-headed and dashed 
double-headed curved arrows indicate a trait’s direct effect on another 

and covariance between the GPC and GH, respectively. The numbers 
on the single-headed arrows denote the path-coefficients as positive 
and negative effect of one trait on another. T1–T5 and ns denote the 
trait numbers and non-significant relationships, respectively
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the functional marker for the glutenin gene Glu-D1 (UMN25 
and UMN26) that distinguished between Dx5 + DY10 and 
Dx2 + Dy12 subunits was significantly associated with the 
ZSV and explained 25.56% of the genotypic variance (Fig. 
S5). The QTL QZsv.ipk-1D was also represented by the 
marker BS00022768_51 (gene ID: TraesCS1D02G317300) 
that explained 26.05% of the genotypic variance with func-
tional annotation of globulin—a non-gluten wheat protein 
that is associated with wheat quality (Table S3, Fig. S6). 
QZsv.ipk-5D, represented by BS00000020_51 (TraesC-
S5D02G004300), explained 11.39% of the genotypic vari-
ance and corresponded to Puroindoline-b (Pinb-D1)—a 
known gene at the Hardness locus responsible for control-
ling wheat grain texture (Morris 2002). For HFN, SNP AX-
94430348 (TraesCS1A02G200400) representing the QHfn.
ipk-1A explained 12.74% of the genotypic variance and 

corresponded to Albumin-2 protein—another non-gluten 
protein in wheat’s endosperm (Tables 2, S3, Figs. 4,S8).

Impact of Glu‑1, Rht‑D1, and Pin‑1 loci on wheat 
quality traits and grain yield

The entire wheat panel was genotyped for major loci asso-
ciated with grain quality and yield (Glu-1, Pin-1, and Rht-
D1; Table S1, Fig. 5a–e), and several most abundant haplo-
types were studied (Fig. 6).

For Glu-A1, we used the functional marker UMN19, 
which separated wheat varieties based on the presence of 
Ax-null (90.24%) and Ax2* (10.56%) subunits. Welch’s two-
sided t-test revealed that the presence of Ax-null was asso-
ciated with significantly (P < 0.05) higher values for HFN 

Fig. 4   Summary of genome-wide association studies (GWAS) of 
Zeleny sedimentation values and Hagberg-Perten falling number in 
a panel of European wheat varieties. (a) Manhattan plots show the 
distribution of marker loci’s significance −log

10
(P − value) along 21 

wheat chromosomes. The dashed gray line indicates the significance 
threshold based on Bonferroni correction, while red continuous lines 

represent an exploratory significance threshold. Red dots represent 
the main-effect QTL’s representative markers for the respective traits. 
(b) Quantile-quantile plots show the distribution of observed versus 
expected (red dashed line) −log

10
(P − value) . n and p denote the 

number of varieties and the quality markers used in the GWAS analy-
ses

Table 2   Quantitative trait loci 
(QTL) associated with Zeleny 
sedimentation value (ZSV) and 
Hagberg-Perten falling number 
(HFN) in European wheat 
varieties

Chr. = chromosome, Pos. = Mbp position of the corresponding markers, |log
10
(P)| = significance value of 

the corresponding marker, pG = percentage of genotypic variance (adjusted R2)

QTL Representative marker Chr Pos |log
10
(P)| pG

QZsv.ipk-1A AX-95236907 1A 509.0 5.27 26.14
QZsv.ipk-1B AX-95017670 1B 555.3 5.37 26.35
QZsv.ipk-1D Glu-D1 (UMN25 & UMN26) 1D – 5.42 25.56

BS00022768_51 1D 412.2 5.19 26.05
QZsv.ipk-5D BS00000020_51 5D 3.6 5.63 11.39
QHfn.ipk-1A AX-94430348 1A 360.5 3.70 12.74
QHfn.ipk-5B wsnp_Ku_rep_c71565_71299640 5B 618.1 3.70 9.38
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Fig. 5   Boxplots showing the 
allele-wise effect of major loci 
on (a) Zeleny sedimentation 
value, (b) Hagberg-Perten fall-
ing number, (c) grain protein 
content, (d) grain hardness, and 
(e) grain yield. The header and 
x-axis represent the gene names 
and corresponding alleles 
(subunits), respectively. The 
first boxplot shows the distribu-
tion of best linear unbiased esti-
mations (BLUEs) of each trait. 
n denote the number of varieties 
in which the corresponding 
allele was observed. ***, **, 
*, and – denote the significance 
values of Welch's two-sided 
t-test at probability (P) values of 
< 0.001, < 0.01, < 0.05, and > 
0.05 , respectively
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and GY (Fig. 5b,e); however, for ZSV, GPC, and GH, no 
significant differences existed (Fig. 5a,c,d).

Glu-B1, genotyped with two functional markers that 
distinguished between (1) Bx6 and Bx7 or Bx17, and (2) 
Bx7NE and Bx7OE subunits, revealed their frequencies as 
29.91, 70.08, 93.82, and 6.18%, respectively. For the first 
marker, the presence of Bx7 or Bx17 subunit was associated 
with significantly higher values for ZSV and GH; however, 
the effect was negative for GY where the varieties harbor-
ing Bx7 or Bx17 subunit was associated with decreased 
(P < 0.05) values (Fig. 5e). For HFN and GPC, the difference 
between the means of varieties harboring these two subunits 
was non-significant (Fig. 5b,c). The difference between the 
means of varieties harboring Bx7NE and Bx7OE subunits was 
not significant for HFN, GPC, and GY (Fig. 5b,c,e); how-
ever, the presence of Bx7OE was associated with significantly 
higher values for ZSV and GH (Fig. 5a,d).

Glu-D1—genotyped with the functional markers UMN25 
and UMN26—was used to differentiate varieties harboring 
Dx2 + Dy12 and Dx5 + Dy10 subunits that were present at 
the frequencies of 46.26 and 53.74%, respectively. Glu-D1 
was observed as one of the most revealing loci: the  presence 
of different subunits showed a highly significant impact on 
all quality traits as well as GY. For example, the presence 
of Dx5 + Dy10 subunits, which are known to impact quality 
traits positively, was associated with significantly (P < 0.001) 
higher values for all quality traits while (Fig. 5a–d). How-
ever—as could be deduced from the negative relationship 
between grain quality and GY—Dx5 + Dy10, in compari-
son with Dx2 + Dy12, was associated with significantly 
(P < 0.001) lower values for GY (Fig. 5e). The frequencies of 

these subunits in European varieties, nevertheless, points to 
the likelihood that breeders generally have been fine-tuning 
the grain quality traits and GY based on Glu-D1 in combina-
tion with other large-effect genes.

Rht-D1—a green revolution gene—is frequently used 
in European wheat breeding programs to tailor the plant 
height and improve lodging resistance and GY (Flintham 
et al. 1997). Thus, from the known negative correlation 
between GY and grain quality traits, it is expedient to study 
the effect of tall (Rht-D1a) and short (Rht-D1b) alleles 
on quality and GY. The difference between the means 
of varieties harboring tall (42.01%) and short (57.99%) 
alleles were non-significant for HFN and GH (Fig. 5b,d) 
but highly significant (P < 0.001) for ZSV, GPC, and 
GY (Fig. 5a,c,e): Rht-D1b presence was associated with 
reduced values for ZSV and GPC while increased GY.

Pina-D1—a gene present at the Hardness locus—was 
represented by wild-type Pina-D1a (92.43%) and null Pina-
D1b (7.57%) alleles in the investigated varieties. However, 
the allelic influence on varieties was non-significant (Fig. 5). 
From allelic frequencies, it can also be safely inferred that 
the breeders in Europe have largely been adjusting the grain 
texture by exploiting the loci other than Pina-D1.

Pinb-D1 gene was genotyped for four widely present 
alleles in European varieties, viz., Pinb-D1a (13.35%), -D1b 
(42.90%), -D1c (11.08%), and -D1d (32.67%). Besides Glu-
D1, Pinb-D1’s allelic influence was observed as most pro-
nounced: the use of Pinb-D1b and -D1d to alter the grain 
texture in wheat varieties was evident from their frequen-
cies (Fig. 5). The presence of Pinb-D1a (wild type) allele 
was associated with a significant decrease in all investigated 

Fig. 6   Ten major haplotypes (allelic combinations) based on major 
loci for glutenins (Glu), plant height (Rht), and puroindolines (Pin), 
the number of varieties harboring the corresponding haplotype, and 
trait values based on best linear unbiased estimations (BLUEs) of 
varieties. The x- and y-type subunits (alleles) are colored for hap-
lotype construction. Welch's two-sided t-test was used to observe if 
there existed significant differences between the means of haplotype-
based trait values and total population (n = 372). α, β, γ, and – denote 

the significance value of the t-test at the probability (P) levels 
of < 0.001, < 0.01, < 0.05, and > 0.05, respectively. The trait columns 
(ZSV = Zeleny sedimentation value, HFN = Hagberg-Perten fall-
ing number, GPC = grain protein content, GH = grain hardness, and 
GY = grain yield) are colored as black = values significantly larger 
than the population mean, gray = values larger but insignificant than 
the population mean, and white = values lower than the population 
mean
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quality traits whereas—except for HFN—the higher values 
were observed for mutant Pinb-D1c. As expected, wild-
type Pinb-D1a and -D1c were associated with significantly 
higher and lower GY values, respectively. Moreover, the 
Pinb-D1b’s presence, compared to Pinb-D1a, was associ-
ated with significantly higher values for all quality traits 
while decreasing GY (Fig. 5e): This was less pronounced 
for Pinb-D1d where although the difference between varie-
ties was significant for all quality traits but non-significant 
for GY (Fig. 6).

Of a total of 372, 350 varieties had complete information 
for the Pin-1 loci: 41 harbored soft while 349 hard Pin pro-
files (Table S1). Welch’s two-sided t-test revealed that hard 
wheats harbored significantly (P < 0.001) higher values for 
all the quality traits (Fig. 7a–d) whereas, as expected, we 
observed a significantly lower values for GY (Fig. 7e).

Genome‑wide prediction accuracy suggests 
the efficient use of genome‑wide selection in wheat 
breeding programs

We performed genome-wide predictions to assess the poten-
tial of genomics for predictive breeding measured as the 
correlation between the predicted and observed trait values 
standardized by the square root of heritability. The mean 
prediction accuracies resulting from the fivefold cross-
validation settings of quality traits produced similar results 
across all five tested model scenarios, i.e., the GBLUP, 
Bayes-A, -B, -C, and RKHSR (Fig. 8a,b). It is worth not-
ing that the prediction accuracy for ZSV was ~ 20% (~ 81%) 
higher than that of HFN (~ 59%): this is consistent with the 
theory, where prediction accuracies of the traits that are 
less complex tend to be higher as compared to those with 
highly complex genetic architecture. RKHSR—mainly used 
to observe if there exists epistatic interaction among loci—
yielded results on par with other models suggesting that 
epistatic interactions may not be pervasive for investigated 
traits.

Discussion

Wheat grain’s baking quality class determines the mone-
tary benefits for growers and, thus, in addition to improved 
grain yield and disease resistance, fine-tuning and improv-
ing the quality trait profiles remains a major target for 
breeding programs. Most grain quality parameters are 
influenced by crop management (esp. fertilizer applica-
tion) practices and the environment. However, there exists 
variation among wheat varieties that could be ascribed 
to the underlying genetic factors. Because of the German 
Fertilizer Ordinance’s obligatory regulations for reduced 
fertilizer applications (Justiz 2017), exploiting the genetic 
approaches become vital for sustainable grain quality and 
climate-resilient agriculture at large. To this end, in this 
study, we evaluated the phenotypic variation, genetic con-
trol, genetic trends, and promises of genomics-assisted 
breeding for two important grain quality parameters, viz. 
Zeleny sedimentation values (ZSV) and Hagberg–Perten 
falling number (HFN) in a set of 372 wheat varieties that 
were released in previous decades and evaluated over sev-
eral environments.

Genotypic variance, genetic trends, and association 
among grain quality and yield reveal stable 
breeding for baking quality

For both ZSV and HFN, we observed a large genotypic 
variance and broad-sense heritability estimates—this is 
consistent with the previous reports (Kristensen et  al. 
2018; Reif et al. 2011; Würschum et al. 2016). Albeit 
the genotypic variance for both traits was significant, a 
high environmental and residual variance was observed, 
especially for HFN—a trait that is influenced by pre- and 
post-grain physiological maturity environmental condi-
tions. Most recently, Fradgley et al. (2022) reported a large 

Fig. 7   Impact of soft and hard wheats divided according to puroin-
doline (Pin) profiles on (a) Zeleny sedimentation value, (b) Hagberg-
Perten falling number, (c) grain protein content, (d) grain hardness, 
and (e) grain yield. Soft wheats represent varieties harboring wild-
type Pin alleles (Pina-D1a and Pinb-D1a) whereas hard wheats 

harbor Pin allelic variants for one or both Pina-D1 and Pinb-D1. 
For comparison, the  first boxplot within every sub-figure represents 
the best linear unbiased estimations (BLUEs) across soft and hard 
wheats. n denote the number of varieties present in each category. P 
values denote the significance values of Welch's two-sided t-test
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genotype-by-environment interaction for HFN in the UK 
winter wheat.

The effect of year-of-registration on traits under consid-
eration provides an overall genetic trend or selection pro-
gress. Our analyses revealed, over the years, a significant 
increase in GY (+ 0.36%) while GPC decreased (– 0.17%) 
significantly. Cormier et al. (2013) observed 0.33 dt ha−1 
increase in GY during a similar period, predominantly in 
French varieties. Ahlemeyer and Friedt (2011) reported 
a 0.34 dt ha−1 yearly GY increase for German varieties. 
More recently, Laidig et al. (2017) reported an increase 
in grain yield while a decrease in GPC in German variety 
trials. Interestingly, no statistically significant trend was 
observed for ZSV, HFN, and GH pointing to the likeli-
hood that although selection pressure on GY took a toll on 
GPC, the traits concerning protein/gluten quality (ZSV), 
α-amylase activity (HFN), and grain texture (GH)—which 
control baking and milling quality—have sustainably been 
bred. While assessing long-term breeding progress in Ger-
man variety trials, Laidig et al. (2017) reported positive 
trends for all ZSV, HFN, and GH. Our findings are also in 
line with Würschum et al. (2016), who reported that the 
sedimentation values seem to counterbalance the signifi-
cant negative genetic trend for GPC while staying at con-
sistent levels and, thus, offsetting the potential monetary 
losses for growers. The genetic trend for ZSV/GPC ratios 
further strengthens this inference (Fig. 2e).

Wheat quality traits’ negative association with grain 
yield is historically well known (Malloch and Newton 1934; 

Neatby and McCalla 1938; Oury et al. 2003; Shewry 2009). 
We also observed that quality traits, viz., ZSV, HFN, GPC, 
and GH bore a significant negative correlation with GY. ZSV 
and GPC showed a more pronounced negative association 
with GY than HFN and GH. Albeit relatively weaker, HFN 
showed significant correlations with the other four traits. 
ZSV, on the other hand, showed stronger correlations with 
GPC, GH, and GY. This led to an inference of a possible 
dissimilar genetic control of ZSV and HFN. Path analysis, 
nonetheless, showed no direct genetic effects of ZSV and 
HFN on GY. Here, GPC was the only trait having direct rela-
tionship with all other traits, including the GY. This result 
is usable in practical breeding programs where GPC can be 
used as a selection criterion for other complementary (ZSV, 
HFN, and GH) and antagonistic (GY) traits. In relatively 
early breeding generations, GPC as a trait can be scored non-
invasively with high throughput via near-infrared reflectance 
(NIR) techniques. In addition to GPC, NIR analyses usually 
provide GH and grain moisture content. Thus, GPC and GH 
values after calibration at ~ 14% grain moisture could be suit-
able proxy traits to select ZSV and HFN. Also, since early 
generation lines are usually evaluated in micro or observa-
tion (e.g., two-row) plots and yield estimation is not pos-
sible, GPC (lower values) could be employed as one of the 
negative selection traits for GY when breeding for low-qual-
ity (German C class) wheat is undesirable. However, this 
comment on negative selection for C-class should be taken 
carefully since this could cause selection bias in practical 
breeding. For example, the stands are homogeneous if the 

Fig. 8   Accuracy of the genome-wide prediction (GP) for (a) Zeleny 
sedimentation values and (b) Hagberg-Perten falling number based 
on five genomic selection models viz. genomic best linear unbiased 
prediction (GBLUP), BayesA–C, and reproducing kernel Hilbert 
space regression (RKHSR) evaluated by 50 random runs of fivefold 

cross-validation cycles. Symbols � and � denote the  corresponding 
model's mean prediction accuracy and standard deviation. n and p̂ 
(markers including the unmapped) denote the number of varieties and 
the quality markers used in the GP analyses
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breeding nursery is treated with fungicides, herbicides, 
plant growth regulators, and fertilizers. Also, in case of 
a few plants per plot or border effect, plants realize more 
nitrogen uptake which results in potentially more GPC and, 
consequently, deselection of potential high-yielding lines. 
Conversely, in untreated conditions—which is usually the 
case in early generations in practical breeding—higher GPC 
is correlated with lower disease resistance. Consequently, 
removing lower GPC material could also result in removing 
the best disease resistant material. Recently, Gogna et al. 
(2022) showed negative correlations of protein content 
with major wheat diseases such as Septoria tritici blotch, 
Drechslera tritici-repentis, and Fusarium head blight in the 
same GABI wheat panel.

Genetic control of sedimentation values is simpler 
than falling number

The genome-wide association scan resulted in the detection 
of four ZSV and two HFN main-effect QTL. Comparison of 
QTL locations with previous mapping studies is often not 
possible because of the different use of: (1) marker systems 
(e.g., microsatellites, SNP arrays, etc.), (2) chromosome 
maps (e.g., genetic (cM) or physical (bp) positions), and 
(3) nature of mapping populations (e.g., bi-parental, syn-
thetic, diverse released varieties, and breeding lines, etc.). 
Moreover, the studies on the association mapping for ZSV 
and HFN are limited and do not provide marker sequences, 
especially in winter wheats. Hence, we compare our QTL to 
the recent and relevant studies in the following.

Of the four QTL, three, viz. QZsv.ipk-1A, -1B, and -1D 
explained > 25% whereas the MTA representing the fourth 
ZSV-QTL (QZsv.ipk-5D) corresponding to Pinb-D1 gene 
explained 11.39% of the genotypic variance. Würschum 
et al. (2016) also detected four medium- to large-effect 
QTL that explained ~ 60% of the genotypic variance. This 
suggests that the large-effect marker-based genetic gain on 
ZSV QTL could be beneficial in terms of time- and cost-
efficiency. The ZSV-QTL QZsv.ipk-1A harbored the gene 
for peroxidases (POD). To our knowledge, this is the first 
GWAS that identified an SNP linked with POD for ZSV—
most possibly because PODs can improve the physical char-
acteristics of gluten (Geng et al. 2019): this, however, needs 
further genetic and functional validation in independent pop-
ulations. Another ZSV-QTL QZsv.ipk-1D harbored mark-
ers significantly associated with Glu-D1—a known HMW 
glutenin locus that influences the gluten and eventually vis-
coelastic properties of wheat flour doughs (Gale 2005). In 
addition to Glu-D1, QZsv.ipk-1D’s MTA BS00022768_51 
explaining 26.05% of the genotypic variance corresponded 
to globulin—a non-gluten protein that, albeit present in 
minor quantities in the wheat endosperm, influences the 
flour processing (Gupta et al. 1992; Osborne 1907; Pence 

et al. 1954). Since the extent of linkage disequilibrium (the 
non-random association between different loci) plays a vital 
role in GWAS, the MTA BS00022768_51—because of its 
physical location on the long arm (412.2 Mbp)—is likely to 
be linked with Glu-D1, and, thus, may constitute the same 
QTL. Yu et al. (2021) recently colocalized several mixog-
raph parameters with Glu-D1 locus on the same physical 
position (412–14 Mbp). Also, Fradgley et al. (2022) identi-
fied QTL harboring Glu-D1 to be associated with dough 
rheology traits in the UK winter wheat. Therefore, this 
locus seems to control several bread-making quality traits 
in wheat. Pin-1 genes affect wheat’s milling quality by pri-
marily controlling the grain texture (Morris 2002). QZsv.
ipk-5D harbored an MTA BS00000020_51 corresponding to 
Puroindoline-b (Pinb-D1). Pinb-D1’s association with ZSV 
suggests its possible role in controlling the ZSV—several 
previous studies have shown this gene’s association with 
other quality traits, including ZSV (Bhave and Morris 2008; 
Kristensen et al. 2018; Mohler et al. 2012). By dividing 
the panel based on Pin-1 genes' profiles, we also observed 
highly significant differences between the soft and hard 
wheats for all investigated quality traits, including ZSV. As 
described elsewhere, breeders in Europe have—compared 
to Pina-D1—mainly tapped the genetic variation of Pinb-
D1 mutant alleles to fine-tune or maintain hardness or the 
grain texture. The association of this locus with ZSV further 
confirms the inference mentioned earlier that although GPC 
have reduced over the years, sustained ZSV and GH values 
helped sustain/improve bread-making properties. To achieve 
registration, in terms of GY, a line must outperform the 
existing check varieties (depending upon the quality class) 
by a certain margin and thus, the new high-yielding varieties 
inevitably show sustained/improved baking parameters. At 
this juncture, it can be safely assumed that wheat breeders 
seem to have exploited the ZSV/GPC ratio for which a stable 
and slightly positive genetic trend was observed in our study.

For HFN, seven MTA present on individual wheat 
chromosomes were identified. Of these seven, only two 
explained ~ 10% of the variance, and, thus, were desig-
nated as HFN-QTL. The QHfn.ipk-1A’s significant marker 
(AX-94430348; 360.5 Mbp) explained 12.74% of the geno-
typic variance and corresponded to the albumin protein 
(Fig. S8). Albumin, like globulin, is a non-gluten minor 
protein in wheat endosperm that has a significant bearing 
on wheat’s quality (Belderok et al. 2000). For example, 
Gupta et al. (1992) reported that dough quality is signifi-
cantly related to the gluten and other monomeric proteins 
(e.g., globulin, and albumin). Žilić et al. (2011) identi-
fied albumins and globulins as major enzymes involved 
in metabolic processing. Most recently, Dallinger et al. 
(2023), via using a genotyping-by-sequencing platform 
in European winter wheat varieties, identified a QTL on 
chromosome 1A but at 313.5 Mbp and explaining 4% of 
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the variation. The other HFN-QTL QHfn.ipk-5B (MTA: 
wsnp_Ku_rep_c71565_71299640; 618.1 Mbp) identified 
in this study explained 9.38% of the genotypic variance. 
To our knowledge, no previous reports, especially in win-
ter wheats, identified HFN-QTL on 5B at or near 618.1 
Mbp, thus, making it a novel QTL.

Taken together, our GWAS showcased ZSV’s genetic 
control to be less complex than HFN as its QTL showed 
more genotypic variance and were more significant than 
HFN—most possibly because of the action of known qual-
ity-related genes, e.g., Glu-D1 and Pinb-D1. Nevertheless, 
although helpful in breeding programs for speedy selection 
gain, the QTL and corresponding candidate genes reported 
in this study need further genetic and functional validation.

Haplotype analysis point toward suitable allelic 
combinations of major loci for breeding better grain 
quality and yield

Gluten (glutenin and gliadin) form the majority of the wheat 
storage proteins and the glutenin (Glu) loci bear a strong 
effect on the dough and baking quality (Gale 2005). Simi-
larly, Pin-1 genes are the major loci to control grain texture 
(Morris 2002). We investigated the effect of three HMW 
Glu-1 loci (Glu-A1, -B1, and -D1) using candidate mark-
ers for the corresponding genes. In addition, the Rht-D1 
and Pin-1 (Pina-D1 and Pinb-D1) loci were evaluated to 
observe their allelic influence on the investigated traits. Of 
the investigated loci, Glu-A1 alleles (Ax-null and Ax2*) did 
not significantly differentiate the ZSV; however, the pres-
ence of Ax2* resulted in a significant decrease in both HFN 
and GY. Glu-D1 locus (Liu et al. 2008) that differentiated 
Dx5 + Dy10 (responsible for strong doughs) and Dx2 + Dy12 
(weak doughs) subunits was significantly associated with 
ZSV. Würschum et al. (2016) also found a significant asso-
ciation of Glu-1 loci with sedimentation values evaluated 
by the SDS-PAGE method. Contrary to Mohler et al. (2014) 
and Gooding et al. (2012), the Rht-D1’s effect on HFN in our 
study was statistically insignificant—possibly due to popu-
lation size and the genetic background as the authors used 
bi-parental populations. In addition to Glu-D1, the Pinb-D1 
gene was highly significantly associated with ZSV.

In the context of using major quality loci, it is vital to 
observe how breeders have exploited combination of alleles 
(haplotypes). As stated elsewhere, new varieties—depend-
ing on the quality class—must be superior to the checks 
(current top-yielding varieties) in terms of GY, disease 
resistance, and grain quality. In this regard, our haplotype 
analyses shed light on some of the breeders’ “favorite” hap-
lotypes to sustain the bread-making quality while improv-
ing grain yield in wheat (Fig. 6). For example, 36 varie-
ties harboring Hap-1 showed significantly increased values 
for ZSV, HFN, and GH. At the same time, the difference 

of GY compared to the overall population mean was not 
significant. Similarly, Hap-6 showed no significant differ-
ences in GY while showing improved values for all four 
quality traits. The most noticeable difference for GY values 
was observed in Hap-8 where varieties showed 3.51 dt ha−1 
more GY than the population mean. In contrast, all other 
quality traits showed, predictably, lower values—prob-
ably because both wild-type forms for Pin-1 loci, Glu-D1 
Dx2 + Dy12, and Glu-A1 Ax-null subunits were represented 
in Hap-8. In contrast, Hap-2 showed significantly decreased 
GY, harbored better quality subunits/alleles of major loci, 
and consequently significantly higher quality trait values. It 
should be noticed that Glu-A1 and -B1 subunits viz. Ax2* 
and Bx7OE were present only in 10.56 and 6.18% and thus 
could be a reason for not appearing in any major haplotype: 
all ten haplotypes harbored Ax-null and Bx7NE subunits. 
Similarly, from Pin-1 loci, the Pina-D1b null allele was pre-
sent in only 7.57% of the varieties (Fig. 5) indicating that 
quality profiles have mainly been shaped by Pinb-D1 mutant 
alleles (Pinb-D1b–d). The presence of Rht-D1a resulted in 
either decreased or commensurable values for GY. However, 
varieties harboring Rht-D1b alleles showed either increased 
or on par GY values. Taken together, our analyses show that 
Bx7orBx17, Dx5 + Dy10, and Pinb-D1b–d subunits/alleles 
have been necessary for improved and sustainable breeding 
for GY and quality traits. Hence, these can be used in two to 
three combinations depending upon the target GY and qual-
ity class. Also, Hap-2 and Hap-8 may be used to breed for 
targeted E (high-quality elite) and C (cookies or stock feed) 
class GY groups, respectively.

The prospects of predictive breeding 
for sedimentation values and falling number 
in applied wheat breeding programs

We employed high-density SNP arrays, SSRs, and diagnostic 
markers with multi-environment robust phenotypic data for 
GWAS. However, the genotypic variance imparted by the 
identified MTA amounted to roughly 40% for ZSV and HFN. 
Hence, the remaining ~ 60% unexplained genotypic variance 
point to many small-effect maker loci, each explaining less 
than 10% genotypic variance. The prospects of genome-wide 
prediction—to predict the total genetic value of a trait based 
on all maker loci irrespective of their effect size—could be 
utilized (Meuwissen et al. 2001). In this study, based on 
five different models, predictive accuracies for ZSV and 
HFN suggested that these traits could be used for efficient 
genomic selection. Reports on genomic selection for both 
ZSV and HFN are scarce. Our results align with recent 
reports of Würschum et al. (2016) and Kristensen et al. 
(2018), who, while studying European wheat varieties/lines, 
reported high predictive abilities for ZSV and HFN. Here, 
it is worth noting that RKHSR—a model used to assess 
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epistatic interactions among loci—did not outperform other 
models that primarily exploit the additive effects. This is in 
line with Würschum et al. (2016) where the authors did not 
find any significant epistatic QTL that could be exploited 
in marker-assisted breeding. Most recently, Schwarzwälder 
et al. (2022) reported that (1) selection on sedimentation 
values could help improve the baking volume, and (2) lines 
possessing high per se quality traits should help develop 
good hybrids: this is because most of the quality traits are 
additive, and there exists a high correlation between the mid-
parent and hybrid performance. In this context, the mean 
prediction accuracies suggest that genomic selection could 
help select the lines with better genetic merit for ZSV and 
HFN. This could help achieve better genetic gains in both 
line and hybrid breeding programs.
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